1
|
Da FF, Meng YT, Chen YF, Yuan ZW, Liu Y, Dai ZH. Tetracera asiatica flavonoids attenuate alcohol-induced liver injury by suppressing oxidative stress and inflammation mediated by the Keap-1/Nrf2/HO-1, NF-κB/MAPK and PERK/Nrf2 signaling pathways in alcoholic liver injury rats. Tissue Cell 2025; 96:102913. [PMID: 40334394 DOI: 10.1016/j.tice.2025.102913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025]
Abstract
Alcoholic liver disease is regarded as a leading reason for liver cirrhosis. This study aimed to investigate the protective effect of tetracera asiatica flavonoids (TAF) on alcoholic liver injury (ALI) and explore the associated mechanisms. An ALI rat model was established and then divided into four groups, including ALI group, low-dose TAF (l-TAF) group, medium-dose TAF (m-TAF) group, and high-dose TAF (h-TAF) group. Levels of ALT, AST, ALB, SOD, MDA, NO, CAT, TG, TNF-α, IL-1β, Nrf2, Keap1, HO-1, NQO-1, and GSH-Px were measured in ALI rats in different groups. Pathological changes and inflammatory infiltration were examined using HE staining. Western blot was used to detect expressions of Nrf2, MAPK p38, PERK, NF-κB, ERK1/2 and anti-JNK1/2/3. The results showed that TAF protected against alcoholic liver injury in ALI rats by decreasing ALT and AST levels and inhibiting inflammatory response. TAF significantly reversed alcohol-induced increase in NO (P < 0.05), and remarkably decreased levels of TNF-α (P < 0.001) and IL-1β (P < 0.01), compared with the ALI group. TAF significantly increased the transcription of Nrf2, Keap1, HO-1, NQO-1 and GSH-Px gene (all P < 0.05) and inhibited the alcohol-induced upregulation of MAPK p38 expression (P < 0.001), p-NF-κB/NF-κB ratio (P < 0.001), p-ERK/1/2/ERK1/2 ratio (P < 0.05), and p-JNK1/2/3/JNK1/2/2 ratio (P < 0.05), compared with the ALI group (all P < 0.001). TAF obviously reversed effects of ALI modeling, and remarkably downregulated the expression of PERK and upregulated Nrf2 (all P < 0.001) compared with the ALI rats. In conclusion, TAF attenuates alcohol-induced livery injury through suppressing Keap-1/Nrf2/HO-1, NF-κB/MAPK and PERK/Nrf2 signaling pathways mediated oxidative stress and inflammation in ALI rats.
Collapse
Affiliation(s)
- Fang-Fang Da
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China; Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization in Guizhou Minzu University, State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Yao-Ting Meng
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China; Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization in Guizhou Minzu University, State Ethnic Affairs Commission, Guiyang 550025, China
| | - Yu-Feng Chen
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China; Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization in Guizhou Minzu University, State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zi-Wan Yuan
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
| | - Ying Liu
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
| | - Zhong-Hua Dai
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
2
|
Lee YM, Jo K, Kim SY, Seo CS, Son E, Kim A, Kim DS. Yeokwisan: Standardised Herbal Formula Enhancing Gastric Mucosal Protection Against Gastric Ulcers in Mice, a Preclinical Study. Pharmaceuticals (Basel) 2025; 18:44. [PMID: 39861107 PMCID: PMC11768270 DOI: 10.3390/ph18010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Yeokwisan (YWS) is a standardised herbal formula for relieving functional dyspepsia symptoms. Methods: We explored the therapeutic value of YWS and its potential effects on gastritis. Its inhibitory effect on gastric mucosal damage and anti-inflammatory activity in animal models of alcohol- and restraint stress-induced gastritis were also examined. Gastric tissues of ICR mice treated with YWS (150 and 300 mg/kg) or famotidine (5 mg/kg) for 10 days were collected, and gastric lesions were quantified. The stomachs of C57BL/6 mice treated with YWS (150 and 300 mg/kg) or famotidine (5 mg/kg) for 23 days were collected, and gastric lesions were quantified. Blood samples were analysed for inflammation related factors and gastroprotective effects. Results: YWS (300 mg/kg) inhibited gastric damage by 42.33% in the EtOH-induced gastritis model and 75% in the restraint stress-induced gastritis model (compared to the control group). Pretreatment with YWS led to decreased levels of inflammatory factors (IL-1β, IL-6, and COX-2). YWS showed gastroprotective effects through histamine downregulation, while prostaglandin E2 (PGE2) and mucin were upregulated. The mRNA levels of H2R, M3R, CCK2R, and H+/K+ ATPase were significantly decreased following treatment with YWS. Conclusions: YWS provides gastric protection through its anti-inflammatory properties, reduced histamine secretion, and enhanced release of mucosal defensive factors.
Collapse
Affiliation(s)
- Yun Mi Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea (C.-S.S.)
| | - Kyuhyung Jo
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - So Yeon Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea (C.-S.S.)
| | - Chang-Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea (C.-S.S.)
| | - Eunjung Son
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea (C.-S.S.)
| | - Aejin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
- Korean Convergence Medical Science Major, Campus of Korea Institute of Oriental Medicine, University of Science & Technology, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Dong-Seon Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea (C.-S.S.)
| |
Collapse
|
3
|
Dzięcioł M, Wala K, Wróblewska A, Janda-Milczarek K. The Effect of the Extraction Conditions on the Antioxidant Activity and Bioactive Compounds Content in Ethanolic Extracts of Scutellaria baicalensis Root. Molecules 2024; 29:4153. [PMID: 39275001 PMCID: PMC11397618 DOI: 10.3390/molecules29174153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Ethanolic extracts of Baikal skullcap (Scutellaria baicalensis) root were obtained using various techniques, such as maceration, maceration with shaking, ultrasound-assisted extraction, reflux extraction, and Soxhlet extraction. The influence of the type and time of isolation technique on the extraction process was studied, and the quality of the obtained extracts was determined by spectrophotometric and chromatographic methods to find the optimal extraction conditions. Radical scavenging activity of the extracts was analyzed using DPPH assay, while total phenolic content (TPC) was analyzed by the method with the Folin-Ciocalteu reagent. Application of gas chromatography with mass selective detector (GC-MS) enabled the identification of some bioactive substances and a comparison of the composition of the particular extracts. The Baikal skullcap root extracts characterized by both the highest antioxidant activity and content of phenolic compounds were obtained in 2 h of reflux and Soxhlet extraction. The main biologically active compounds identified in extracts by the GC-MS method were wogonin and oroxylin A, known for their broad spectrum of biological effects, including antioxidant, anti-inflammatory, antiviral, anticancer, and others.
Collapse
Affiliation(s)
- Małgorzata Dzięcioł
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Klaudia Wala
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Agnieszka Wróblewska
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland
| |
Collapse
|
4
|
Zhou Z, Hu C, Cui B, You L, An R, Liang K, Wang X. Ginsenoside Rg1 Suppresses Pyroptosis via the NF-κB/NLRP3/GSDMD Pathway to Alleviate Chronic Atrophic Gastritis In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38855973 DOI: 10.1021/acs.jafc.4c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Chronic atrophic gastritis (CAG) is characterized by the loss of gastric glandular cells, which are replaced by the intestinal-type epithelium and fibrous tissue. Ginsenoside Rg1 (Rg1) is the prevalent ginsenoside in ginseng, with a variety of biological activities, and is usually added to functional foods. As a novel form of programmed cell death (PCD), pyroptosis has received substantial attention in recent years. Despite the numerous beneficial effects, the curative impact of Rg1 on CAG and whether its putative mechanism is partially via inhibiting pyroptosis still remain unknown. To address this gap, we conducted a study to explore the mechanisms underlying the potential anti-CAG effect of Rg1. We constructed a CAG rat model using a multifactor comprehensive method. A cellular model was developed by using 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) combined with Nigericin as a stimulus applied to GES-1 cells. After Rg1 intervention, the levels of inflammatory indicators in the gastric tissue/cell supernatant were reduced. Rg1 relieved oxidative stress via reducing the myeloperoxidase (MPO) and malonaldehyde (MDA) levels in the gastric tissue and increasing the level of superoxide dismutase (SOD). Additionally, Rg1 improved MNNG+Nigericin-induced pyroptosis in the morphology and plasma membrane of the cells. Further research supported novel evidence for Rg1 in the regulation of the NF-κB/NLRP3/GSDMD pathway and the resulting pyroptosis underlying its therapeutic effect. Moreover, by overexpression and knockout of GSDMD in GES-1 cells, our findings suggested that GSDMD might serve as the key target in the effect of Rg1 on suppressing pyroptosis. All of these offer a potential theoretical foundation for applying Rg1 in ameliorating CAG.
Collapse
Affiliation(s)
- Zehua Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Hu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bo Cui
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lisha You
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui An
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kun Liang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinhong Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
5
|
Huang L, Yao Y, Ruan Z, Zhang S, Feng X, Lu C, Zhao J, Yin F, Cao C, Zheng L. Baicalin nanodelivery system based on functionalized metal-organic framework for targeted therapy of osteoarthritis by modulating macrophage polarization. J Nanobiotechnology 2024; 22:221. [PMID: 38724958 PMCID: PMC11080297 DOI: 10.1186/s12951-024-02494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Intra-articular drugs used to treat osteoarthritis (OA) often suffer from poor pharmacokinetics and stability. Nano-platforms as drug delivery systems for drug delivery are promising for OA therapy. In this study, we reported an M1 macrophage-targeted delivery system Bai@FA-UIO-66-NH2 based on folic acid (FA) -modified metal-organic framework (MOF) loaded with baicalin (Bai) as antioxidant agent for OA therapy. With outstanding biocompatibility and high drug loading efficiency, Bai@FA-UIO-66-NH2 could be specifically uptaken by LPS-induced macrophages to serve as a potent ROS scavenger, gradually releasing Bai at the subcellular level to reduce ROS production, modulate macrophage polarization to M2, leading to alleviation of synovial inflammation in OA joints. The synergistic effect of Bai@FA-UIO-66-NH2 on macrophage polarization and ROS scavenging significantly improved the therapeutic efficacy of OA, which may provide a new insight into the design of OA precision therapy.
Collapse
Affiliation(s)
- Lanli Huang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yi Yao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Zhuren Ruan
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shengqing Zhang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xianjing Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Chun Lu
- School of Materials and Environment, Guangxi Minzu University, Nanning, 53000, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Feiying Yin
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Cunwei Cao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
6
|
Shao S, Sun M, Ma X, Jiang J, Tian J, Zhang J, Ye F, Li S. Novel phenanthrene/bibenzyl trimers from the tubers of Bletilla striata attenuate neuroinflammation via inhibition of NF-κB signaling pathway. Chin J Nat Med 2024; 22:441-454. [PMID: 38796217 DOI: 10.1016/s1875-5364(24)60641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 05/28/2024]
Abstract
Five novel (9,10-dihydro) phenanthrene and bibenzyl trimers, as well as two previously identified biphenanthrenes and bibenzyls, were isolated from the tubers of Bletilla striata. Their structures were elucidated through comprehensive analyses of NMR and HRESIMS spectroscopic data. The absolute configurations of these compounds were determined by calculating rotational energy barriers and comparison of experimental and calculated ECD curves. Compounds 5b and 6 exhibited inhibitory effects on LPS-induced NO production in BV-2 cells, with IC50 values of 12.59 ± 0.40 and 15.59 ± 0.83 μmol·L-1, respectively. A mechanistic study suggested that these compounds may attenuate neuroinflammation by reducing the activation of the AKT/IκB/NF-κB signaling pathway. Additionally, compounds 3a, 6, and 7 demonstrated significant PTP1B inhibitory activities, with IC50 values of 1.52 ± 0.34, 1.39 ± 0.11, and 1.78 ± 0.01 μmol·L-1, respectively. Further investigation revealed that compound 3a might inhibit LPS-induced PTP1B overexpression and NF-κB activation, thereby mitigating the neuroinflammatory response in BV-2 cells.
Collapse
Affiliation(s)
- Siyuan Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mohan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xianjie Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jianwei Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinying Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jianjun Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fei Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuai Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
7
|
Yan-Rui W, Xue-Er Y, Mao-Yu D, Ya-Ting L, Bo-Heng L, Miao-Jie Z, Li Z. Research on the signaling pathway and the related mechanism of traditional Chinese medicine intervention in chronic gastritis of the "inflammation-cancer transformation". Front Pharmacol 2024; 15:1338471. [PMID: 38698812 PMCID: PMC11063381 DOI: 10.3389/fphar.2024.1338471] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Objective: The aim of this study is to uncover the traditional Chinese medicine (TCM) treatments for chronic gastritis and their potential targets and pathways involved in the "inflammation-cancer" conversion in four stages. These findings can provide further support for future research into TCM and its active components. Materials and methods: The literature search encompassed PubMed, Web of Science, Google Scholar, CNKI, WanFang, and VIP, employing keywords such as "chronic gastritis", "gastric cancer", "traditional Chinese medicine", "medicinal herb", "Chinese herb", and "natural plant". Results: Herbal remedies may regulate the signaling pathways linked to the advancement of chronic gastritis. Under the multi-target and multi-pathway independent or combined reaction, the inflammatory microenvironment may be enhanced, leading to repair of damaged gastric mucosal cells, buffering the progress of mucosal atrophic degeneration via the decrease of inflammatory factor expression, inhibition of oxidative stress-induced damage, facilitation of microvascular neovascularization in the gastric mucosa and regulation of the processes of gastric mucosal cell differentiation and proliferation. Simultaneously, the decreased expression of inflammatory factors may impact the expression of associated oncogenes and regulate the malignant proliferation of cells, thereby achieving the treatment and prevention objectives of gastric cancer through the reduction of cell metastasis and apoptosis. Conclusion: Chinese medicine formulations and individual drugs can be utilised at various stages of the "inflammation-cancer" progression of chronic gastritis to prevent and treat gastric cancer in a multi-level, multi-targeted, and multi-directional fashion. This can provide guidance for the accurate application of medicines during different stages of "inflammation-cancer" transformation. New insights into the mechanism of inflammation-cancer transformation and the development of novel drugs for chronic gastritis can be gained through an extensive investigation of TCM treatment in this condition.
Collapse
Affiliation(s)
- Wang Yan-Rui
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yan Xue-Er
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Ding Mao-Yu
- Beijing University of Chinese Medicine, Beijing, China
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lu Ya-Ting
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lu Bo-Heng
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhai Miao-Jie
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhu Li
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Wang L, Ni B, Wang J, Zhou J, Wang J, Jiang J, Sui Y, Tian Y, Gao F, Lyu Y. Research Progress of Scutellaria baicalensis in the Treatment of Gastrointestinal Cancer. Integr Cancer Ther 2024; 23:15347354241302049. [PMID: 39610320 PMCID: PMC11605761 DOI: 10.1177/15347354241302049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Gastrointestinal (GI) cancer stands as one of the most prevalent forms of cancer globally, presenting a substantial medical and economic burden on cancer treatment. Despite advancements in therapies, it continues to exhibit the second highest mortality rate, primarily attributed to drug resistance and post-treatment side effects. There is an urgent need for novel therapeutic approaches to tackle this persistent challenge. Scutellaria baicalensis, widely used in Traditional Chinese Medicine (TCM), holds a profound pharmaceutical legacy. Modern pharmacological studies have unveiled its anticancer, antioxidant, and immune-enhancing properties. S. baicalensis contains hundreds of active ingredients, with flavonoids, polysaccharides, phenylethanoid glycosides, terpenoids, and sterols being the principal components. These constituents contribute to the treatment of GI cancer by inducing apoptosis in tumor cells, arresting the cell cycle, inhibiting tumor proliferation and metastasis, regulating the tumor microenvironment, modulating epigenetics, and reversing drug resistance. Furthermore, the utilization of modern drug delivery technologies can enhance the bioavailability and therapeutic efficacy of TCM. The treatment of GI cancer with S. baicalensis is characterized by its multi-component, multi-target, and multi-pathway advantages, and S. baicalensis has a broad prospect of becoming a clinical adjuvant or even the main therapy for GI cancer.
Collapse
Affiliation(s)
- Lankang Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Baoyi Ni
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Jilai Zhou
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Junyi Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiakang Jiang
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yutong Sui
- Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Yaoyao Tian
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng Gao
- Mudanjiang Hospital of Chinese Medicine, Mudanjiang, China
| | - Yufeng Lyu
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
9
|
Jiang L, Zhang W, Zhao W, Cai Y, Qin X, Wang B, Xue J, Wen Y, Wei Y, Hua Y, Yao W. Optimization of Ethanol Extraction Technology for Yujin Powder Using Response Surface Methodology with a Box-Behnken Design Based on Analytic Hierarchy Process-Criteria Importance through Intercriteria Correlation Weight Analysis and Its Safety Evaluation. Molecules 2023; 28:8124. [PMID: 38138612 PMCID: PMC10746038 DOI: 10.3390/molecules28248124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Here, we aimed to optimize the ethanol extraction technology for Yujin powder (YJP) and evaluate its safety. The ultrasonic-assisted ethanol reflux extraction method refluxing was used to extract YJP. The parameters were optimized through a combination of single-factor and response surface methodology (RSM). The comprehensive Y value score calculated using the content of 13 active ingredients in YJP ethanolic extracts (YEEs) and the yield of the dry extract were used as measuring criteria. RSM with a Box-Behnken design using three factors and three levels was adopted to optimize the ethanol extraction technology for YJP. Finally, acute and subchronic toxicity tests were performed to evaluate its safety. The results revealed the best technological parameters: a liquid-material ratio of 24:1, an ethanol concentration of 69%, assistance of ultrasound (40 °C, 50 kHZ, 30 min), reflux time of 53 min, and reflux temperature of 50 °C. In acute toxicity tests, the maximum administration dosage in mice was 28.21 g/kg, which is higher than 10 times the clinical dosage. Adverse effects in the acute and subchronic toxicity tests were not observed. All clinical indexes were normal. In conclusion, the RSM based on AHP-CRITIC weight analysis could be used to optimize the ethanol extraction technology for YJP and YEEs prepared under the above conditions and ensure high safety.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (W.Z.); (W.Z.); (Y.C.); (X.Q.); (B.W.); (J.X.); (Y.W.); (Y.W.); (Y.H.)
| |
Collapse
|
10
|
Fan X, Wang F, Song H, Xu F, Li X, Wei Q, Lei B, Wang Z, Wang Y, Tan G. Baicalin inhibits the replication of the hepatitis B virus by targeting TRIM25. J Tradit Complement Med 2023; 13:561-567. [PMID: 38020548 PMCID: PMC10658301 DOI: 10.1016/j.jtcme.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 05/30/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Baicalin, which is a key bioactive constituent obtained from Scutellaria baicalensis, has been utilized in traditional Chinese medicine for many centuries. Although it has been reported that Baicalin (BA) can inhibit the replication of the Hepatitis B virus (HBV), the exact mechanism behind this process remains unclear. Interferon-stimulated genes (ISGs) are crucial in the process of antiviral defense. We aim to investigate whether BA can regulate the expression of ISGs, and thereby potentially modulate the replication of HBV. Methods The study involved the use of CRISPR/Cas9 technology to perform knockout experiments on TRIM25 and IFIT3 genes. The expression of these genes was confirmed through techniques such as immunoblotting or Q-PCR. The levels of HBsAg and HBeAg were measured using ELISA, and the expression of interferon-stimulated genes was detected using a luciferase assay. Results It is interesting to note that several ISGs belonging to the TRIM family, including TRIM5, TRIM25, and TRIM14, were induced after BA treatment. On the other hand, members of the IFIT family were reduced by BA stimulation. Additionally, BA-mediated HBV inhibition was found to be significantly restored in HepG2 cells where TRIM25 was knocked out. Additional research into the mechanism of action of BA found that prolonged treatment with BA activated the JAK/STAT signaling pathway while simultaneously inhibiting the NF-kB pathway. Conclusion The findings of our study indicate that TRIM25 has a significant impact on the regulation of HBV replication following BA treatment, providing additional insight into the mechanisms by which BA exerts its antiviral effects.
Collapse
Affiliation(s)
- Xixi Fan
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China, 130000
- Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Fei Wang
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China, 130000
| | - Hongxiao Song
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China, 130000
| | - Fengchao Xu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China, 130000
| | - Xiaolu Li
- Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Qi Wei
- Department of Anesthesiology, The First Hospital, Jilin University, Changchun, 130000, Jilin, China
| | - Bingxin Lei
- Department of Anesthesiology, The First Hospital, Jilin University, Changchun, 130000, Jilin, China
| | - Zhongnan Wang
- Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yue Wang
- Department of Pediatric Hematology, The First Hospital, Jilin University, Changchun, 130000, Jilin, China
| | - Guangyun Tan
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China, 130000
| |
Collapse
|
11
|
Yuan J, Khan SU, Yan J, Lu J, Yang C, Tong Q. Baicalin enhances the efficacy of 5-Fluorouracil in gastric cancer by promoting ROS-mediated ferroptosis. Biomed Pharmacother 2023; 164:114986. [PMID: 37295251 DOI: 10.1016/j.biopha.2023.114986] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND 5-Fluorouracil (5-Fu) is one of the most commonly used chemotherapy drugs for gastric cancer (GC). But the increase of drug resistance makes the prognosis of patients worse. Studies have shown that Baicalin can not only inhibit various cancers but also increase the sensitivity of cancers to chemotherapy. However, how Baicalin works in chemotherapeutic resistance of GC are unclear. METHODS CCK8 (Cell Counting Kit 8) was used to detect the IC50 (half maximal inhibitory concentration) of Baicalin and 5-Fu. Proliferation, migration, and invasion of GC were tested through colony formation assay and transwell assay. Fluorescent probes detected intracellular reactive oxygen species (ROS). RNA-seq (RNA sequencing) detected differentially expressed genes and pathways, and qPCR (Quantitative Real-time PCR) tested the expression of ferroptosis-related genes. RESULTS The combination of Baicalin and 5-Fu inhibited GC progression and increased intracellular ROS levels. Both the inhibition of malignant phenotype of gastric cancer cells and the generation of intracellular ROS caused by Baicalin could be saved by the inhibitor of ferroptosis-Ferrostatin-1 (Fer-1). Heat map of enriched differentially expressed genes identified by RNA-seq included four ferroptosis-related genes, and subsequent GO (Gene Ontology) analysis suggested an association between the ferroptosis pathway and Baicalin treatment. The changes in expression of ferroptosis-related genes were validated by qPCR, and the result confirmed that the combination of Baicalin and 5-Fu promoted ferroptosis in GC. CONCLUSIONS Baicalin inhibits GC and enhances 5-Fu by promoting ROS-related ferroptosis in GC.
Collapse
Affiliation(s)
- Jingwen Yuan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad 22080, Pakistan
| | - Junfeng Yan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiatong Lu
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chen Yang
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qiang Tong
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
12
|
Yang L, Liu X, Zhu J, Zhang X, Li Y, Chen J, Liu H. Progress in traditional Chinese medicine against chronic gastritis: From chronic non-atrophic gastritis to gastric precancerous lesions. Heliyon 2023; 9:e16764. [PMID: 37313135 PMCID: PMC10258419 DOI: 10.1016/j.heliyon.2023.e16764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/13/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Chronic gastritis (CG) is a persistent inflammation of the gastric mucosa that can cause uncomfortable symptoms in patients. Traditional Chinese medicine (TCM) has been widely used to treat CG due to its precise efficacy, minimal side effects, and holistic approach. Clinical studies have confirmed the effectiveness of TCM in treating CG, although the mechanisms underlying this treatment have not yet been fully elucidated. In this review, we summarized the clinical research and mechanisms of TCM used to treat CG. Studies have shown that TCM mechanisms for CG treatment include H. pylori eradication, anti-inflammatory effects, immune modulation, regulation of gastric mucosal cell proliferation, apoptosis, and autophagy levels.
Collapse
Affiliation(s)
- Liangjun Yang
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Xinying Liu
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Jiajie Zhu
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Xi Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ya Li
- Lin ‘an Hospital of Traditional Chinese Medicine, Hangzhou 311300, China
| | - Jiabing Chen
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Haiyan Liu
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
13
|
Zhang X, Dong Z, Fan H, Yang Q, Yu G, Pan E, He N, Li X, Zhao P, Fu M, Dong J. Scutellarin prevents acute alcohol-induced liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and inhibiting inflammation by regulating the AKT, p38 MAPK/NF-κB pathways. J Zhejiang Univ Sci B 2023; 24:617-631. [PMID: 37455138 PMCID: PMC10350365 DOI: 10.1631/jzus.b2200612] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 04/15/2023]
Abstract
Alcoholic liver disease (ALD) is the most frequent liver disease worldwide, resulting in severe harm to personal health and posing a serious burden to public health. Based on the reported antioxidant and anti-inflammatory capacities of scutellarin (SCU), this study investigated its protective role in male BALB/c mice with acute alcoholic liver injury after oral administration (10, 25, and 50 mg/kg). The results indicated that SCU could lessen serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and improve the histopathological changes in acute alcoholic liver; it reduced alcohol-induced malondialdehyde (MDA) content and increased glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) activity. Furthermore, SCU decreased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β messenger RNA (mRNA) expression levels, weakened inducible nitric oxide synthase (iNOS) activity, and inhibited nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome activation. Mechanistically, SCU suppressed cytochrome P450 family 2 subfamily E member 1 (CYP2E1) upregulation triggered by alcohol, increased the expression of oxidative stress-related nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) pathways, and suppressed the inflammation-related degradation of inhibitor of nuclear factor-κB (NF-κB)-α (IκBα) as well as activation of NF-κB by mediating the protein kinase B (AKT) and p38 mitogen-activated protein kinase (MAPK) pathways. These findings demonstrate that SCU protects against acute alcoholic liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and suppressing inflammation by regulating the AKT, p38 MAPK/NF-κB pathways.
Collapse
Affiliation(s)
- Xiao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhicheng Dong
- Department of Oncology, the Second People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Hui Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiankun Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guili Yu
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Panpan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mian Fu
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
14
|
Liu F, Nong X, Qu W, Li X. Weikangling capsules combined with omeprazole ameliorates ethanol-induced chronic gastritis by regulating gut microbiota and EGF-EGFR-ERK pathway. Life Sci 2023; 315:121368. [PMID: 36623766 DOI: 10.1016/j.lfs.2023.121368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023]
Abstract
AIMS Weikangling capsules (WKLCs) have been widely used in the treatment of chronic gastritis. Whether used alone or combined with omeprazole (OME), it shows a significant effect. However, the mechanisms haven't been established. The study aimed to explore the mechanisms of WKLCs and its combination with OME on chronic gastritis. MAIN METHODS The components of WKLCs and EA (the ethyl acetate extraction extracted from WKLCs) fraction were analyzed. Then chronic gastritis model rats were induced by 56 % ethanol and treated with OME, low dose of WKLCs (WKL), high dose of WKLCs (WKH), WKLCs combined with OME (WO), and EA fraction (EA) to evaluate the mechanisms of WKLCs, drug combination and EA fraction. KEY FINDINGS A total of 22 components of WKLCs were quantified, among them 18 were enriched in EA fraction. WKLCs alleviated the morphology and inflammation of gastric mucosa and downregulated the levels of inflammatory factors (IL-1β, TNF-α, IL-6) and epidermal growth factor (EGF) in serum by inhibiting the EGF-EGFR-ERK pathway, regulating gut microbiota composition and SCFAs contents in feces. WKLCs plus OME was better than OME. EA fraction improved digestive function by increasing pepsin activity and decreasing gastrointestinal hormones (GAS and VIP) compared with WKLCs. SIGNIFICANCE This study elucidated that the effect of WKLCs and its combination with OME in the treatment of chronic gastritis was attributed to regulating the composition of the gut microbiota and inhibiting the EGF-EGFR-ERK pathway. The EA fraction is an inseparable effective substance of WKLCs. This study provides scientific evidence for clinical application.
Collapse
Affiliation(s)
- Feng Liu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaojing Nong
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenhua Qu
- Heilongjiang Sunflower Pharmaceutical Co. Ltd., Heilongjiang 150070, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
15
|
Wen Y, Zhang W, Yang R, Jiang L, Zhang X, Wang B, Hua Y, Ji P, Yuan Z, Wei Y, Yao W. Regulation of Yujin Powder alcoholic extracts on ILC3s-TD IgA-colonic mucosal flora axis of DSS-induced ulcerative colitis. Front Microbiol 2022; 13:1039884. [PMID: 36338041 PMCID: PMC9633017 DOI: 10.3389/fmicb.2022.1039884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
The intestinal flora maintained by the immune system plays an important role in healthy colon. However, the role of ILC3s-TD IgA-colonic mucosal flora axis in ulcerative colitis (UC) and whether it could become an innovative pathway for the treatment of UC is unknown. Yujin Powder is a classic prescription for treatment of dampness-heat type intestine disease in traditional Chinese medicine and has therapeutic effects on UC. Hence, the present study aimed to investigate the regulatory mechanism of Yujin Powder alcoholic extracts (YJP-A) on UC via ILC3s-TD IgA-colonic mucosal flora axis. The UC mouse model was induced by drinking 3.5% dextran sodium sulfate (DSS), meanwhile, YJP-A was given orally for prevention. During the experiment, the clinical symptoms of mice were recorded. Then the intestinal injury and inflammatory response of mice about UC were detected after the experiment. In addition, the relevant indicators of ILC3s-TD IgA-colonic mucosal flora axis were detected. The results showed that YJP-A had good therapy effects on DSS-induced mice UC: improved the symptoms, increased body weight and the length of colon, decreased the disease activity index score, ameliorated the intestinal injury, and reduced the inflammation etc. Also, YJP-A significantly increased the ILC3s proportion and the expression level of MHC II; significantly decreased the proportion of Tfh cells and B cells and the expression levels of Bcl6, IL-4, Aicda in mesenteric lymph nodes of colon in UC mice and IgA in colon. In addition, by 16S rDNA sequencing, YJP-A could restore TD IgA targets colonic mucus flora in UC mice by decreasing the relative abundance of Mucispirillum, Lachnospiraceae and increasing the relative abundance of Allprevotella, Alistipes, and Ruminococcaceae etc. In conclusion, our results demonstrated that the ILC3s-TD IgA-colonic mucosal flora axis was disordered in UC mice. YJP-A could significantly promote the proliferation of ILC3s to inhibit Tfh responses and B cells class switching through MHC II, further to limit TD IgA responses toward colonic mucosal flora. Our findings suggested that this axis may be a novel and promising strategy to prevent UC.
Collapse
Affiliation(s)
- Yanqiao Wen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wangdong Zhang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Rong Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Lidong Jiang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaosong Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Baoshan Wang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yongli Hua
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ziwen Yuan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yanming Wei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Yanming Wei; Wanling Yao,
| | - Wanling Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Yanming Wei; Wanling Yao,
| |
Collapse
|
16
|
Liu Q, Tang J, Chen S, Hu S, Shen C, Xiang J, Chen N, Wang J, Ma X, Zhang Y, Zeng J. Berberine for gastric cancer prevention and treatment: Multi-step actions on the Correa's cascade underlie its therapeutic effects. Pharmacol Res 2022; 184:106440. [PMID: 36108874 DOI: 10.1016/j.phrs.2022.106440] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
Gastric carcinoma (GC) is a complex multifactorial disease occurring as sequential events commonly referred to as the Correa's cascade, a stepwise progression from non-active or chronic active gastritis, to gastric precancerous lesions, and finally, adenocarcinoma. Therefore, the identification of novel agents with multi-step actions on the Correa's cascade and those functioning as multiple phenotypic regulators are the future direction for drug discovery. Recently, berberine (BBR) has gained traction owing to its pharmacological properties, including anti-inflammatory, anti-cancer, anti-ulcer, antibacterial, and immunopotentiation activities. In this article, we investigated and summarized the multi-step actions of BBR on Correa's cascade and its underlying regulatory mechanism in gastric carcinogenesis for the first time, along with a discussion on the strength of BBR to prevent and treat GC. BBR was found to suppress H. pylori infection, control mucosal inflammation, and promote ulcer healing. In the gastric precancerous lesion phase, BBR could reverse mucosal atrophy and prevent lesions in intestinal metaplasia and dysplasia by regulating inflammatory cytokines, promoting cell apoptosis, regulating macrophage polarization, and regulating autophagy. Additionally, the therapeutic action of BBR on GC was partly realized through the inhibition of cell proliferation, migration, and angiogenesis; induction of apoptosis and autophagy, and enhancement of chemotherapeutic drug sensitivity. BBR exerted multi-step actions on the Correa's cascade, thereby halting and even reversing gastric carcinogenesis in some cases. Thus, BBR could be used to prevent and treat GC. In conclusion, the therapeutic strategy underlying BBR's multi-step action in the trilogy of Correa's cascade may include "prevention of gastric mucosal inflammation (Phase 1); reversal of gastric precancerous lesions (Phase 2), and rescue of GC (Phase 3)". The NF-κB, PI3K/Akt, and MAPK signaling pathways may be the key signaling transduction pathways underlying the treatment of gastric carcinogenesis using BBR. The advantage of BBR over conventional drugs is its multifaceted and long-term effects. This review is expected to provide preclinical evidence for using BBR to prevent gastric carcinogenesis and treat gastric cancer.
Collapse
Affiliation(s)
- Qingsong Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Shuanglan Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Shuangyuan Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Caifei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Juyi Xiang
- Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, 400016 Chongqing, China
| | - Jundong Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137 Chengdu, China.
| | - Yi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China.
| |
Collapse
|
17
|
Zhou Z, Liu W, Li X, Li C, An R, Liang K, Wang X. Comparative pharmacokinetics of four major flavonoids in normal and chronic gastritis rats after oral administration of different combinations of Banxia Xiexin Decoction. Biomed Chromatogr 2022; 36:e5458. [PMID: 35883246 DOI: 10.1002/bmc.5458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/07/2022]
Abstract
Chronic gastritis (CG) has become a major threat to human health. Banxia Xiexin Decoction (BXXXD) has been used clinically to treat gastritis by acting on the spleen and stomach for thousands of years. Baicalin, wogonoside, liquiritin and liquiritigenin, are the main bioactive flavonoids of BXXXD. A rapid, sensitive and selective HPLC-TQ-MS/MS method was developed to simultaneously quantify the four flavonoids in rat plasma in this study. With salidroside as internal standard (IS), plasma samples were extracted and separated on a Welch HPLC XB-C18 column (2.1 × 50 mm, 1.8 μm) using gradient elution. An optimized gradient of mobile phase consisted of water (containing 0.1% formic acid) (A) and methanol (B) was used. Detection was implemented in MRM mode with an electrospray negative ionization source. Comparative pharmacokinetics of four analytes in normal and CG rats after oral administration of BXXXD or its different compatibilities were firstly investigated. Results indicated that the pharmacokinetic behaviors of analytes were obviously changed in CG rats. From the comparison between the whole prescription group and the compatibility groups, it was found that the pharmacokinetic behavior of analytes also changed to some extent. The pharmacokinetic alterations of analytes might be due to the pathological conditions of CG.
Collapse
Affiliation(s)
- Zehua Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wangzhenzu Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Li
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chan Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui An
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kun Liang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinhong Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Zhao D, Du B, Xu J, Xie Q, Lu Z, Kang Y. Baicalin promotes antibacterial defenses by modulating mitochondrial function. Biochem Biophys Res Commun 2022; 621:130-136. [PMID: 35820283 DOI: 10.1016/j.bbrc.2022.06.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022]
Abstract
Natural flavonoids, such as baicalin, have been extensively studied for their role in bacterial infection. However, the underlying mechanisms remain poorly understood. We demonstrated that baicalin coordinates mitochondrial function and dynamics to promote antibacterial response. Baicalin protected against Staphylococcus aureus infections and alleviates inflammatory responses in vivo and in vitro. An increase in mitochondrial mass and elevated expression of factors regulating mitochondrial fission and fusion were observed in baicalin-treated macrophages. Baicalin induced Drp1-dependent biogenesis, which contributes to the generation of additional mitochondria. Baicalin improved the mitochondrial membrane potential, ATP levels, and mitochondrial reactive oxygen species (mtROS) production. Importantly, the inhibition of mitochondrial function by rotenone or MitoTEMPO suppressed the antimicrobial activity of baicalin in macrophages. We conclude that baicalin can regulate immune responses during S. aureus infection by improving mitochondrial function and dynamics, implying that it is a promising therapeutic agent for controlling infection and inflammatory diseases.
Collapse
Affiliation(s)
- Dongjiu Zhao
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Binhao Du
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jihao Xu
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Qinzi Xie
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhe Lu
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yanhua Kang
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
19
|
Scutellaria baicalensis and its constituents baicalin and baicalein as antidotes or protective agents against chemical toxicities: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1297-1329. [PMID: 35676380 DOI: 10.1007/s00210-022-02258-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Scutellaria baicalensis (SB), also known as the Chinese skullcap, has a long history of being used in Chinese medicine to treat a variety of conditions ranging from microbial infections to metabolic syndrome and malignancies. Numerous studies have reported that treatment with total SB extract or two main flavonoids found in its root and leaves, baicalin (BA) and baicalein (BE), can prevent or alleviate the detrimental toxic effects of exposure to various chemical compounds. It has been shown that BA and BE are generally behind the protective effects of SB against toxicants. This paper aimed to review the protective and therapeutic effects of SB and its main components BA and BE against chemical compounds that can cause intoxication after acute or chronic exposure and seriously affect different vital organs including the brain, heart, liver, and kidneys. In this review paper, we had a look into a total of 221 in vitro and in vivo studies from 1995 to 2021 from the scientific databases PubMed, Scopus, and Web of Science which reported protective or therapeutic effects of BA, BE, or SB against drugs and chemicals that one might be exposed to on a professional or accidental basis and compounds that are primarily used to simulate disease models. In conclusion, the protective effects of SB and its flavonoids can be mainly attributed to increase in antioxidants enzymes, inhibition of lipid peroxidation, reduction of inflammatory cytokines, and suppression of apoptosis pathway.
Collapse
|
20
|
Cai L, Gong Q, Qi L, Xu T, Suo Q, Li X, Wang W, Jing Y, Yang D, Xu Z, Yuan F, Tang Y, Yang G, Ding J, Chen H, Tian H. ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway. Cell Commun Signal 2022; 20:56. [PMID: 35461293 PMCID: PMC9035258 DOI: 10.1186/s12964-022-00862-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/12/2022] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Microglia-mediated neuroinflammatory response following traumatic brain injury (TBI) is considered as a vital secondary injury factor, which drives trauma-induced neurodegeneration and is lack of efficient treatment. ACT001, a sesquiterpene lactone derivative, is reportedly involved in alleviation of inflammatory response. However, little is known regarding its function in regulating innate immune response of central nervous system (CNS) after TBI. This study aimed to investigate the role and underlying mechanism of ACT001 in TBI.
Methods
Controlled cortical impact (CCI) models were used to establish model of TBI. Cresyl violet staining, evans blue extravasation, neurobehavioral function assessments, immunofluorescence and transmission electron microscopy were used to evaluate therapeutic effects of ACT001 in vivo. Microglial depletion was induced by administering mice with colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622. Cell-cell interaction models were established as co-culture system to simulate TBI conditions in vitro. Cytotoxic effect of ACT001 on cell viability was assessed by cell counting kit-8 and activation of microglia cells were induced by Lipopolysaccharides (LPS). Pro-inflammatory cytokines expression was determined by Real-time PCR and nitric oxide production. Apoptotic cells were detected by TUNEL and flow cytometry assays. Tube formation was performed to evaluate cellular angiogenic ability. ELISA and western blot experiments were used to determine proteins expression. Pull-down assay was used to analyze proteins that bound ACT001.
Results
ACT001 relieved the extent of blood-brain barrier integrity damage and alleviated motor function deficits after TBI via reducing trauma-induced activation of microglia cells. Delayed depletion of microglia with PLX5622 hindered therapeutic effect of ACT001. Furthermore, ACT001 alleviated LPS-induced activation in mouse and rat primary microglia cells. Besides, ACT001 was effective in suppressing LPS-induced pro-inflammatory cytokines production in BV2 cells, resulting in reduction of neuronal apoptosis in HT22 cells and improvement of tube formation in bEnd.3 cells. Mechanism by which ACT001 functioned was related to AKT/NFκB/NLRP3 pathway. ACT001 restrained NFκB nuclear translocation in microglia cells through inhibiting AKT phosphorylation, resulting in decrease of NLRP3 inflammasome activation, and finally down-regulated microglial neuroinflammatory response.
Conclusions
Our study indicated that ACT001 played critical role in microglia-mediated neuroinflammatory response and might be a novel potential chemotherapeutic drug for TBI.
Collapse
|
21
|
Li H, Yang W, Liu MW, Wan LJ, Wang YQ. Protective effects of Baicalin injection on severe acute pancreatitis through regulating follistatin-like-1 signaling pathway by down-regulating miR-429 expression in mice. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Hui Li
- Kunming Medical University, China
| | - Wei Yang
- Kunming Medical, University, China
| | | | | | | |
Collapse
|
22
|
Xu B, Huang S, Chen Y, Wang Q, Luo S, Li Y, Wang X, Chen J, Luo X, Zhou L. Synergistic effect of combined treatment with baicalin and emodin on DSS-induced colitis in mouse. Phytother Res 2021; 35:5708-5719. [PMID: 34379340 DOI: 10.1002/ptr.7230] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022]
Abstract
The treatment of combination drugs in complex diseases has been spotlighted. Ulcerative colitis (UC) is a chronic inflammatory disease that has made progress in combination therapy. Baicalin, a flavone from Scutellaria baicalensis Georgi. (Lamiaceae), and emodin, an anthraquinone derivative from Rhei Radix et Rhizoma. (Polygonaceae), both have been reported to possess antiinflammatory activities. Our study investigated whether combined treatment with baicalin and emodin had a synergistic effect in inhibiting colitis inflammation. The results showed that baicalin combined with emodin at a lower dose had the same effect as the two drugs alone significantly alleviated the symptoms of dextran sulfate sodium (DSS)-induced colitis mice, involving the prevention of the loss of body weight and colon shortening, the decrease in the disease activity index (DAI), and intestinal damages. The combined treatment decreased the expression of CD14/TLR4/NF-κB pathway proteins and increased the expression of PPAR-γ protein in the colon of colitis mice. Further study in vitro has shown that baicalin decreased the expression of CD14, whereas emodin increased the expression of PPAR-γ, both of which inhibited the activity of NF-κB and exerted antiinflammatory effects. Furthermore, compared to the treatment using the two drugs individually, baicalin combined with emodin had more significant effects on the expression of CD14 and PPAR-γ. Therefore, emodin combined with baicalin had a synergistic effect on DSS-induced colitis.
Collapse
Affiliation(s)
- Bo Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaowei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanping Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuang Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanyang Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyan Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Baicalin Inhibits NLRP3 Inflammasome Activity Via the AMPK Signaling Pathway to Alleviate Cerebral Ischemia-Reperfusion Injury. Inflammation 2021; 44:2091-2105. [PMID: 34080089 DOI: 10.1007/s10753-021-01486-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/30/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
Baicalin has been reported to have ameliorative effects on nerve-induced hypoxic ischemia injury; however, its role in the NLRP3 inflammasome-dependent inflammatory response during cerebral ischemia-reperfusion remains unclear. To investigate the molecular mechanisms involved in baicalin alleviating cerebral ischemia-reperfusion injury, we investigated the AMPK signaling pathway which regulates NLRP3 inflammasome activity. SD rats were treated with baicalin at doses of 100 mg/kg and 200 mg/kg, respectively, after middle cerebral artery occlusion at 2 h and reperfusion for 24 h (MCAO/R). MCAO/R treatment significantly increased cerebral infarct volume, changed the ultrastructure of nerve cells, and activated the NLRP3 inflammasome, manifesting as significantly increased expression of NLRP3, ASC, cleaved caspase-1, IL-1β, and IL-18. Our results demonstrated that baicalin treatment effectively reversed these phenomena in a dose-dependent manner. Additionally, inhibition of NLRP3 expression was found to promote the neuroprotective effects of baicalin on cortical neurons. Furthermore, baicalin remarkably increased the expression of p-AMPK following oxygen glucose deprivation/reperfusion (OGD/R). The expression of the NLRP3 inflammasome was also increased when the AMPK pathway was blocked by compound C. Taken together, our findings reveal that baicalin reduces the activity of the NLRP3 inflammasome and consequently inhibits cerebral ischemia-reperfusion injury through activation of the AMPK signaling pathway.
Collapse
|
24
|
Yu Y, Chen J, Zhang X, Wang Y, Wang S, Zhao L, Wang Y. Identification of anti-inflammatory compounds from Zhongjing formulae by knowledge mining and high-content screening in a zebrafish model of inflammatory bowel diseases. Chin Med 2021; 16:42. [PMID: 34059101 PMCID: PMC8166029 DOI: 10.1186/s13020-021-00452-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) are chronic relapsing intestinal inflammations with increasing global incidence, and new drug development remains in urgent demand for IBD management. To identify effective traditional Chinese medicine (TCM) formulae and compounds in IBD treatment, we innovatively combined the techniques of knowledge mining, high-content screening and high-resolution mass spectrometry, to conduct a systematic screening in Zhongjing formulae, which is a large collection of TCM prescriptions with most abundant clinical evidences. METHODS Using Word2vec-based text learning, the correlations between 248 Zhongjing formulae and IBD typical symptoms were analyzed. Next, from the top three formulae with predicted relationship with IBD, TCM fractions were prepared and screened on a transgenic zebrafish IBD model for their therapeutic effects. Subsequently, the chemical compositions of the fraction hits were analyzed by mass spectrometry, and the major compounds were further studied for their anti-IBD effects and potential mechanisms. RESULTS Through knowledge mining, Peach Blossom Decoction, Pulsatilla Decoction, and Gegen Qinlian Decoction were predicted to be the three Zhongjing formulae mostly related to symptoms typical of IBD. Seventy-four fractions were prepared from the three formulae and screened in TNBS-induced zebrafish IBD model by high-content analysis, with the inhibition on the intestinal neutrophil accumulation and ROS level quantified as the screening criteria. Six herbal fractions showed significant effects on both pathological processes, which were subsequently analyzed by mass spectrometry to determine their chemical composition. Based on the major compounds identified by mass spectrometry, a second-round screen was conducted and six compounds (palmatine, daidzin, oroxyloside, chlorogenic acid, baicalin, aesculin) showed strong inhibitory effects on the intestinal inflammation phenotypes. The expression of multiple inflammatory factors, including il1β, clcx8a, mmp and tnfα, were increased in TNBS-treated fish, which were variously inhibited by the compounds, with aesculin showing the most potent effects. Moreover, aesculin and daidzin also upregulated e-cadherin's expression. CONCLUSION Taken together, we demonstrated the regulatory effects of several TCM formulae and their active compounds in the treatment of IBD, through a highly efficient research strategy, which can be applied in the discovery of effective TCM formulae and components in other diseases.
Collapse
Affiliation(s)
- Yunru Yu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shufang Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
25
|
Duan XY, Sun Y, Zhao ZF, Shi YQ, Ma XY, Tao L, Liu MW. Baicalin attenuates LPS-induced alveolar type II epithelial cell A549 injury by attenuation of the FSTL1 signaling pathway via increasing miR-200b-3p expression. Innate Immun 2021; 27:294-312. [PMID: 34000873 PMCID: PMC8186156 DOI: 10.1177/17534259211013887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In China, baicalin is the main active component of Scutellaria baicalensis, which has been used in the treatment of inflammation-related diseases, such as inflammation-induced acute lung injury. However, its specific mechanism remains unclear. This study examined the protective effect of baicalin on LPS-induced inflammation injury of alveolar epithelial cell line A549 and explored its protective mechanism. Compared with the LPS-induced group, the proliferation inhibition rates of alveolar type II epithelial cell line A549 intervened by different concentrations of baicalin decreased significantly, as did the levels of inflammatory factors IL-6, IL-1β, prostaglandin 2 and TNF-α in the supernatant. The expression levels of inflammatory proteins inducible NO synthase (iNOS), NF-κB65, phosphorylated ERK (p-ERK1/2), and phosphorylated c-Jun N-terminal kinase (p-JNK1) significantly decreased, as did the protein expression of follistatin-like protein 1 (FSTL1). In contrast, expression of miR-200b-3p significantly increased in a dose-dependent manner. These results suggested that baicalin could significantly inhibit the expression of inflammation-related proteins and improve LPS-induced inflammatory injury in alveolar type II epithelial cells. The mechanism may be related to the inhibition of ERK/JNK inflammatory pathway activation by increasing the expression of miR-200b-3p. Thus, FSTL1 is the regulatory target of miR-200b-3p.
Collapse
Affiliation(s)
- Xin-Ya Duan
- Department of Tuberculosis Diseases, Third People's Hospital of Kunming City, China
| | - Yang Sun
- Department of Nephrology, The Sixth Affiliated Hospital of Kunming Medical University, China
| | - Zhu-Feng Zhao
- Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, China
| | - Yao-Qing Shi
- Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, China
| | - Xun-Yan Ma
- Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, China
| | - Li Tao
- Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, China
| | - Ming-Wei Liu
- Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, China
| |
Collapse
|
26
|
Heidari F, Komeili-Movahhed T, Hamidizad Z, Moslehi A. The protective effects of rosmarinic acid on ethanol-induced gastritis in male rats: antioxidant defense enhancement. Res Pharm Sci 2021; 16:305-314. [PMID: 34221064 PMCID: PMC8216161 DOI: 10.4103/1735-5362.314829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/12/2020] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Background and purpose: Gastritis is one of the most current gastrointestinal disorders worldwide. Alcohol consumption is one of the major factors, which provides gastritis. Rosmarinic acid (RA) is found in many plants and has powerful antioxidant and anti-inflammatory effects. In this study, the protective effect of RA was evaluated on the histopathological indices, antioxidant ability, and prostaglandin E2 (PGE2) secretion in male rats. Experimental approach: Forty-two animals were divided into control, ethanol-induced gastritis, and RA groups, 6 each. The protective groups included RA administration before gastritis induction at 50 mg (R-G50), 100 mg (R-G100), 150 mg (R-G150), and 200 mg (R-G200) doses. Gastritis was induced by gavage of 1 mL pure ethanol in fasted animals. After 1 h of gastritis induction, the rats were sacrificed and stomach tissue was removed. Findings/Results: Histological evaluation revealed that RA significantly attenuated gastric ulcers, leucocyte infiltration, and hyperemia. It also increased mucosal layer thickness and restored gastric glands. Furthermore, RA decreased malondialdehyde level, increased superoxide dismutase, catalase, and glutathione in the stomach tissue, and raised gastric PGE2 level. Conclusion and implications: Our study demonstrated that rosmarinic acid has a notable effect on gastritis protection that could be due to increased antioxidant defense and PGE2 secretion, eventually maintenance of mucosal barrier integrity and gastric glands.
Collapse
Affiliation(s)
- Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, I.R. Iran
| | | | - Zeinab Hamidizad
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Moslehi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, I.R. Iran
| |
Collapse
|
27
|
Wang F, Wang W, Kong L, Shi L, Wang M, Chai Y, Xu J, Kang Q. Accelerated Bone Regeneration by Adrenomedullin 2 Through Improving the Coupling of Osteogenesis and Angiogenesis via β-Catenin Signaling. Front Cell Dev Biol 2021; 9:649277. [PMID: 33937244 PMCID: PMC8079771 DOI: 10.3389/fcell.2021.649277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Both osteogenic differentiation and the pro-angiogenic potential of bone marrow mesenchymal stem cells (BMSCs) contribute to bone regeneration during distraction osteogenesis (DO). Adrenomedullin 2 (ADM2), an endogenous bioactive peptide belonging to the calcitonin gene-related peptide family, exhibits various biological activities associated with the inhibition of inflammation and the attenuation of ischemic-hypoxic injury. However, the effects and underlying mechanisms of ADM2 in osteogenic differentiation and the pro-angiogenic potential of BMSCs, along with bone regeneration, remain poorly understood. In the present study, we found that osteogenic induction enhanced the pro-angiogenic potential of BMSCs, and ADM2 treatment further improved the osteogenic differentiation and pro-angiogenic potential of BMSCs. Moreover, the accumulation and activation of β-catenin, which is mediated by the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the activation of protein kinase B (AKT), have been shown to contribute to the effects of ADM2 on BMSCs. In vivo, ADM2 accelerated vessel expansion and bone regeneration, as revealed by improved radiological and histological manifestations and the biomechanical parameters in a rat DO model. Based on the present results, we concluded that ADM2 accelerates bone regeneration during DO by enhancing the osteogenic differentiation and pro-angiogenic potential of BMSCs, partly through the NF-κB/β-catenin and AKT/β-catenin pathways. Moreover, these findings imply that BMSC-mediated coupling of osteogenesis and angiogenesis may be a promising therapeutic strategy for DO patients.
Collapse
|
28
|
Wu Y, Chen H, Zou Y, Yi R, Mu J, Zhao X. Lactobacillus plantarum HFY09 alleviates alcohol-induced gastric ulcers in mice via an anti-oxidative mechanism. J Food Biochem 2021; 45:e13726. [PMID: 33846998 DOI: 10.1111/jfbc.13726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
The protective effect of Lactobacillus plantarum HFY09 (LP-HFY09) on alcohol-induced gastric ulcers was investigated. Gastric morphology observation and pathological tissue sections showed that LP-HFY09 effectively relieved gastric tissue injury. The biochemical indicator detection showed that LP-HFY09 increased superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione (GSH), prostaglandin E2 (PGE2), and somatostatin (SS) levels, and decreased malondialdehyde (MDA) levels. Moreover, LP-HFY09 inhibited the levels of inflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), and elevated the level of anti-inflammatory cytokine IL-10. The quantitative polymerase chain reaction (q-PCR) examination revealed that LP-HFY09 enhanced the mRNA expression of nuclear factor E2-related factor 2 (Nrf2) and downstream genes, including copper/zinc superoxide dismutase (SOD1), heme oxygenase-1 (HO-1), gamma-glutamylcysteine synthetase (GSH1), manganese superoxide dismutase (SOD2), catalase (CAT), and GSH-Px. This study indicated that LP-HFY09 alleviated alcohol-induced gastric ulcers by increasing gastric mucosa defense factor, and inhibiting oxidative stress and the inflammatory response. PRACTICAL APPLICATIONS: LP-HFY09 has the potential to be investigated as a treatment for gastric injury induced by alcohol.
Collapse
Affiliation(s)
- Ya Wu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Hong Chen
- The First Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yujie Zou
- Department of Emergency, Chongqing University Central Hospital, Chongqing, P.R. China
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
29
|
Song L, Zhu S, Liu C, Zhang Q, Liang X. Baicalin triggers apoptosis, inhibits migration, and enhances anti-tumor immunity in colorectal cancer via TLR4/NF-κB signaling pathway. J Food Biochem 2021; 46:e13703. [PMID: 33742464 DOI: 10.1111/jfbc.13703] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022]
Abstract
Aberrant activation of the nuclear factor-kappa B (NF-κB) signaling pathway is closely implicated in colorectal cancer (CRC) growth, metastasis, and immune escape. In the present study, we reported natural derived compound of baicalin (BA), an efficient inhibitor of NF-κB, with good anti-tumor effect on CRC. CCK8 and colony formation assays showed that Baicalin significantly inhibit viability and proliferation in HCT-116 and CT26 cells. Additionally, Baicalin dramatically triggers mitochondria-mediated apoptosis in both HCT-116 and CT-26 cells, which is evidenced by loss of mitochondrial membrane potential and elevated cellular reactive oxygen species level. Treatment with Baicalin suppresses migration and invasion of CT26 cells by impairing TLR4/NF-κB signaling pathway. What's more, administration of Baicalin significantly retarded tumor growth rate in a subcutaneous xenograft tumor mouse model of CT26 cells. Treatment with Baicalin could ameliorate tumor immunosuppressive environment by downregulation of PD-L1 expression and proportion of myeloid-derived suppressor cells (MDSCs) and upregulation of percent of CD4+ and CD8+ T cells in CT26 tumors, thus improving anti-tumor immunity. In conclusion, our study demonstrated that baicalin triggers apoptosis, inhibits migration, and enhances anti-tumor immunity in colorectal cancer via TLR4/NF-κB signaling pathway, suggesting it might serve as a potential candidate drug for the treatment of CRC. PRACTICAL APPLICATIONS: In the present study, we reported natural derived compound of baicalin (BA), an efficient inhibitor of NF-κB, with good anti-tumor effect on CRC. We demonstrated that baicalin triggers mitochondria-mediated apoptosis, inhibits migration, and improves anti-tumor immunity in colorectal cancer via TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Linjiang Song
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Shaomi Zhu
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Chi Liu
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Qinxiu Zhang
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xin Liang
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| |
Collapse
|
30
|
Zhai C, Wang D. Baicalin regulates the development of pediatric asthma via upregulating microRNA-103 and mediating the TLR4/NF-κB pathway. J Recept Signal Transduct Res 2021; 42:230-240. [PMID: 33730981 DOI: 10.1080/10799893.2021.1900865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pediatric asthma seriously endangers the well-being and health of children worldwide. Baicalin (BA) protects against diverse disorders, including asthma. Therefore, this study explored the mechanism of BA in pediatric asthma. The ovalbumin (OVA)-induced asthmatic mouse model was established to evaluate BA efficacy from aspects of oxidative stress, inflammation, blood cells in bronchoalveolar lavage fluid (BALF) and collagen deposition. Differentially expressed microRNAs (miRs) in BA-treated mice were analyzed. Effects of BA on PDGF-BB-induced smooth muscle cells (SMCs) were assessed. miR downstream mRNA and the related pathway were predicted and verified, and their effects on asthmatic mice were evaluated. BA effectively reversed OVA-induced oxidative stress and inflammation, as well as decreased the number of total cells, eosinophils and neutrophils in BALF, and collagen deposition. miR-103 was significantly upregulated after BA treatment. BA inhibited the abnormal proliferation of PDGF-BB-induced SMCs, which was prevented by miR-103 knockdown. miR-103 targeted TLR4 and regulated the extent of NF-κB phosphorylation. In vivo, miR-103 inhibition weakened the alleviating effects of BA on asthma, which was then reversed after silencing of TLR4. We highlighted that BA has the potency to halt the pediatric asthma progression via miR-103 upregulation and the TLR4/NF-κB axis inhibition.
Collapse
Affiliation(s)
- Chuanhua Zhai
- Department of Pediatrics, Suzhou Integrated Traditional Chinese and Western Medicine Hospital, Jiangsu, Suzhou, P.R. China
| | - Debing Wang
- Department of Pediatrics, Suzhou Integrated Traditional Chinese and Western Medicine Hospital, Jiangsu, Suzhou, P.R. China
| |
Collapse
|
31
|
Wu Z, Fan Q, Miao Y, Tian E, Ishfaq M, Li J. Baicalin inhibits inflammation caused by coinfection of Mycoplasma gallisepticum and Escherichia coli involving IL-17 signaling pathway. Poult Sci 2020; 99:5472-5480. [PMID: 33142464 PMCID: PMC7647907 DOI: 10.1016/j.psj.2020.08.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 01/09/2023] Open
Abstract
Coinfection of Mycoplasma gallisepticum (MG) and Escherichia coli (E. coli) is frequently reported in poultry farms. Baicalin possess various pharmacological properties such as anti-inflammatory, anticancer, and antioxidant, etc. However, the protective effects of baicalin against coinfection of MG and E. coli are still elusive. In this study, baicalin (450 mg/kg) treatment was started on day 13 after infection and continued for 5 d. Histopathological examination, qRT-PCR, ELISA, and molecular docking technique were used to evaluate the effects of baicalin on MG and E. coli coinfection in chicken lung and trachea. The results showed that coinfection caused severe lesions in the lung and tracheal tissues. However, baicalin treatment partially alleviated these lesions in coinfection group. Histopathological examination showed the alveolar spaces and mucosal layer thickening was restored and cilia gradually recovered with baicalin treatment compared in coinfection group and MG-infection group. Meanwhile, IL-17 singling pathway–related genes were significantly reduced (P < 0.05) in baicalin treatment group in lung, including IL-17C, TRAF6, NF-κB, CXCL1, CXCL2, MMP1, GM-CSF, and MUC5AC. The activities of cytokines and chemokines (CXCL1, CXCL2, MMP1, GMCSF, and MUC5AC) were decreased significantly (P < 0.05) in baicalin-treated group. The molecular docking of baicalin and NF-κB showed the highest fitness score and interaction. From these results, it has been suggested that baicalin proved effective against coinfection of MG and E. coli in chicken and provided scientific basis for further dose–response and drug–target interaction studies.
Collapse
Affiliation(s)
- Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qianqian Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yusong Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, PR China
| | - Muhammad Ishfaq
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
32
|
Yu L, Li R, Liu W, Zhou Y, Li Y, Qin Y, Chen Y, Xu Y. Protective Effects of Wheat Peptides against Ethanol-Induced Gastric Mucosal Lesions in Rats: Vasodilation and Anti-Inflammation. Nutrients 2020; 12:nu12082355. [PMID: 32784583 PMCID: PMC7469019 DOI: 10.3390/nu12082355] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Alcohol consumption increases the risk of gastritis and gastric ulcer. Nutritional alternatives are considered for relieving the progression of gastric mucosal lesions instead of conventional drugs that produce side effects. This study was designed to evaluate the gastroprotective effects and investigate the defensive mechanisms of wheat peptides against ethanol-induced acute gastric mucosal injury in rats. Sixty male Sprague-Dawley rats were divided into six groups and orally treated with wheat peptides (0.1, 0.2, 0.4 g/kgbw) and omeprazole (20 mg/kgbw) for 4 weeks, following absolute ethanol administration for 1 h. Pretreatment with wheat peptides obviously enhanced the vasodilation of gastric mucosal blood vessels via improving the gastric mucosal blood flow and elevating the defensive factors nitric oxide (NO) and prostaglandin E2 (PGE2), and lowering the level of vasoconstrictor factor endothelin (ET)-1. Wheat peptides exhibited anti-inflammatory reaction through decreasing inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, and increasing trefoil factor 1 (TFF1) levels. Moreover, wheat peptides significantly down-regulated the expression of phosphorylated nuclear factor kappa-B (p-NF-κB) p65 proteins in the NF-κB signaling pathway. Altogether, wheat peptides protect gastric mucosa from ethanol-induced lesions in rats via improving the gastric microcirculation and inhibiting inflammation mediated by the NF-κB signaling transduction pathway.
Collapse
Affiliation(s)
- Lanlan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Ruijun Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yuhan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-8280-2552
| |
Collapse
|
33
|
Chen X, Ma YC, Yang M, You P, Liu D, Ye X, Yanfang Y, Zhou A, Liu Y. Pharmacokinetics and Tissue Distribution Study of Modified Xiaochaihu Granules Against Gastric Ulcer Induced by Ethanol in Rats by UPLC-MS/MS. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20935216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Gastric ulcer (GU) is one of the major gastrointestinal disorder diseases, with increasing incidence and prevalence globally. Modified Xiaochaihu granules (MXCHG) have been used effectively for treating chronic gastritis and GU clinically. To investigate the pharmacokinetics and tissue distribution of MXCHG, an ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method was established for the simultaneous determination of 8 bioactive ingredients (baicalin, wogonoside, baicalein, liquiritin, glycyrrhizic acid, berberine hydrochloride, saikosaponin a, and saikosaponin d) in rat plasma and various tissues using puerarin as an internal standard (IS). The biological samples were pretreated by protein precipitation with acetonitrile. The chromatographic separation was carried out on a C18 column with a gradient mobile phase consisting of acetonitrile and 0.1% formic acid in water. All analytes and IS were quantitated through ESI in the positive/negative ion multiple reaction monitoring mode. The mass transitions were as follows: m/z 445.0 → 268.5 for baicalin, m/z 458.7 → 282.8 for wogonoside, m/z 269.2 → 222.6 for baicalein, m/z 417.0 → 254.8 for liquiritin, m/z 822.1 → 350.8 for glycyrrhizic acid, m/ z 336.0 → 319.9 for berberine hydrochloride, m/z 780.3 → 618.5 for saikosaponin, and m/z 415.0 → 294.6 for the IS. The validated method was successfully applied to the pharmacokinetics and tissue distribution study of 8 compounds in rat plasma and tissues after the intragastric administration of MXCHG. The results demonstrated that 8 components were distributed widely and rapidly in various rat tissues after intravenous administration. Tissue deposition of the compounds in the rats was mainly in the small intestine and stomach. The present study can provide more useful information to guide the clinical use of MXCHG and the developed analytical method can also be applied for further clinical pharmacokinetic studies.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry, Hubei University of Chinese Medicine, Wuhan, P.R. China
| | - Yuan-Chun Ma
- Hubei University of Chinese Medicine, Wuhan, P.R. China
- Dr Ma’s Laboratories Inc., Vancouver, BC, Canada
| | - Mengling Yang
- Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry, Hubei University of Chinese Medicine, Wuhan, P.R. China
| | - Pengtao You
- Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry, Hubei University of Chinese Medicine, Wuhan, P.R. China
| | - Dan Liu
- Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry, Hubei University of Chinese Medicine, Wuhan, P.R. China
| | - Xiaochuang Ye
- Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry, Hubei University of Chinese Medicine, Wuhan, P.R. China
| | - Yang Yanfang
- Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry, Hubei University of Chinese Medicine, Wuhan, P.R. China
| | - Aijun Zhou
- Dongguan Hospital of Traditional Chinese Medicine, P.R. China
| | - Yanwen Liu
- Key Laboratory of Traditional Chinese Medicine Resources and Traditional Chinese Medicine Chemistry, Hubei University of Chinese Medicine, Wuhan, P.R. China
| |
Collapse
|
34
|
Zeng A, Liang X, Zhu S, Liu C, Luo X, Zhang Q, Song L. Baicalin, a Potent Inhibitor of NF-κB Signaling Pathway, Enhances Chemosensitivity of Breast Cancer Cells to Docetaxel and Inhibits Tumor Growth and Metastasis Both In Vitro and In Vivo. Front Pharmacol 2020; 11:879. [PMID: 32625089 PMCID: PMC7311669 DOI: 10.3389/fphar.2020.00879] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Objective The aim of this study is to investigate the anti-cancer activity and sensibilization of baicalin (BA) against breast cancer (BC) cells. Methods The anti-proliferation of BA in BC cell lines was evaluated by MTT and colony formation assays. Apoptotic induction of BA was measured by flow cytometry. Wound-healing and transwell assays were exploited to assess migrated and invasive inhibition of BA. Western-blot and immunofluorescence were used to study mechanisms of anti-migration and sensibilization of BA. Anti-tumor and anti-metastasis effects of BA were evaluated in subcutaneous and pulmonary metastasis mouse model of BC cells. Results BA significantly suppressed proliferation and induced apoptosis of BC cells in a concentration- and time-dependent manner. Additionally, BA induced cell apoptosis via the mitochondria-mediated pathway, as evidenced by cellular induction of reactive oxygen species and upregulated expression of the Bax/Bcl-2 ratio. The overall expression and nuclear translocation of NF-κB signaling pathway in BC cells were dramatically inhibited by treatment with BA. BA significantly suppressed abilities of migration and invasion in BC cells. Notably, BA sensitized BC cells to docetaxel (DXL) by suppressing the expression of survivin/Bcl-2. BA also retarded tumor growth and triggered apoptosis of tumor cells in a tumor mouse model of 4T1 cells. Furthermore, pulmonary metastasis of BC cells was distinctly suppressed by BA in a tumor mouse model of 4T1 cells. Conclusion BA effectively triggered apoptosis, inhibited metastasis, and enhanced chemosensitivity of BC, implying that BA might serve as a promising agent for the treatment of BC.
Collapse
Affiliation(s)
- Anqi Zeng
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Institute of Translational Pharmacology and Clinical Application of Sichuan Academy of Chinese Medical Science, Chengdu, China
| | - Xin Liang
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaomi Zhu
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Luo
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinxiu Zhang
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linjiang Song
- School of Medical and Life Sciences/Reproductive & Women-children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|