1
|
Ma XH, Dai H, Liu SY, Liu XN, Zhang J, Meng XL. Protection of dauricine and daurisoline on PC12 cells damaged by glutamate or Aβ 25-35. Brain Res 2025; 1857:149609. [PMID: 40185223 DOI: 10.1016/j.brainres.2025.149609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/08/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Glutamate (Glu) excitotoxicity and amyloid-β (Aβ) deposition are significant factors in the occurrence and development of Alzheimer's disease (AD). Dauricine and daurisoline are two alkaloid components of Menispermum dauricum DC. that have a protective effect on the nervous system. The protection of dauricine and daurisoline on Glu-injured PC12 cells and the protection dauricine on Aβ25-35-injured PC12 cells were investigated in this study. The results of the study demonstrated that on PC12 cells damaged by Glu (20 mM), dauricine and daurisoline (3 and 10 μM) increased the cell viability, reduced cell apoptosis, and enhanced mitochondrial membrane potential (MMP) levels. Dauricine and daurisoline can also reduce the levels of intracellular ROS and free Ca2+, and suppression the expression of CaM, p-CaMKII, and p-Tau in Glu-damaged PC12 cells. In addition, on PC12 cells damaged by Aβ25-35 (30 μM), dauricine (3 and 10 μM) can also significantly increase the cell viability and MMP levels, inhibit cell apoptosis, reduce intracellular ROS and free Ca2+ levels, and down-regulate protein expression of CaM, p-CaMKII, and p-Tau. This study demonstrates for the first time that dauricine and daurisoline may inhibit the excessive phosphorylation of Tau protein and subsequent cell apoptosis by suppressing the Ca2+-CaM/CaMKII pathway, thereby protecting PC12 cells damaged Glu or Aβ25-35in vitro. Dauricine and daurisoline have the potential to treat AD effectively and have further research value.
Collapse
Affiliation(s)
- Xiao-Han Ma
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Hui Dai
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Song-Yao Liu
- Translational Medicine Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiao-Na Liu
- School of Basic Medical Sciences, Gansu Medical College, Pingliang, China
| | - Jing Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Xue-Lian Meng
- School of Pharmaceutical Science, Liaoning University, Shenyang, China.
| |
Collapse
|
2
|
Yousuf W, Siddiqui NZ, Ali P, Cheng S, Ansari I, Song J, Dai M, Qiu Z, Zhu Y, Zhang Y, Liu S, Zhang Y, Liu Z, Liu H. Dauricine Impedes the Tumorigenesis of Lung Adenocarcinoma by Regulating Nrf2 and Reactive Oxygen Species. Cells 2025; 14:698. [PMID: 40422202 DOI: 10.3390/cells14100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Abstract
Dauricine has been shown to possess intriguing anti-cancerous activities against various malignancies. The current study examined the inhibitory effects of dauricine against lung adenocarcinoma with cell lines and animal models. MTT assay was performed in three different lung adenocarcinoma cell lines using a concentration range of dauricine. Colony formation, wound healing, Edu incorporation, and cell cycle analysis were conducted to investigate the impact of dauricine on lung adenocarcinoma cells in vitro. Moreover, flow cytometry was performed to observe the effect of dauricine on cellular ROS levels. The expression of redox regulator Nrf2 and apoptosis-related markers was assessed by Western blot. Importantly, the anti-tumor efficacy of dauricine was studied in vivo with two lung adenocarcinoma animal models, including a subcutaneous cell line-derived syngeneic model and an inducible orthotopic KRASG12D-driven lung adenocarcinoma model. The proliferation and migration of lung adenocarcinoma cells were significantly reduced by dauricine treatment. Flow cytometry analysis revealed that dauricine treatment resulted in cell cycle arrest at G0/G1 phases in A549, H1299, and A427 cells. Intracellular ROS levels were markedly augmented by dauricine treatment. Notably, dauricine led to the downregulation of the master redox regulator Nrf2. Meanwhile, dauricine treatment resulted in decreased Bcl-2 levels but elevated expression of BAX and cleaved Caspase 3. Finally, dauricine demonstrated significant efficacy in restricting tumor progression in both subcutaneous syngeneic and orthotopic lung adenocarcinoma models. Our results corroborate the anti-cancer effects of dauricine against lung adenocarcinoma with in vivo and in vitro analyses. Our findings also provide mechanistic evidence that links the impact of dauricine to cell cycle blockage and ROS-mediated apoptosis.
Collapse
Affiliation(s)
- Waleed Yousuf
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | | | - Perbhat Ali
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Shaoxuan Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Immad Ansari
- School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jialiang Song
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Minghe Dai
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Zhiyuan Qiu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yue Zhu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yaowen Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Shuyan Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Zhenhua Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
3
|
Abidar S, Hritcu L, Nhiri M. An Overview of the Natural Neuroprotective Agents for the Management of Cognitive Impairment Induced by Scopolamine in Zebrafish ( Danio rerio). CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:21-31. [PMID: 39039682 DOI: 10.2174/0118715273309256240702053609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder mainly characterized by dementia and cognitive decline. AD is essentially associated with the presence of aggregates of the amyloid-β peptide and the hyperphosphorylated microtubule-associated protein tau. The available AD therapies can only alleviate the symptoms; therefore, the development of natural treatments that exhibit neuroprotective effects and correct the behavioral impairment is a critical requirement. The present review aims to collect the natural substances that have been evaluated for their neuroprotective profile against AD-like behaviors induced in zebrafish (Danio rerio) by scopolamine. We focused on articles retrieved from the PubMed database via preset searching strings from 2010 to 2023. Our review assembled 21 studies that elucidated the activities of 28 various natural substances, including bioactive compounds, extracts, fractions, commercial compounds, and essential oils. The listed compounds enhanced cognition and showed several mechanisms of action, namely antioxidant potential, acetylcholinesterase's inhibition, and reduction of lipid peroxidation. Additional studies should be achieved to demonstrate their preventive and therapeutic activities in cellular and rodent models. Further clinical trials would be extremely solicited to support more insight into the neuroprotective effects of the most promising drugs in an AD context.
Collapse
Affiliation(s)
- Sara Abidar
- Laboratory of Biochemistry and Molecular Genetics (LBMG), Faculty of Sciences and Technologies of Tangier (FSTT) Abdelmalek Essaadi University, Tetouan, Morocco
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics (LBMG), Faculty of Sciences and Technologies of Tangier (FSTT) Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
4
|
Zhao Z, Zhao Q, Mao Z, Tian Y, Yang L, Ma Y, Gu J, Tan R. High-throughput screening of the natural STK11 agonist dauricine: A biphenylisoquinoline alkaloid exerting anti-NSCLC effects and reversing gefitinib resistance. Eur J Pharmacol 2024; 984:177024. [PMID: 39362388 DOI: 10.1016/j.ejphar.2024.177024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Serine/threonine kinase 11 (STK11) deletion and downregulation caused cancer progression, and were widely associated with drug resistance. Accurate screening of natural small molecules about anti-cancer and anti-drug resistance is the key to the development and utilization of natural product application, which could promote traditional Chinese medicine in the treatment of cancer. Dauricine, which is derived from the rhizome of Menispermum dauricum DC., has certain potential but unexplored mechanism for the treatment of cancer. PURPOSE The aim of this study was to screen and validate the role and mechanism of natural STK11 agonists with anti-drug resistance from plants in the treatment of NSCLC. METHODS A lentiviral STK11 overexpression cell model was employed for the screening of natural STK11 agonists. The efficacy of dauricine in the treatment of NSCLC was validated on PC-9 and HCC827 cells. In vivo validation of dauricine activity was performed using nude mouse models equipped with PC9 xenografts. To investigate the anti-resistant effects of dauricine, gefitinib-resistant PC9 cell models were constructed. RESULTS As a natural agonist of STK11, it causes the activation of the STK11/AMPK pathway and inhibits the growth of PC-9 cells. Dauricine synergises the inhibitory effect with gefitinib on PC9. The up-regulation of STK11 protein expression by dauricine was demonstrated in vitro and in vivo, while restoring the sensitivity of PC9/GR to gefitinib by down-regulating the protein expression of Nrf2 and Pgp. CONCLUSION Dauricine, a natural agonist of STK11, effectively inhibited NSCLC, and its combination treatment with gefitinib reversed drug-resistant NSCLC.
Collapse
Affiliation(s)
- Zhigao Zhao
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhiyuan Mao
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yang Tian
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Li Yang
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yu Ma
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, 610225, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
5
|
Chen KQ, Wang SZ, Lei HB, Liu X. Dauricine: Review of Pharmacological Activity. Drug Des Devel Ther 2024; 18:4371-4385. [PMID: 39355570 PMCID: PMC11444063 DOI: 10.2147/dddt.s471352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Background Dauricine is an important natural organic compound in Menispermum dauricum, which often has significant biological activity. Purpose The purpose of this review is to systemically summarize and discuss the pharmacological activity and underlying mechanisms of dauricine in recent years. Methods Web of Science (121 articles) and PubMed databases (97 articles) were used to search for articles related to "dauricine" published from 2000 to 2024. Meanwhile, we classified the pharmacological activity of dauricine by screening these articles. Results Emerging evidence suggests that dauricine possesses numerous pharmacological activities, including neuroprotection, anti-cancer, anti-arrhythmia, anti-inflammatory and anti-diabetes. Conclusion Dauricine has a potential value in the treatment of many diseases. We hope that this review will contribute to therapeutic development and future studies of dauricine.
Collapse
Affiliation(s)
- Ke-Qian Chen
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, 411100, People's Republic of China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Hai-Bo Lei
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, 411100, People's Republic of China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, 411100, People's Republic of China
| |
Collapse
|
6
|
Zhang R, Huang X, Zhou C, Zhang Q, Jia D, Xie X, Zhang J. Network pharmacology-based mechanism analysis of dauricine on the alleviating Aβ-induced neurotoxicity in Caenorhabditis elegans. BMC Complement Med Ther 2024; 24:321. [PMID: 39215261 PMCID: PMC11363685 DOI: 10.1186/s12906-024-04589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Dauricine (DAU), a benzyl tetrahydroisoquinoline alkaloid isolated from the root of Menispermum dauricum DC, exhibits promising anti-Alzheimer's disease (AD) effects, but its underlying mechanisms remain inadequately investigated. This paper aims to identify potential targets and molecular mechanisms of DAU in AD treatment. METHODS Network pharmacology and molecular docking simulation method were used to screen and focus core targets. Various transgenic Caenorhabditis elegans models were chosen to validate the anti-AD efficacy and mechanism of DAU. RESULTS There are 66 potential DAU-AD target intersections identified from 100 DAU and 3036 AD-related targets. Subsequent protein-protein interaction (PPI) network analysis identified 16 core targets of DAU for anti-AD. PIK3CA, AKT1 and mTOR were predicted to be the central targets with the best connectivity through the analysis of "compound-target-biological process-pathway network". Molecular docking revealed strong binding affinities between DAU and PIK3CA, AKT1, and mTOR. In vivo experiments demonstrated that DAU effectively reduced paralysis in AD nematodes caused by Aβ aggregation toxicity, downregulated expression of PIK3CA, AKT1, and mTOR homologues (age-1, akt-1, let-363), and upregulated expression of autophagy genes and the marker protein LGG-1. Simultaneously, DAU increased lysosomal content and enhanced degradation of the autophagy-related substrate protein P62. Thioflavin T(Th-T)staining experiment revealed that DAU decreased Aβ accumulation in AD nematodes. Further experiments also confirmed DAU's protein scavenging activity in polyglutamine (polyQ) aggregation nematodes. CONCLUSION Collectively, the mechanism of DAU against AD may be related to the activation of the autophagy-lysosomal protein clearance pathway, which contributes to the decrease of Aβ aggregation and the restoration of protein homeostasis.
Collapse
Affiliation(s)
- Ranran Zhang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Xiaoyan Huang
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Chunling Zhou
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Qian Zhang
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Dongsheng Jia
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiaoliang Xie
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Ju Zhang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China.
| |
Collapse
|
7
|
Zhang N, Zhang S, Dong X. Plant-derived bioactive compounds and their novel role in central nervous system disorder treatment via ATF4 targeting: A systematic literature review. Biomed Pharmacother 2024; 176:116811. [PMID: 38795641 DOI: 10.1016/j.biopha.2024.116811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Central nervous system (CNS) disorders exhibit exceedingly intricate pathogenic mechanisms. Pragmatic and effective solutions remain elusive, significantly compromising human life and health. Activating transcription factor 4 (ATF4) participates in the regulation of multiple pathophysiological processes, including CNS disorders. Considering the widespread involvement of ATF4 in the pathological process of CNS disorders, the targeted regulation of ATF4 by plant-derived bioactive compounds (PDBCs) may become a viable strategy for the treatment of CNS disorders. However, the regulatory relationship between PDBCs and ATF4 remains incompletely understood. Here, we aimed to comprehensively review the studies on PDBCs targeting ATF4 to ameliorate CNS disorders, thereby offering novel directions and insights for the treatment of CNS disorders. A computerized search was conducted on PubMed, Embase, Web of Science, and Google Scholar databases to identify preclinical experiments related to PDBCs targeting ATF4 for the treatment of CNS disorders. The search timeframe was from the inception of the databases to December 2023. Two assessors conducted searches using the keywords "ATF4," "Central Nervous System," "Neurological," "Alzheimer's disease," "Parkinson's Disease," "Stroke," "Spinal Cord Injury," "Glioblastoma," "Traumatic Brain Injury," and "Spinal Cord Injury." Overall, 31 studies were included, encompassing assessments of 27 PDBCs. Combining results from in vivo and in vitro studies, we observed that these PDBCs, via ATF4 modulation, prevent the deposition of amyloid-like fibers such as Aβ, tau, and α-synuclein. They regulate ERS, reduce the release of inflammatory factors, restore mitochondrial membrane integrity to prevent oxidative stress, regulate synaptic plasticity, modulate autophagy, and engage anti-apoptotic mechanisms. Consequently, they exert neuroprotective effects in CNS disorders. Numerous PDBCs targeting ATF4 have shown potential in facilitating the restoration of CNS functionality, thereby presenting expansive prospects for the treatment of such disorders. However, future endeavors necessitate high-quality, large-scale, and comprehensive preclinical and clinical studies to further validate this therapeutic potential.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun, Liaoning 113000, China
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| |
Collapse
|
8
|
Thangeswaran D, Shamsuddin S, Balakrishnan V. A comprehensive review on the progress and challenges of tetrahydroisoquinoline derivatives as a promising therapeutic agent to treat Alzheimer's disease. Heliyon 2024; 10:e30788. [PMID: 38803973 PMCID: PMC11128835 DOI: 10.1016/j.heliyon.2024.e30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Alzheimer's disease (AD) is the most common and irreversible neurodegenerative disorder worldwide. While the precise mechanism behind this rapid progression and multifaceted disease remains unknown, the numerous drawbacks of the available therapies are prevalent, necessitating effective alternative treatment methods. In view of the rising demand for effective AD treatment, numerous reports have shown that tetrahydroisoquinoline (THIQ) is a valuable scaffold in various clinical medicinal molecules and has a promising potential as a therapeutic agent in treating AD due to its significant neuroprotective, anti-inflammatory, and antioxidative properties via several mechanisms that target the altered signaling pathways. Therefore, this review comprehensively outlines the potential application of THIQ derivatives in AD treatment and the challenges in imparting the action of these prospective therapeutic agents. The review emphasizes a number of THIQ derivatives, including Dauricine, jatrorrhizine, 1MeTIQ, and THICAPA, that have been incorporated in AD studies in recent years. Subsequently, a dedicated section of the review briefly discusses the emerging potential benefits of multi-target therapeutics, which lie in their ability to be integrated with alternative therapeutics. Eventually, this review elaborates on the rising challenges and future recommendations for the development of therapeutic drug agents to treat AD effectively. In essence, the valuable research insights of THIQ derivatives presented in this comprehensive review would serve as an integral reference for future studies to develop potent therapeutic drugs for AD research.
Collapse
Affiliation(s)
- Danesh Thangeswaran
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| |
Collapse
|
9
|
Xia GQ, Zhu MP, Li JW, Huang H. An alkaloid from Menispermum dauricum, dauricine mediates Ca 2+ influx and inhibits NF-κB pathway to protect chondrocytes from IL-1β-induced inflammation and catabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117560. [PMID: 38081396 DOI: 10.1016/j.jep.2023.117560] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dauricine (DA) is a natural plant-derived alkaloid extracted from Menispermum dauricum. Menispermum dauricum has been used in traditional Chinese medicine as a classic remedy for rheumatoid arthropathy and is believed to be effective in alleviating swelling and pain in the limbs. AIM OF THE STUDY Osteoarthritis (OA) is a classic degenerative disease involving chondrocyte death, and there is still a lack of effective therapeutic agents that can reverse the progression of the disease. Here we explored the therapeutic effects of DA against OA and further explored the mechanism. MATERIALS AND METHODS The effect of DA on cell viability was assessed by CCK-8. IL-1β-treated mouse chondrocytes were used as an in vitro model of OA, and apoptosis was detected by flow cytometry. QRT-PCR, western blotting, cell staining, and immunofluorescence were used to detect relevant inflammatory factors and cartilage-specific expression. RNA sequencing was used to identify pertinent signaling pathways. The therapeutic effect of DA was verified by micro-CT, histological analysis and immunohistochemical analysis in a mouse OA model. RESULTS DA demonstrated a high safety profile on chondrocytes, significantly reversing the inflammatory response induced by IL-1β, and promoting factors associated with cartilage regeneration. Moreover, DA exhibited a significant protective effect on the knee joints of mice undergoing ACLT-DMM, effectively preventing cartilage degeneration and subchondral bone tissue destruction. These positive therapeutic effects were achieved through the modulation of the NF-κB pathway and the Ca2+ signaling pathway by DA. CONCLUSION Being derived from a traditional herb, DA exhibits remarkable therapeutic potential and safety in OA treatment, presenting a promising option for patients dealing with osteoarthritis.
Collapse
Affiliation(s)
- Gan-Qing Xia
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, Hu bei Province, PR China
| | - Mei-Peng Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, Hu bei Province, PR China
| | - Jian-Wen Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, Hu bei Province, PR China
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, Hu bei Province, PR China.
| |
Collapse
|
10
|
Wang Q, Guo S, Hu D, Dong X, Meng Z, Jiang Y, Feng Z, Zhou W, Song W. Enhanced Gasdermin-E-mediated Pyroptosis in Alzheimer's Disease. Neuroscience 2024; 536:1-11. [PMID: 37944579 DOI: 10.1016/j.neuroscience.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Amyloid β protein (Aβ) is a critical factor in the pathogenesis of Alzheimer's disease (AD). Aβ induces apoptosis, and gasdermin-E (GSDME) expression can switch apoptosis to pyroptosis. In this study, we demonstrated that GSDME was highly expressed in the hippocampus of APP23/PS45 mouse models compared to that in age-matched wild-type mice. Aβ treatment induced pyroptosis by active caspase-3/GSDME in SH-SY5Y cells. Furthermore, the knockdown of GSDME improved the cognitive impairments of APP23/PS45 mice by alleviating inflammatory response. Our findings reveal that GSDME, as a modulator of Aβ and pyroptosis, plays a potential role in Alzheimer's disease pathogenesis and shows that GSDME is a therapeutic target for AD.
Collapse
Affiliation(s)
- Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shipeng Guo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanshuang Jiang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijuan Feng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
11
|
Xie L, Shi S, Cheng L, Xu B, Ma S, Liu J, Wu X, Wang Y, Ye S. Dauricine interferes with SARS-CoV-2 variants infection by blocking the interface between RBD and ACE2. Int J Biol Macromol 2023; 253:127344. [PMID: 37848107 DOI: 10.1016/j.ijbiomac.2023.127344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023]
Abstract
The continued viral evolution results in the emergence of various SARS-CoV-2 variants, such as delta or omicron, that are partially resistant to current vaccines and antiviral medicines, posing an increased risk to global public health and raising the importance of continuous development of antiviral medicines. Inhibitor screening targeting the interactions between the viral spike proteins and their human receptor ACE2 represents a promising approach for drug discovery. Here, we demonstrate that the evolutionary trend of the SARS-CoV-2 variants is associated with increased electrostatic interactions between S proteins and ACE2. Virtual screening based on the ACE2-RBD binding interface identified nine monomers of Traditional Chinese medicine (TCM). Furthermore, live-virus neutralization assays revealed that Dauricine, one of the identified monomers, exhibited an antiviral activity with an IC50 range of 18.2 to 33.3 μM for original strain, Delta, and Omicron strains, respectively. The computational study showed that the polycyclic and methoxy groups of Dauricine adhere to the RBD surface through π-π and electrostatic interactions. The discovery of Dauricine is a successful attempt to target viral entry, which will not only help society to respond quickly to viral variants, but also accelerate variant drug development thereby reducing the pressure on health authorities to respond to outbreaks.
Collapse
Affiliation(s)
- Lei Xie
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Sai Shi
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Lin Cheng
- Institute for Hepatology, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Binghong Xu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Sen Ma
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jie Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Xilin Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, 210023, China.
| | - Yaxin Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
12
|
Shi L, Wang S, Zhang S, Wang J, Chen Y, Li Y, Liu Z, Zhao S, Wei B, Zhang L. Research progress on pharmacological effects and mechanisms of cepharanthine and its derivatives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2843-2860. [PMID: 37338575 DOI: 10.1007/s00210-023-02537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Cepharanthine (CEP) is a bisbenzylisoquinoline alkaloid compound found in plants of the Stephania genus, which has biological functions such as regulating autophagy, inhibiting inflammation, oxidative stress, and apoptosis. It is often used for the treatment of inflammatory diseases, viral infections, cancer, and immune disorders and has great clinical translational value. However, there is no detailed research on its specific mechanism and dosage and administration methods, especially clinical research is limited. In recent years, CEP has shown significant effects in the prevention and treatment of COVID-19, suggesting its potential medicinal value waiting to be discovered. In this article, we comprehensively introduce the molecular structure of CEP and its derivatives, describe in detail the pharmacological mechanisms of CEP in various diseases, and discuss how to chemically modify and design CEP to improve its bioavailability. In summary, this work will provide a reference for further research and clinical application of CEP.
Collapse
Affiliation(s)
- Liangliang Shi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shuaizhe Wang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jiawei Wang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yaping Chen
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhiwei Liu
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Sichen Zhao
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Benjun Wei
- Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, China.
| | - Liying Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Key Laboratory of Traditional Chinese Medicine Exploration and Innovation Transformation in Gansu Province, Lanzhou, China.
| |
Collapse
|
13
|
Xue JS, Li JQ, Wang CC, Ma XH, Dai H, Xu CB, Meng XL. Dauricine alleviates cognitive impairment in Alzheimer's disease mice induced by D-galactose and AlCl 3 via the Ca 2+/CaM pathway. Toxicol Appl Pharmacol 2023; 474:116613. [PMID: 37414289 DOI: 10.1016/j.taap.2023.116613] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly. Dysregulation of intracellular Ca2+ homeostasis plays a critical role in the pathological development of AD. Dauricine (DAU) is a bisbenzylisoquinoline alkaloid isolated from Menispermum dauricum DC., which can prevent the influx of extracellular Ca2+ and inhibit the release of Ca2+ from the endoplasmic reticulum. DAU has a potential for anti-AD. However, it is unclear whether DAU can exert its anti-AD effect in vivo by regulating the Ca2+ related signaling pathways. Here, we investigated the effect and mechanism of DAU on D-galactose and AlCl3 combined-induced AD mice based on the Ca2+/CaM pathway. The results showed that DAU (1 mg/kg and 10 mg/kg for 30 days) treatment attenuated learning and memory deficits and improved the nesting ability of AD mice. The HE staining assay showed that DAU could inhibit the histopathological alterations and attenuate neuronal damage in the hippocampus and cortex of AD mice. Studies on the mechanism indicated that DAU decreased the phosphorylation of CaMKII and Tau and reduced the formation of NFTs in the hippocampus and cortex. DAU treatment also reduced the abnormally high expression of APP, BACE1, and Aβ1-42, which inhibited the deposition of Aβ plaques. Moreover, DAU could decrease Ca2+ levels and inhibit elevated CaM protein expression in the hippocampus and cortex of AD mice. The molecular docking results showed that DAU may have a high affinity with CaM or BACE1. DAU has a beneficial impact on pathological changes in AD mice induced by D-galactose and AlCl3 and may act by negative regulation of the Ca2+/CaM pathway and its downstream molecules such as CaMKII and BACE1.
Collapse
Affiliation(s)
- Jing-Su Xue
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Jin-Qiu Li
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Cheng-Cheng Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Xiao-Han Ma
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Hui Dai
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Cheng-Bin Xu
- School of Environmental Science, Liaoning University, Shenyang, China
| | - Xue-Lian Meng
- School of Pharmaceutical Science, Liaoning University, Shenyang, China.
| |
Collapse
|
14
|
Zhang X, Wang T, Miao Y, Lin W, Zhu L, Meng X, Zhang F. Dauricine exhibits anti-inflammatory property against acute ulcerative colitis via the regulation of NF-κB pathway. Cell Biochem Funct 2023; 41:713-721. [PMID: 37470500 DOI: 10.1002/cbf.3826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/01/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
We aim to investigate the therapeutic effect of dauricine on ulcerative colitis (UC). Our results indicated that dauricine attenuated the reduction of colonic length, weight loss, disease activity index, colonic tissue damage, and inflammatory cytokine levels in dextran sulfate sodium mice. In addition, dauricine reduced lipopolysaccharide-induced inflammation in HT-29 cells. Mechanically, dauricine docked with p65, a member of nuclear transcription factor kappaB (NF-κB) family, through which reduced the inflammatory cytokine release from HT-29 cells. Together, the above results inferred that dauricine had therapeutic effect for UC by suppressing NF-κB pathway, which provided a promising mean for UC treatment.
Collapse
Affiliation(s)
- Xu Zhang
- Gastroenterology Department, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| | - Ting Wang
- Group Office, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| | - Yu Miao
- Gastroenterology Department, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| | - Wan Lin
- Gastroenterology Department, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| | - Litao Zhu
- Outpatient Department, Ningxia Yinchuan Prison Hospital, Yinchuan, Ningxia, China
| | - Xiangkun Meng
- Gastroenterology Department, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| | - Feixiong Zhang
- Gastroenterology Department, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| |
Collapse
|
15
|
Li J, Wu Y, Dong S, Yu Y, Wu Y, Xiang B, Li Q. Research Progress on Neuroprotective Effects of Isoquinoline Alkaloids. Molecules 2023; 28:4797. [PMID: 37375352 DOI: 10.3390/molecules28124797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Neuronal injury and apoptosis are important causes of the occurrence and development of many neurodegenerative diseases, such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. Although the detailed mechanism of some diseases is unknown, the loss of neurons in the brain is still the main pathological feature. By exerting the neuroprotective effects of drugs, it is of great significance to alleviate the symptoms and improve the prognosis of these diseases. Isoquinoline alkaloids are important active ingredients in many traditional Chinese medicines. These substances have a wide range of pharmacological effects and significant activity. Although some studies have suggested that isoquinoline alkaloids may have pharmacological activities for treating neurodegenerative diseases, there is currently a lack of a comprehensive summary regarding their mechanisms and characteristics in neuroprotection. This paper provides a comprehensive review of the active components found in isoquinoline alkaloids that have neuroprotective effects. It thoroughly explains the various mechanisms behind the neuroprotective effects of isoquinoline alkaloids and summarizes their common characteristics. This information can serve as a reference for further research on the neuroprotective effects of isoquinoline alkaloids.
Collapse
Affiliation(s)
- Jinhua Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Yarong Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Shuze Dong
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Ye Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Yuhao Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Benhan Xiang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| |
Collapse
|
16
|
Zhang S, Ye J, Wang L, Zhong X, Zou X, Qiu F, Huang Z. Piceatannol protects rat neuron cells from oxygen-glucose deprivation reperfusion injury via regulation of GSK-3β/Nrf2 signaling pathway. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:552-562. [PMID: 36581571 PMCID: PMC10264976 DOI: 10.3724/zdxbyxb-2022-0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE To investigate the effect and mechanism of piceatannol on cerebral ischemia-reperfusion injury. METHODS The oxygen-glucose deprivation reperfusion (OGD/R) model was constructed in primary cultured suckling rat cortical neuron cells. After 2 h of oxygen-glucose deprivation, the cells were treated with piceatannol for 24 h. The cell survival rate was detected by MTT assay, and the degree of cell damage was detected by intracellular lactate dehydrogenase (LDH) release assay. The activity of superoxide dismutase (SOD) and the content of adenosine triphosphate (ATP) were detected by colorimetric method. The content of reactive oxygen species (ROS) was detected by flow cytometry or observed with inverted fluorescence microscope. The ultrastructure of mitochondria was observed with transmission electron microscopy. Western blotting was used to detect the phosphorylation levels of protein kinase B (AKT) and glycogen synthase kinase (GSK)-3β. Immunofluorescence staining was used to observe the nuclear localization of nuclear factor-erythroid 2-related factor (Nrf) 2. After OGD/R neuron cells were pretreated with Nrf2 inhibitor ML385 for 24 h, the effect of Nrf2 on the improvement of cell activity and antioxidant activity of piceatannol were investigated. Western blotting was used to detect the protein expression levels of Nrf2, heme oxygenase (HO) 1 and NADPH quinone oxidoreductase (NQO) 1. RESULTS Piceatannol significantly increased the survival rate of OGD/R neurons, decreased LDH release and reactive oxygen species content, increased SOD activity, ameliorated mitochondrial ultrastructural damage, increased mitochondrial membrane potential and ATP level (all P<0.05), increased phosphorylation of AKT and GSK-3β protein, up-regulated the expression of Nrf2, HO-1 and NQO1 protein, increased the nuclear-to-plasma ratio of Nrf2, and promoted the nuclear transfer of Nrf2 (all P<0.05). ML385 could significantly reverse the rescue effect of paclitaxel on the model cells and the regulatory activities of SOD, ROS and LDH (all P<0.05). CONCLUSION Piceatannol can regulate Nrf2 by activating GSK-3β signaling pathway, promote its nuclear translocation, exert corresponding antioxidant effect, and protect mitochondrial structure and function in rat neuron cells.
Collapse
Affiliation(s)
- Shuyuan Zhang
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiayi Ye
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lingfeng Wang
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoming Zhong
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaowei Zou
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fengmei Qiu
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhen Huang
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- 2. Zhejiang Provincial Key Laboratory of Neuropharmacology and Translational Medicine, Hangzhou 310053, China
| |
Collapse
|
17
|
Recent Progress in Research on Mechanisms of Action of Natural Products against Alzheimer's Disease: Dietary Plant Polyphenols. Int J Mol Sci 2022; 23:ijms232213886. [PMID: 36430365 PMCID: PMC9695301 DOI: 10.3390/ijms232213886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable degenerative disease of the central nervous system and the most common type of dementia in the elderly. Despite years of extensive research efforts, our understanding of the etiology and pathogenesis of AD is still highly limited. Nevertheless, several hypotheses related to risk factors for AD have been proposed. Moreover, plant-derived dietary polyphenols were also shown to exert protective effects against neurodegenerative diseases such as AD. In this review, we summarize the regulatory effects of the most well-known plant-derived dietary polyphenols on several AD-related molecular mechanisms, such as amelioration of oxidative stress injury, inhibition of aberrant glial cell activation to alleviate neuroinflammation, inhibition of the generation and promotion of the clearance of toxic amyloid-β (Aβ) plaques, inhibition of cholinesterase enzyme activity, and increase in acetylcholine levels in the brain. We also discuss the issue of bioavailability and the potential for improvement in this regard. This review is expected to encourage further research on the role of natural dietary plant polyphenols in the treatment of AD.
Collapse
|
18
|
Network Pharmacology and Molecular Docking-Based Strategy to Investigate the Multitarget Mechanisms of Shenqi Yizhi Granule on Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8032036. [PMID: 35535155 PMCID: PMC9078761 DOI: 10.1155/2022/8032036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/13/2022] [Indexed: 01/28/2023]
Abstract
Background Traditional Chinese herbal medicine draws more attention to explore an effective therapeutic strategy for Alzheimer's disease (AD). Shenqi Yizhi granule (SQYG), a Chinese herbal recipe, has been applied to ameliorate cognitive impairment in mild-to-moderate AD patients. However, the overall molecular mechanism of SQYG in treating AD has not been clarified. Objective This study aimed to investigate the molecular mechanism of SQYG on AD using an integration strategy of network pharmacology and molecular docking. Methods The active compounds of SQYG and common targets between SQYG and AD were screened from databases. The herb-compound network, compound-target network, and protein-protein interaction network were constructed. The enrichment analysis of common targets and molecular docking were performed. Results 816 compounds and 307 common targets between SQYG and AD were screened. KEGG analysis revealed that common targets were mainly enriched in lipid metabolism, metal ion metabolism, IL-17 signaling pathway, GABA receptor signaling, and neuroactive ligand-receptor interaction. Molecular docking analysis showed high binding affinity between ginsenoside Rg1 and Aβ 1-42, tanshinone IIA and BACE1, baicalin, and AchE. Conclusions The therapeutic mechanisms of SQYG on AD were associated with regulating lipid metabolism, metal ion metabolism, IL-17 signaling pathway, and GABA receptor signaling. Ginsenoside Rg1, tanshinone IIA, baicalin, astragaloside IV, and folic acid may play an important role in AD treatment.
Collapse
|
19
|
Zhu A, Zheng F, Zhang W, Li L, Li Y, Hu H, Wu Y, Bao W, Li G, Wang Q, Li H. Oxidation and Antioxidation of Natural Products in the Model Organism Caenorhabditiselegans. Antioxidants (Basel) 2022; 11:antiox11040705. [PMID: 35453390 PMCID: PMC9029379 DOI: 10.3390/antiox11040705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
Natural products are small molecules naturally produced by multiple sources such as plants, animals, fungi, bacteria and archaea. They exert both beneficial and detrimental effects by modulating biological targets and pathways involved in oxidative stress and antioxidant response. Natural products’ oxidative or antioxidative properties are usually investigated in preclinical experimental models, including virtual computing simulations, cell and tissue cultures, rodent and nonhuman primate animal models, and human studies. Due to the renewal of the concept of experimental animals, especially the popularization of alternative 3R methods for reduction, replacement and refinement, many assessment experiments have been carried out in new alternative models. The model organism Caenorhabditis elegans has been used for medical research since Sydney Brenner revealed its genetics in 1974 and has been introduced into pharmacology and toxicology in the past two decades. The data from C. elegans have been satisfactorily correlated with traditional experimental models. In this review, we summarize the advantages of C. elegans in assessing oxidative and antioxidative properties of natural products and introduce methods to construct an oxidative damage model in C. elegans. The biomarkers and signaling pathways involved in the oxidative stress of C. elegans are summarized, as well as the oxidation and antioxidation in target organs of the muscle, nervous, digestive and reproductive systems. This review provides an overview of the oxidative and antioxidative properties of natural products based on the model organism C. elegans.
Collapse
Affiliation(s)
- An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
| | - Wenjing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
| | - Yajiao Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wenqiang Bao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Guojun Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
- School of Public Health, Capital Medical University, Beijing 100069, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| |
Collapse
|
20
|
Pu Z, Bao X, Xia S, Shao P, Xu Y. Serpine1 Regulates Peripheral Neutrophil Recruitment and Acts as Potential Target in Ischemic Stroke. J Inflamm Res 2022; 15:2649-2663. [PMID: 35494316 PMCID: PMC9049872 DOI: 10.2147/jir.s361072] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Peripheral neutrophil infiltration can exacerbate ischemia–reperfusion injury. We focused on the relationship between various peripheral immune cells and cerebral ischemia–reperfusion (I/R) injury. Methods In this study, we investigated the effects of dauricine on neuronal injury induced by ischemia–reperfusion and peripheral immune cells after ischemic stroke in mouse model, and we explored the undefined mechanisms of regulating peripheral immune cells through RNA sequencing and various biochemical verification in vitro and in vivo. Results We found that dauricine improved the neurological deficits of I/R injury, reduced the infarct volume, and improved the neurological scores. Furthermore, dauricine reduced the infiltration of neutrophils into the brain after MCAO-R and increased peripheral neutrophils but unchanged the permeability of the endotheliocyte Transwell system in an in vitro blood-brain barrier (BBB) model. RNA sequencing showed that chemotaxis factors, such as CXCL3, CXCL11, CCL20, CCL22, IL12a, IL23a, and serpine1, might play a crucial role. Overexpression of serpine1 reversed LPS-induced migration of neutrophils. Dauricine can directly bind with serpine1 in ligand–receptor docking performed with the Autodock and analyzed with PyMOL. Conclusion We identified chemotaxis factor serpine1 played a crucial role in peripheral neutrophil infiltration, which may contribute to reduce the neuronal injury induced by ischemia–reperfusion. These findings reveal that serpine1 may act as a potential treatment target in the acute stage of ischemic stroke.
Collapse
Affiliation(s)
- Zhijun Pu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, 210008, People’s Republic of China
- Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, 210008, People’s Republic of China
- Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, 210008, People’s Republic of China
- Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Pengfei Shao
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, 210008, People’s Republic of China
- Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, 210008, People’s Republic of China
- Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu, 210008, People’s Republic of China
- Correspondence: Yun Xu, Email
| |
Collapse
|
21
|
Sun T, Zhao K, Liu M, Cai Z, Zeng L, Zhang J, Li Z, Liu R. miR-30a-5p induces Aβ production via inhibiting the nonamyloidogenic pathway in Alzheimer’s disease. Pharmacol Res 2022; 178:106153. [DOI: 10.1016/j.phrs.2022.106153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 12/30/2022]
|
22
|
Modeling Alzheimer's Disease in Caenorhabditis elegans. Biomedicines 2022; 10:biomedicines10020288. [PMID: 35203497 PMCID: PMC8869312 DOI: 10.3390/biomedicines10020288] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of dementia. After decades of research, we know the importance of the accumulation of protein aggregates such as β-amyloid peptide and phosphorylated tau. We also know that mutations in certain proteins generate early-onset Alzheimer’s disease (EOAD), and many other genes modulate the disease in its sporadic form. However, the precise molecular mechanisms underlying AD pathology are still unclear. Because of ethical limitations, we need to use animal models to investigate these processes. The nematode Caenorhabditis elegans has received considerable attention in the last 25 years, since the first AD models overexpressing Aβ peptide were described. We review here the main results obtained using this model to study AD. We include works studying the basic molecular mechanisms of the disease, as well as those searching for new therapeutic targets. Although this model also has important limitations, the ability of this nematode to generate knock-out or overexpression models of any gene, single or combined, and to carry out toxicity, recovery or survival studies in short timeframes with many individuals and at low cost is difficult to overcome. We can predict that its use as a model for various diseases will certainly continue to increase.
Collapse
|
23
|
González LF, Bevilacqua LE, Naves R. Nanotechnology-Based Drug Delivery Strategies to Repair the Mitochondrial Function in Neuroinflammatory and Neurodegenerative Diseases. Pharmaceutics 2021; 13:2055. [PMID: 34959337 PMCID: PMC8707316 DOI: 10.3390/pharmaceutics13122055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are vital organelles in eukaryotic cells that control diverse physiological processes related to energy production, calcium homeostasis, the generation of reactive oxygen species, and cell death. Several studies have demonstrated that structural and functional mitochondrial disturbances are involved in the development of different neuroinflammatory (NI) and neurodegenerative (ND) diseases (NI&NDDs) such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Remarkably, counteracting mitochondrial impairment by genetic or pharmacologic treatment ameliorates neurodegeneration and clinical disability in animal models of these diseases. Therefore, the development of nanosystems enabling the sustained and selective delivery of mitochondria-targeted drugs is a novel and effective strategy to tackle NI&NDDs. In this review, we outline the impact of mitochondrial dysfunction associated with unbalanced mitochondrial dynamics, altered mitophagy, oxidative stress, energy deficit, and proteinopathies in NI&NDDs. In addition, we review different strategies for selective mitochondria-specific ligand targeting and discuss novel nanomaterials, nanozymes, and drug-loaded nanosystems developed to repair mitochondrial function and their therapeutic benefits protecting against oxidative stress, restoring cell energy production, preventing cell death, inhibiting protein aggregates, and improving motor and cognitive disability in cellular and animal models of different NI&NDDs.
Collapse
Affiliation(s)
| | | | - Rodrigo Naves
- Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Av. Independencia 1027, Santiago 8380453, Chile; (L.F.G.); (L.E.B.)
| |
Collapse
|
24
|
Liu J, Ye T, Zhang Y, Zhang R, Kong Y, Zhang Y, Sun J. Protective Effect of Ginkgolide B against Cognitive Impairment in Mice via Regulation of Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12230-12240. [PMID: 34633804 DOI: 10.1021/acs.jafc.1c05038] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ginkgolide B (GB) is one of the main bioactive components of Ginkgo biloba leaf extracts with neuroprotective activity. However, the neuroprotective mechanism link between the anti-Alzheimer's disease (AD) efficiency of GB and gut microbiota have remained elusive. Here, we elucidated the effect and possible mechanism of GB against cognitive impairment in mice. Male mice were induced with d-galactose and aluminum chloride to establish an AD animal model, and then intragastrically treated with GB. Cognitive function was assessed by an object recognition test and an open-field test. Amyloid deposition and neuropathological change were detected. The levels of receptor for advanced glycation end products (RAGE), Bcl-2, and Bax were detected. Moreover, microbial compositions were measured by 16s rRNA sequencing. Our results showed that GB significantly alleviated cognitive dysfunction, neurodegeneration, and neuropathological changes in AD model mice. Moreover, GB treatment remarkably reduced the levels of RAGE and Bax and increased the level of Bcl-2 in AD model mice. GB treatment reversed the decreased abundance of Lactobacillus and the increased abundance of Bacteroidales, Muribaculaceae, and Alloprevotella, which led to reconstruction of gut microbiota. These findings demonstrated the neuroprotective effects of GB in AD mice, which were partly mediated by modulating gut dysbiosis, indicating that GB might be a potentially active supplement to alleviate AD.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tao Ye
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuhe Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Rui Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Kong
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yang Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jing Sun
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
25
|
Erekat NS. Apoptosis and its therapeutic implications in neurodegenerative diseases. Clin Anat 2021; 35:65-78. [PMID: 34558138 DOI: 10.1002/ca.23792] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative disorders are characterized by progressive loss of particular populations of neurons. Apoptosis has been implicated in the pathogenesis of neurodegenerative diseases, including Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. In this review, we focus on the existing notions relevant to comprehending the apoptotic death process, including the morphological features, mediators and regulators of cellular apoptosis. We also highlight the evidence of neuronal apoptotic death in Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. Additionally, we present evidence of potential therapeutic agents that could modify the apoptotic pathway in the aforementioned neurodegenerative diseases and delay disease progression. Finally, we review the clinical trials that were conducted to evaluate the use of anti-apoptotic drugs in the treatment of the aforementioned neurodegenerative diseases, in order to highlight the essential need for early detection and intervention of neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Nour S Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
26
|
Nguyen VK, Kou KGM. The biology and total syntheses of bisbenzylisoquinoline alkaloids. Org Biomol Chem 2021; 19:7535-7543. [PMID: 34524341 DOI: 10.1039/d1ob00812a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This mini-review provides a concise overview of the biosynthetic pathway and pharmacology of bisbenzylisoquinoline alkaloid (bisBIA) natural products. Additional emphasis is given to the methodologies in the total syntheses of both simpler acyclic diaryl ether dimers and their macrocyclic counterparts bearing two diaryl ether linkages.
Collapse
Affiliation(s)
- Viviene K Nguyen
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - Kevin G M Kou
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|
27
|
Wang L, Guo Y, Ye J, Pan Z, Hu P, Zhong X, Qiu F, Zhang D, Huang Z. Protective Effect of Piceatannol Against Cerebral Ischaemia-Reperfusion Injury Via Regulating Nrf2/HO-1 Pathway In Vivo and Vitro. Neurochem Res 2021; 46:1869-1880. [PMID: 34031841 DOI: 10.1007/s11064-021-03328-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Piceatannol is a natural plant-derived compound with protective effects against cardiovascular diseases. However, its effect on cerebral ischaemia-reperfusion injury (CIRI) induced by oxidative stress remains unclear. This study aimed to investigate piceatannol's antioxidation in CIRI. An in vitro oxygen-glucose deprivation followed by reoxygenation model was used and cell viability was measured. A middle cerebral artery occlusion followed by reperfusion model was used in vivo. Neurological function, encephalisation quotient, oedema, and volume of the cerebral infarction were then evaluated. The effects of piceatannol on histopathological findings, as well as the ultrastructure of the cortex, were analysed. The activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and lactate dehydrogenase (LDH) and the malondialdehyde (MDA) content was measured both in vitro and in vivo. Finally, the expression of nuclear factor erythroid-2-related factor 2 (Nrf2), hemeoxygenase-1 (HO-1), and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase 1 (NQO1) in cerebral tissue was detected using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting. Our results demonstrated that cell viability in the piceatannol groups was increased. The SOD, GSH-Px activities were increased as LDH activity and MDA content decreased in the piceatannol groups both in vitro and in vivo, reflecting a decrease in oxidative stress. The neurological severity score and infarction volume in the piceatannol groups at doses of 10 and 20 mg/kg were lower than those of the model group. Furthermore, the damage seen on histopathological examination was partially attenuated by piceatannol. RT-qPCR and western blot analysis indicated that the expression of Nrf2, HO-1, and NQO1 were significantly increased by piceatannol. The results of the study demonstrate that piceatannol exerts a protective effect against CIRI.
Collapse
Affiliation(s)
- Lingfeng Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 311400, Zhejiang, China
| | - Ying Guo
- First School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 311400, Zhejiang, China
| | - Jiayi Ye
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 311400, Zhejiang, China
| | - Zeyue Pan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 311400, Zhejiang, China
| | - Peihao Hu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 311400, Zhejiang, China
| | - Xiaoming Zhong
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 311400, Zhejiang, China.
| | - Fengmei Qiu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 311400, Zhejiang, China
| | - Danni Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 311400, Zhejiang, China
| | - Zhen Huang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 311400, Zhejiang, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 311400, Zhejiang, China.
| |
Collapse
|
28
|
Wang K, Wang L, Chen L, Peng C, Luo B, Mo J, Chen W. Intranasal administration of dauricine loaded on graphene oxide: multi-target therapy for Alzheimer's disease. Drug Deliv 2021; 28:580-593. [PMID: 33729067 PMCID: PMC7971267 DOI: 10.1080/10717544.2021.1895909] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system characterized by progressive cognitive and memory-related impairment. However, current therapeutic treatments have not proved sufficiently effective, mainly due to the complicated pathogenesis of the disease. In this study, a nano-formulation of graphene oxide (GO) loaded with dauricine (Dau) was investigated in terms of the combined anti-inflammatory and anti-oxidative stress effects of Dau and the inhibition of misfolding and aggregation of the amyloid-β (Aβ) protein by GO. Both in vivo and in vitro models were induced using Aβ1-42, and the formulation was administered nasally in mice. The results showed that GO loaded with Dau greatly reduced oxidative stress through increasing superoxide dismutase levels and decreasing reactive oxygen species and malondialdehyde levels in vitro; it also alleviated the cognitive memory deficits and brain glial cell activation in mice with Aβ1-42-induced AD. This proved that GO loaded with Dau could protect against Aβ1-42-induced oxidative damage and apoptosis in both in vitro and in vivo AD models; therefore, GO loaded with Dau has the potential to be an effective and agent for the rapid treatment of AD.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Lingfeng Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, China
| | - Ling Chen
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Chiwei Peng
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Beijiao Luo
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Jingxin Mo
- Department of Pharmacy, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wei Chen
- Department of Pharmacy, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
29
|
Chen C, Liu P, Wang J, Yu H, Zhang Z, Liu J, Chen X, Zhu F, Yang X. Dauricine Attenuates Spatial Memory Impairment and Alzheimer-Like Pathologies by Enhancing Mitochondrial Function in a Mouse Model of Alzheimer's Disease. Front Cell Dev Biol 2021; 8:624339. [PMID: 33634105 PMCID: PMC7902075 DOI: 10.3389/fcell.2020.624339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/07/2020] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by extracellular amyloid plaques composed of β-amyloid (Aβ) and intracellular neurofibrillary tangles containing hyperphosphorylated tau protein. No effective therapy is available for this disease. In this study, we investigated the potential therapeutic effects of dauricine (DAU), a benzyl tetrahydroisoquinoline alkaloid, on AD, and found that DAU administration significantly improved cognitive impairments in 3xTg-AD mice by decreasing Aβ plaques and hyperphosphorylated tau and increasing the hippocampal ATP level. Proteomic and western blot analyses revealed that DAU treatment mainly modified the expression of proteins involved in mitochondrial energy metabolism, such as Aco2, Ndufs1, Cox5a, and SDHB, and that of synapse-related proteins such as Syn1 and Syn2. Pathway analysis revealed that DAU modulated the tricarboxylic acid cycle, synaptic vesicle cycle, glycolysis, and gluconeogenesis in 3xTg-AD mice. Our study suggests that DAU may be a potential drug for the treatment of AD.
Collapse
Affiliation(s)
- Chongyang Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Pan Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jing Wang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haitao Yu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zaijun Zhang
- Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Institute of New Drug Research and Guangzhou, Jinan University College of Pharmacy, Guangzhou, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiao Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
30
|
Shen Y, Zhang B, Pang X, Yang R, Chen M, Zhao J, Wang J, Wang Z, Yu Z, Wang Y, Li L, Liu A, Du G. Network Pharmacology-Based Analysis of Xiao-Xu-Ming Decoction on the Treatment of Alzheimer's Disease. Front Pharmacol 2021; 11:595254. [PMID: 33390981 PMCID: PMC7774966 DOI: 10.3389/fphar.2020.595254] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/21/2020] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) has become a worldwide disease that is harmful to human health and brings a heavy economic burden to healthcare system. Xiao-Xu-Ming Decoction (XXMD) has been widely used to treat stroke and other neurological diseases for more than 1000 years in China. However, the synergistic mechanism of the constituents in XXMD for the potential treatment of AD is still unclear. Therefore, the present study aimed to predict the potential targets and uncover the material basis of XXMD for the potential treatment of AD. A network pharmacology-based method, which combined data collection, drug-likeness filtering and absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties filtering, target prediction and network analysis, was used to decipher the effect and potential targets of XXMD for the treatment of AD. Then, the acetylcholinesterase (AChE) inhibitory assay was used to screen the potential active constituents in XXMD for the treatment of AD, and the molecular docking was furtherly used to identify the binding ability of active constituents with AD-related target of AChE. Finally, three in vitro cell models were applied to evaluate the neuroprotective effects of potential lead compounds in XXMD. Through the China Natural Products Database, Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database, Traditional Chinese Medicine (TCM)-Database @Taiwan and literature, a total of 1481 compounds in XXMD were finally collected. After ADME/T properties filtering, 908 compounds were used for the further study. Based on the prediction data, the constituents in XXMD formula could interact with 41 AD-related targets. Among them, cyclooxygenase-2 (COX-2), estrogen receptor α (ERα) and AChE were the major targets. The constituents in XXMD were found to have the potential to treat AD through multiple AD-related targets. 62 constituents in it were found to interact with more than or equal to 10 AD-related targets. The prediction results were further validated by in vitro biology experiment, resulting in several potential anti-AD multitarget-directed ligands (MTDLs), including two AChE inhibitors with the IC50 values ranging from 4.83 to 10.22 μM. Moreover, fanchinoline was furtherly found to prevent SH-SY5Y cells from the cytotoxicities induced by sodium nitroprusside, sodium dithionate and potassium chloride. In conclusion, XXMD was found to have the potential to treat AD by targeting multiple AD-related targets and canonical pathways. Fangchinoline and dauricine might be the potential lead compounds in XXMD for the treatment of AD.
Collapse
Affiliation(s)
- Yanjia Shen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoyue Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaocong Pang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Yang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaying Zhao
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziru Yu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehua Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ailin Liu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Zhang W, Feng C, Jiang H. Novel target for treating Alzheimer's Diseases: Crosstalk between the Nrf2 pathway and autophagy. Ageing Res Rev 2021; 65:101207. [PMID: 33144123 DOI: 10.1016/j.arr.2020.101207] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/02/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
In mammals, the Keap1-Nrf2-ARE pathway (henceforth, "the Nrf2 pathway") and autophagy are major intracellular defence systems that combat oxidative damage and maintain homeostasis. p62/SQSTM1, a ubiquitin-binding autophagy receptor protein, links the Nrf2 pathway and autophagy. Phosphorylation of p62 dramatically enhances its affinity for Keap1, which induces Keap1 to release Nrf2, and the p62-Keap1 heterodimer recruits LC3 and mediates the permanent degradation of Keap1 in the selective autophagy pathway. Eventually, Nrf2 accumulates in the cytoplasm and then translocates into the nucleus to activate the transcription of downstream genes that encode antioxidant enzymes, which protect cells from oxidative damage. Since Nrf2 also upregulates the expression of the p62 gene, a p62-Keap1-Nrf2 positive feedback loop is created that further enhances the protective effect on cells. Studies have shown that the p62-activated noncanonical Nrf2 pathway is an important marker of neurodegenerative diseases. The p62-Keap1-Nrf2 positive feedback loop and the Nrf2 pathway are involved in eliminating the ROS and protein aggregates induced by AD. Therefore, maintaining the homeostasis of the p62-Keap1-Nrf2 positive feedback loop, which is a bridge between the Nrf2 pathway and autophagy, may be a potential target for the treatment of AD.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China
| | - Cong Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China.
| |
Collapse
|
32
|
Fakhri S, Pesce M, Patruno A, Moradi SZ, Iranpanah A, Farzaei MH, Sobarzo-Sánchez E. Attenuation of Nrf2/Keap1/ARE in Alzheimer's Disease by Plant Secondary Metabolites: A Mechanistic Review. Molecules 2020; 25:molecules25214926. [PMID: 33114450 PMCID: PMC7663041 DOI: 10.3390/molecules25214926] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neuronal/cognitional dysfunction, leading to disability and death. Despite advances in revealing the pathophysiological mechanisms behind AD, no effective treatment has yet been provided. It urges the need for finding novel multi-target agents in combating the complex dysregulated mechanisms in AD. Amongst the dysregulated pathophysiological pathways in AD, oxidative stress seems to play a critical role in the pathogenesis progression of AD, with a dominant role of nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap1)/antioxidant responsive elements (ARE) pathway. In the present study, a comprehensive review was conducted using the existing electronic databases, including PubMed, Medline, Web of Science, and Scopus, as well as related articles in the field. Nrf2/Keap1/ARE has shown to be the upstream orchestrate of oxidative pathways, which also ameliorates various inflammatory and apoptotic pathways. So, developing multi-target agents with higher efficacy and lower side effects could pave the road in the prevention/management of AD. The plant kingdom is now a great source of natural secondary metabolites in targeting Nrf2/Keap1/ARE. Among natural entities, phenolic compounds, alkaloids, terpene/terpenoids, carotenoids, sulfur-compounds, as well as some other miscellaneous plant-derived compounds have shown promising future accordingly. Prevailing evidence has shown that activating Nrf2/ARE and downstream antioxidant enzymes, as well as inhibiting Keap1 could play hopeful roles in overcoming AD. The current review highlights the neuroprotective effects of plant secondary metabolites through targeting Nrf2/Keap1/ARE and downstream interconnected mediators in combating AD.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, University G. d’Annunzio CH-PE, 66100 Chieti, Italy;
| | - Antonia Patruno
- Department of Medicine and Aging Sciences, University G. d’Annunzio CH-PE, 66100 Chieti, Italy;
- Correspondence: (A.P.); (M.H.F.)
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
- Correspondence: (A.P.); (M.H.F.)
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
| |
Collapse
|
33
|
Su C, Chen Y, Chen K, Li W, Tang H. Inhibitory potency of 4- substituted sampangine derivatives toward Cu2+ mediated aggregation of amyloid β-peptide, oxidative stress, and inflammation in Alzheimer's disease. Neurochem Int 2020; 139:104794. [DOI: 10.1016/j.neuint.2020.104794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 01/04/2023]
|
34
|
Schütz R, Müller M, Geisslinger F, Vollmar A, Bartel K, Bracher F. Synthesis, biological evaluation and toxicity of novel tetrandrine analogues. Eur J Med Chem 2020; 207:112810. [PMID: 32942071 PMCID: PMC7473156 DOI: 10.1016/j.ejmech.2020.112810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022]
Abstract
In this work, we present the design and synthesis of novel fully synthetic analogues of the bisbenzylisoquinoline tetrandrine, a molecule with numerous pharmacological properties and the potential to treat life-threatening diseases, such as viral infections and cancer. Its toxicity to liver and lungs and the underlying mechanisms, however, are controversially discussed. Along this line, novel tetrandrine analogues were synthesized and biologically evaluated for their hepatotoxicity, as well as their antiproliferative and chemoresistance reversing activity on cancer cells. Previous studies suggesting CYP-mediated toxification of tetrandrine prompted us to amend/replace the suspected metabolically instable 12-methoxy group. Of note, employing several in vitro models showed that the proposed CYP3A4-driven metabolism of tetrandrine and analogues is not the major cause of hepatotoxicity. Biological characterization revealed that some of the novel tetrandrine analogues sensitized drug-resistant leukemia cells by inhibition of the P-glycoprotein. Interestingly, direct anticancer effects improved in comparison to tetrandrine, as several compounds displayed a markedly enhanced ability to reduce proliferation of drug-resistant leukemia cells and to induce cell death of liver cancer cells. Those enhanced anticancer properties were linked to influences on activation of the kinase Akt and mitochondrial events. In sum, our study clarifies the role of CYP3A4-mediated toxicity of the bisbenzylisoquinoline alkaloid tetrandrine and provides the basis for the exploitation of novel synthetic analogues for their antitumoral potential.
Collapse
Affiliation(s)
- Ramona Schütz
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Martin Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Franz Geisslinger
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Angelika Vollmar
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Karin Bartel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
35
|
Amarogentin from Gentiana rigescens Franch Exhibits Antiaging and Neuroprotective Effects through Antioxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3184019. [PMID: 32831994 PMCID: PMC7421772 DOI: 10.1155/2020/3184019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/26/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022]
Abstract
In the present study, the replicative lifespan assay of yeast was used to guide the isolation of antiaging substance from Gentiana rigescens Franch, a traditional Chinese medicine. A compound with antiaging effect was isolated, and the chemical structure of this molecule as amarogentin was identified by spectral analysis and compared with the reported data. It significantly extended the replicative lifespan of K6001 yeast at doses of 1, 3, and 10 μM. Furthermore, amarogentin improved the survival rate of yeast under oxidative stress by increasing the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), and these enzymes' gene expression. In addition, this compound did not extend the replicative lifespan of sod1, sod2, uth1, and skn7 mutants with K6001 background. These results suggested that amarogentin exhibited antiaging effect on yeast via increase of SOD2, CAT, GPx gene expression, enzyme activity, and antioxidative stress. Moreover, we evaluated antioxidant activity of this natural products using PC12 cell system, a useful model for studying the nervous system at the cellular level. Amarogentin significantly improved the survival rate of PC12 cells under H2O2-induced oxidative stress and increased the activities of SOD and SOD2, and gene expression of SOD2, CAT, GPx, Nrf2, and Bcl-x1. Meanwhile, the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) of PC12 cells were significantly reduced after treatment of the amarogentin. These results indicated that antioxidative stress play an important role for antiaging and neuroprotection of amarogentin. Interestingly, amarogentin exhibited neuritogenic activity in PC12 cells. Therefore, the natural products, amarogentin from G. rigescens with antioxidant activity could be a good candidate molecule to develop drug for treating neurodegenerative diseases.
Collapse
|
36
|
Park HJ, Gholam Zadeh M, Suh JH, Choi HS. Dauricine Protects from LPS-Induced Bone Loss via the ROS/PP2A/NF-κB Axis in Osteoclasts. Antioxidants (Basel) 2020; 9:antiox9070588. [PMID: 32640590 PMCID: PMC7402093 DOI: 10.3390/antiox9070588] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 01/03/2023] Open
Abstract
Dauricine (DAC), an isoquinoline alkaloid, exhibits anti-inflammatory activity. We hypothesized that DAC may prevent the inflammatory bone loss induced by lipopolysaccharide (LPS). LPS-induced bone loss was decreased by DAC in female C57BL/6J mice as evaluated by micro-computerized tomography (μCT) analysis. In vivo tartrate-resistant acid phosphatase (TRAP) staining showed that the increased number of osteoclasts (OCs) in LPS-treated mice was attenuated by DAC, indicating that DAC exhibited bone sparing effects through acting on OCs. DAC also decreased the differentiation and activity of OCs after LPS stimulation in vitro. LPS-induced cytosolic reactive oxygen species (cROS) oxidized PP2A, a serine/threonine phosphatase, leading to the activation of IKKα/β, followed by the nuclear localization of p65. DAC decreased LPS-induced ROS, resulting in the recovery of the activity of PP2A by reducing its oxidized form. Consequently, DAC reduced the phosphorylation of IKKα/β to block the nuclear localization of p65, which decreased NF-κB activation. Taken together, DAC reduced the differentiation and activity of OCs by decreasing ROS via the ROS/PP2A/NF-κB axis, resulting in protection from LPS-induced bone loss. We have demonstrated that LPS-induced bone loss was inhibited by DAC via its action on OCs, implying the therapeutic potential of DAC against inflammatory bone loss.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea; (H.-J.P.); (M.G.Z.)
| | | | - Jae-Hee Suh
- Department of Pathology, Ulsan University Hospital, Ulsan 44030, Korea;
| | - Hye-Seon Choi
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea; (H.-J.P.); (M.G.Z.)
- Correspondence: ; Tel.: +82-52-259-1545; Fax: +82-52-259-1694
| |
Collapse
|
37
|
He Z, Wang M, Zhao Q, Li X, Liu P, Ren B, Wu C, Du X, Li N, Liu Q. Bis(ethylmaltolato)oxidovanadium (IV) mitigates neuronal apoptosis resulted from amyloid-beta induced endoplasmic reticulum stress through activating peroxisome proliferator-activated receptor γ. J Inorg Biochem 2020; 208:111073. [PMID: 32466853 DOI: 10.1016/j.jinorgbio.2020.111073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 01/14/2023]
Abstract
Neuronal apoptosis caused by amyloid-beta (Aβ) overproduction is one of the most important pathological features in Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress induced by Aβ overload plays a critical role in this process. Bis(ethylmaltolato)oxidovanadium (IV) (BEOV), a vanadium compound which had been regarded as peroxisome proliferator-activated receptor γ (PPARγ) agonist, was reported to exert an antagonistic effect on ER stress. In this study, we tested whether BEOV could ameliorate the Aβ-induced neuronal apoptosis by inhibiting ER stress. It was observed that BEOV treatment ameliorated both tunicamycin-induced and/or Aβ-induced ER stress and neurotoxicity in a dose-dependent manner through downgrading ER stress-associated and apoptosis-associated proteins in primary hippocampal neurons. Consistent with in vitro results, BEOV also reduced ER stress and inhibited neuronal apoptosis in hippocampi and cortexes of transgenic AD model mice. Moreover, by adopting GW9662 and salubrinal, the inhibitor of PPARγ and hyperphosphorylated eukaryotic translation initiation factor 2α, respectively, we further confirmed that BEOV alleviated Aβ-induced ER stress and neuronal apoptosis in primary hippocampal neurons by activating PPARγ. Taken together, these results provided scientific evidences to support the concept that BEOV ameliorates Aβ-induced ER stress and neuronal apoptosis through activating PPARγ.
Collapse
Affiliation(s)
- Zhijun He
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China; College of optoelectronic engineering, Shenzhen university, Shenzhen, Guangdong 518060, China
| | - Menghuan Wang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Qionghui Zhao
- Shenzhen Food Inspection Center of CIQ, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Li
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Pengan Liu
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Bingyu Ren
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Chong Wu
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Xiubo Du
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Nan Li
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Qiong Liu
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, China.
| |
Collapse
|