1
|
Kozbenko T, Adam N, Grybas VS, Smith BJ, Alomar D, Hocking R, Abdelaziz J, Pace A, Boerma M, Azimzadeh O, Blattnig S, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to abnormal vascular remodeling. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:4-30. [PMID: 39440813 DOI: 10.1002/em.22636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular diseases (CVDs) are complex, encompassing many types of heart pathophysiologies and associated etiologies. Radiotherapy studies have shown that fractionated radiation exposure at high doses (3-17 Gy) to the heart increases the incidence of CVD. However, the effects of low doses of radiation on the cardiovascular system or the effects from space travel, where radiation and microgravity are important contributors to damage, are not clearly understood. Herein, the adverse outcome pathway (AOP) framework was applied to develop an AOP to abnormal vascular remodeling from the deposition of energy. Following the creation of a preliminary pathway with the guidance of field experts and authoritative reviews, a scoping review was conducted that informed final key event (KE) selection and evaluation of the Bradford Hill criteria for the KE relationships (KERs). The AOP begins with a molecular initiating event of deposition of energy; ionization events increase oxidative stress, which when persistent concurrently causes the release of pro-inflammatory mediators, suppresses anti-inflammatory mechanisms and alters stress response signaling pathways. These KEs alter nitric oxide levels leading to endothelial dysfunction, and subsequent abnormal vascular remodeling (the adverse outcome). The work identifies evidence needed to strengthen understanding of the causal associations for the KERs, emphasizing where there are knowledge gaps and uncertainties in both qualitative and quantitative understanding. The AOP is anticipated to direct future research to better understand the effects of space on the human body and potentially develop countermeasures to better protect future space travelers.
Collapse
Affiliation(s)
- Tatiana Kozbenko
- Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | - Amanda Pace
- Carleton University, Ottawa, Ontario, Canada
| | - Marjan Boerma
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, Neuherberg, Germany
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
2
|
Han H, Jia H, Wang YF, Song JP. Cardiovascular adaptations and pathological changes induced by spaceflight: from cellular mechanisms to organ-level impacts. Mil Med Res 2024; 11:68. [PMID: 39334239 PMCID: PMC11429428 DOI: 10.1186/s40779-024-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
The advancement in extraterrestrial exploration has highlighted the crucial need for studying how the human cardiovascular system adapts to space conditions. Human development occurs under the influence of gravity, shielded from space radiation by Earth's magnetic field, and within an environment characterized by 24-hour day-night cycles resulting from Earth's rotation, thus deviating from these conditions necessitates adaptive responses for survival. With upcoming manned lunar and Martian missions approaching rapidly, it is essential to understand the impact of various stressors induced by outer-space environments on cardiovascular health. This comprehensive review integrates insights from both actual space missions and simulated experiments on Earth, to analyze how microgravity, space radiation, and disrupted circadian affect cardiovascular well-being. Prolonged exposure to microgravity induces myocardial atrophy and endothelial dysfunction, which may be exacerbated by space radiation. Mitochondrial dysfunction and oxidative stress emerge as key underlying mechanisms along with disturbances in ion channel perturbations, cytoskeletal damage, and myofibril changes. Disruptions in circadian rhythms caused by factors such as microgravity, light exposure, and irregular work schedules, could further exacerbate cardiovascular issues. However, current research tends to predominantly focus on disruptions in the core clock gene, overlooking the multifactorial nature of circadian rhythm disturbances in space. Future space missions should prioritize targeted prevention strategies and early detection methods for identifying cardiovascular risks, to preserve astronaut health and ensure mission success.
Collapse
Affiliation(s)
- Han Han
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yi-Fan Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jiang-Ping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
3
|
Fava M, De Dominicis N, Forte G, Bari M, Leuti A, Maccarrone M. Cellular and Molecular Effects of Microgravity on the Immune System: A Focus on Bioactive Lipids. Biomolecules 2024; 14:446. [PMID: 38672462 PMCID: PMC11048039 DOI: 10.3390/biom14040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Microgravity is one of the main stressors that astronauts are exposed to during space missions. This condition has been linked to many disorders, including those that feature dysfunctional immune homeostasis and inflammatory damage. Over the past 30 years, a significant body of work has been gathered connecting weightlessness-either authentic or simulated-to an inefficient reaction to pathogens, dysfunctional production of cytokines and impaired survival of immune cells. These processes are also orchestrated by a plethora of bioactive lipids, produced by virtually all cells involved in immune events, which control the induction, magnitude, outcome, compartmentalization and trafficking of immunocytes during the response to injury. Despite their crucial importance in inflammation and its modulation, however, data concerning the role of bioactive lipids in microgravity-induced immune dysfunctions are surprisingly scarce, both in quantity and in variety, and the vast majority of it focuses on two lipid classes, namely eicosanoids and endocannabinoids. The present review aims to outline the accumulated knowledge addressing the effects elicited by microgravity-both simulated and authentic-on the metabolism and signaling of these two prominent lipid groups in the context of immune and inflammatory homeostasis.
Collapse
Affiliation(s)
- Marina Fava
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.F.); (G.F.)
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Noemi De Dominicis
- Department of Physics, University of Trento, 38123 Trento, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Giulia Forte
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.F.); (G.F.)
| | - Monica Bari
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.F.); (G.F.)
| | - Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.F.); (G.F.)
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
4
|
Ludtka C, Allen JB. The Effects of Simulated and Real Microgravity on Vascular Smooth Muscle Cells. GRAVITATIONAL AND SPACE RESEARCH : PUBLICATION OF THE AMERICAN SOCIETY FOR GRAVITATIONAL AND SPACE RESEARCH 2024; 12:46-59. [PMID: 38846256 PMCID: PMC11156189 DOI: 10.2478/gsr-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
As considerations are being made for the limitations and safety of long-term human spaceflight, the vasculature is important given its connection to and impact on numerous organ systems. As a major constituent of blood vessels, vascular smooth muscle cells are of interest due to their influence over vascular tone and function. Additionally, vascular smooth muscle cells are responsive to pressure and flow changes. Therefore, alterations in these parameters under conditions of microgravity can be functionally disruptive. As such, here we review and discuss the existing literature that assesses the effects of microgravity, both actual and simulated, on smooth muscle cells. This includes the various methods for achieving or simulating microgravity, the animal models or cells used, and the various durations of microgravity assessed. We also discuss the various reported findings in the field, which include changes to cell proliferation, gene expression and phenotypic shifts, and renin-angiotensin-aldosterone system (RAAS), nitric oxide synthase (NOS), and Ca2+ signaling. Additionally, we briefly summarize the literature on smooth muscle tissue engineering in microgravity as well as considerations of radiation as another key component of spaceflight to contextualize spaceflight experiments, which by their nature include radiation exposure. Finally, we provide general recommendations based on the existing literature's focus and limitations.
Collapse
Affiliation(s)
- Christopher Ludtka
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Josephine B. Allen
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
5
|
Liu FX, Zhang DP, Ma YM, Zhang HL, Liu XZ, Zhang ZQ, Sun RQ, Zhang YK, Miao JX, Wu ZX, Liu YL, Feng YC. Effect of Jiawei Tongqiao Huoxue decoction in basilar artery dolichoectasia mice through yes-associated protein/transcriptional Co-activator with PDZ-binding motif pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116599. [PMID: 37149070 DOI: 10.1016/j.jep.2023.116599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Jiawei Tongqiao Huoxue decoction (JTHD), composed of Acorus calamus var. angustatus Besser, Paeonia lactiflora Pall., Conioselinum anthriscoides 'Chuanxiong', Prunus persica (L.) Batsch, Ziziphus jujuba Mill., Carthamus tinctorius L., Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep, Zingiber officinale Roscoe, Leiurus quinquestriatus, and Moschus berezovskii Flerov, was developed based on Tongqiao Huoxue decoction in Wang Qingren's "Yilin Gaicuo" in the Qing Dynasty. It has the effect of improving not only the blood flow velocity of vertebral and basilar arteries but also the blood flow parameters and wall shear stress. Especially in recent years, the potential efficacy of traditional Chinese medicine (TCM) for the treatment of basilar artery dolichoectasia (BAD) has attracted great attention as there are still no specific remedies for this disease. However, its molecular mechanism has not been elucidated. To identify the potential mechanisms of JTHD will help to intervene BAD and provide a reference for its clinical application. AIM OF THE STUDY This study aims to establish a mouse model of BAD and explore the mechanism of JTHD regulating yes-associated protein/transcriptional co-activator with PDZ-binding motif (YAP/TAZ) pathway for attenuating BAD mice development. MATERIALS AND METHODS Sixty post-modeling C57/BL6 female mice were randomly divided into sham-operated, model, atorvastatin calcium tablet, low-dose JTHD, and high-dose JTHD groups. After 14 days of modeling, the pharmacological intervention was given for 2 months. Then, JTHD was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS). ELISA was utilized to detect the changes in vascular endothelial growth factor (VEGF) and lipoprotein a (Lp-a) in serum. EVG staining was conducted to observe the pathological changes of blood vessels. TUNEL method was employed to detect the apoptosis rate of vascular smooth muscle cells (VSMCs). Micro-CT and ImagePro Plus software were used to observe and calculate the tortuosity index, lengthening index, percentage increase in vessel diameter, and tortuosity of the basilar artery vessels in mice. Western blot analysis was performed to detect the expression levels of YAP and TAZ proteins in the vascular tissues of mice. RESULTS Many effective compounds such as choline, tryptophan, and leucine with anti-inflammation and vascular remodeling were identified in the Chinese medicine formula by LC-MS analysis. The serum levels of VEGF in the model mice decreased significantly while the levels of Lp-a increased obviously compared with those in the sham-operated group. The intima-media of the basilar artery wall showed severe disruption of the internal elastic layer, atrophy of the muscular layer, and hyaline changes of the connective tissue. Apoptosis of VSMCs added. Dilatation, elongation, and tortuosity of the basilar artery became notable, and tortuosity index, lengthening index, percentage increase in vessel diameter, and bending angle remarkably improved. The expression levels of YAP and TAZ protein in blood vessels elevated conspicuously (P < 0.05, P < 0.01). JTHD group markedly reduced the lengthening, bending angle, percentage increase in vessel diameter, and tortuosity index of basilar artery compared with the model group after 2 months of pharmacological intervention. The group also decreased the secretion of Lp-a and increased the content of VEGF. It inhibited the destruction of the internal elastic layer, muscular atrophy, and hyaline degeneration of connective tissue in basilar artery wall. The apoptosis of VSMCs was decreased, and the expression levels of YAP and TAZ proteins were abated (P < 0.05, P < 0.01). CONCLUSIONS The mechanism of inhibition of basilar artery elongation, dilation, and tortuosity by JTHD, which has various anti-BAD effective compound components, may be related to the reduction in VSMCs apoptosis and downregulation of YAP/TAZ pathway expression.
Collapse
Affiliation(s)
- Fei Xiang Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China; Henan Vertigo Disease Diagnosis and Treatment Center, Zhengzhou, China; Institute of Vertigo Disease, Henan University of Chinese Medicine, Zhengzhou, China
| | - Dao Pei Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China; Henan Vertigo Disease Diagnosis and Treatment Center, Zhengzhou, China; Institute of Vertigo Disease, Henan University of Chinese Medicine, Zhengzhou, China.
| | - Yan Min Ma
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Huai Liang Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China; Henan Vertigo Disease Diagnosis and Treatment Center, Zhengzhou, China; Institute of Vertigo Disease, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiang Zhe Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen Qiang Zhang
- College of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Rui Qin Sun
- Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yun Ke Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China; School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China.
| | - Jin Xin Miao
- Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhao Xin Wu
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Ya Li Liu
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan Chen Feng
- Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
6
|
Ye C, Geng Z, Zhang LL, Zheng F, Zhou YB, Zhu GQ, Xiong XQ. Chronic infusion of ELABELA alleviates vascular remodeling in spontaneously hypertensive rats via anti-inflammatory, anti-oxidative and anti-proliferative effects. Acta Pharmacol Sin 2022; 43:2573-2584. [PMID: 35260820 PMCID: PMC9525578 DOI: 10.1038/s41401-022-00875-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
Inflammatory activation and oxidative stress promote the proliferation of vascular smooth muscle cells (VSMCs), which accounts for pathological vascular remodeling in hypertension. ELABELA (ELA) is the second endogenous ligand for angiotensin receptor-like 1 (APJ) receptor that has been discovered thus far. In this study, we investigated whether ELA regulated VSMC proliferation and vascular remodeling in spontaneously hypertensive rats (SHRs). We showed that compared to that in Wistar-Kyoto rats (WKYs), ELA expression was markedly decreased in the VSMCs of SHRs. Exogenous ELA-21 significantly inhibited inflammatory cytokines and NADPH oxidase 1 expression, reactive oxygen species production and VSMC proliferation and increased the nuclear translocation of nuclear factor erythroid 2-related factor (Nrf2) in VSMCs. Osmotic minipump infusion of exogenous ELA-21 in SHRs for 4 weeks significantly decreased diastolic blood pressure, alleviated vascular remodeling and ameliorated vascular inflammation and oxidative stress in SHRs. In VSMCs of WKY, angiotensin II (Ang II)-induced inflammatory activation, oxidative stress and VSMC proliferation were attenuated by pretreatment with exogenous ELA-21 but were exacerbated by ELA knockdown. Moreover, ELA-21 inhibited the expression of matrix metalloproteinase 2 and 9 in both SHR-VSMCs and Ang II-treated WKY-VSMCs. We further revealed that exogenous ELA-21-induced inhibition of proliferation and PI3K/Akt signaling were amplified by the PI3K/Akt inhibitor LY294002, while the APJ receptor antagonist F13A abolished ELA-21-induced PI3K/Akt inhibition and Nrf2 activation in VSMCs. In conclusion, we demonstrate that ELA-21 alleviates vascular remodeling through anti-inflammatory, anti-oxidative and anti-proliferative effects in SHRs, indicating that ELA-21 may be a therapeutic agent for treating hypertension.
Collapse
Affiliation(s)
- Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Zhi Geng
- Department of Cardiac Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Ling-Li Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 211166, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ye-Bo Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao-Qing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
7
|
Acid sphingomyelinase promotes SGK1-dependent vascular calcification. Clin Sci (Lond) 2021; 135:515-534. [PMID: 33479769 PMCID: PMC7859357 DOI: 10.1042/cs20201122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
In chronic kidney disease (CKD), hyperphosphatemia is a key factor promoting medial vascular calcification, a common complication associated with cardiovascular events and high mortality. Vascular calcification involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs), but the complex signaling events inducing pro-calcific pathways are incompletely understood. The present study investigated the role of acid sphingomyelinase (ASM)/ceramide as regulator of VSMC calcification. In vitro, both, bacterial sphingomyelinase and phosphate increased ceramide levels in VSMCs. Bacterial sphingomyelinase as well as ceramide supplementation stimulated osteo-/chondrogenic transdifferentiation during control and high phosphate conditions and augmented phosphate-induced calcification of VSMCs. Silencing of serum- and glucocorticoid-inducible kinase 1 (SGK1) blunted the pro-calcific effects of bacterial sphingomyelinase or ceramide. Asm deficiency blunted vascular calcification in a cholecalciferol-overload mouse model and ex vivo isolated-perfused arteries. In addition, Asm deficiency suppressed phosphate-induced osteo-/chondrogenic signaling and calcification of cultured VSMCs. Treatment with the functional ASM inhibitors amitriptyline or fendiline strongly blunted pro-calcific signaling pathways in vitro and in vivo. In conclusion, ASM/ceramide is a critical upstream regulator of vascular calcification, at least partly, through SGK1-dependent signaling. Thus, ASM inhibition by repurposing functional ASM inhibitors to reduce the progression of vascular calcification during CKD warrants further study.
Collapse
|
8
|
Gao Y, Han H, Du J, He Q, Jia Y, Yan J, Dai H, Cui B, Yang J, Wei X, Yang L, Wang R, Long R, Ren Q, Yang X, Lu J. Early changes to the extracellular space in the hippocampus under simulated microgravity conditions. SCIENCE CHINA-LIFE SCIENCES 2021; 65:604-617. [PMID: 34185240 DOI: 10.1007/s11427-021-1932-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023]
Abstract
The smooth transportation of substances through the brain extracellular space (ECS) is crucial to maintaining brain function; however, the way this occurs under simulated microgravity remains unclear. In this study, tracer-based magnetic resonance imaging (MRI) and DECS-mapping techniques were used to image the drainage of brain interstitial fluid (ISF) from the ECS of the hippocampus in a tail-suspended hindlimb-unloading rat model at day 3 (HU-3) and 7 (HU-7). The results indicated that drainage of the ISF was accelerated in the HU-3 group but slowed markedly in the HU-7 group. The tortuosity of the ECS decreased in the HU-3 group but increased in the HU-7 group, while the volume fraction of the ECS increased in both groups. The diffusion rate within the ECS increased in the HU-3 group and decreased in the HU-7 group. The alterations to ISF drainage and diffusion in the ECS were recoverable in the HU-3 group, but neither parameter was restored in the HU-7 group. Our findings suggest that early changes to the hippocampal ECS and ISF drainage under simulated microgravity can be detected by tracer-based MRI, providing a new perspective for studying microgravity-induced nano-scale structure abnormities and developing neuroprotective approaches involving the brain ECS.
Collapse
Affiliation(s)
- Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China. .,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China. .,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China.
| | - Jichen Du
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China.,Department of Neurology, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, 100039, China
| | - Qingyuan He
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hui Dai
- NHC Key Laboratory of Medical Immunology, Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Bin Cui
- Department of Radiology, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, 100039, China
| | - Jing Yang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, 100039, China
| | - Xunbin Wei
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Liu Yang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Rui Wang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Ren Long
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Qiushi Ren
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Xing Yang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Jiabin Lu
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| |
Collapse
|