1
|
Jiang B, Bai C, Pan J, Shen B, Li L. Screening and identification of microRNAs mediating cartilage endplate degeneration in human intervertebral disks. Front Med (Lausanne) 2024; 11:1446294. [PMID: 39440032 PMCID: PMC11493738 DOI: 10.3389/fmed.2024.1446294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Objective This study aimed to discover micro-ribonucleic acids (microRNAs) involved in the degeneration of cartilage endplates through next-generation sequencing and lay the foundation for further research. Methods The cartilage endplate was obtained from patients who underwent interbody fusion surgery at the Department of Spine Surgery, Shanghai East Hospital Affiliated to Tongji University, from 1 January 2020 to 1 January 2023. Total RNA was extracted from the cartilage endplate tissue. Discover differential genes through NGS. To annotate gene functions, all target genes were aligned against the Kyoto Encyclopedia of Genes (KEGG) and Gene Ontology (GO) databases. The GO enrichment and KEGG enrichment analyses of target genes were performed using phyper, a function of R. The p-value was corrected using the Bonferroni method, and a corrected p-value of ≤0.05 was taken as the threshold. GO terms or KEGG terms fulfilling this condition were defined as significantly enriched terms. The screened miRNAs and their target protein were verified in vitro using quantitative polymerase chain reaction (qPCR) and Western blotting (WB). Results RNA was extracted from normal and degenerated cartilage endplate tissues for NGS. Eight downregulated differentially expressed genes (DEGs) and 22 upregulated DEGs were found. The KEGG pathway analysis of these target genes revealed that differential microRNAs and target genes were enriched in different signaling pathways, and the regulated signaling pathways were mainly mitochondrial autophagy and autophagy. The qPCR results demonstrated a significant upregulation of miR-25-3p and miR-345-5p in degenerative cartilage endplate tissues (p ≤ 0.001). Western blot analysis revealed that BRD4 exhibited a marked increase in protein expression levels in degenerative cartilage endplate tissues (p ≤ 0.0001), while BECN1 showed a significant decrease in protein expression levels within these samples (p ≤ 0.0001). Conclusion We found that DEG hsa-miR-25-3p and hsa-miR-345-5p can be used as diagnostic and therapeutic targets for IDD. The significant target proteins of miR-25-3p and miR-345-5p were BRD4 and BECN1, respectively.
Collapse
Affiliation(s)
- Bei Jiang
- Department of Spine Surgery, Zhejiang Rongjun Hospital, School of Medicine, Jiaxing University, Jiaxing, China
| | - Chong Bai
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Pan
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Shen
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lijun Li
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Jiang C, Liu Y, Zhao W, Yang Y, Ren Z, Wang X, Hao D, Du H, Yin S. microRNA-365 attenuated intervertebral disc degeneration through modulating nucleus pulposus cell apoptosis and extracellular matrix degradation by targeting EFNA3. J Cell Mol Med 2024; 28:e18054. [PMID: 38009813 PMCID: PMC10826450 DOI: 10.1111/jcmm.18054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
This present study is aimed to investigate the role of microRNA-365 (miR-365) in the development of intervertebral disc degeneration (IDD). Nucleus pulposus (NP) cells were transfected by miR-365 mimic and miR-365 inhibitor, respectively. Concomitantly, the transfection efficiency and the expression level of miRNA were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Meanwhile, NP cells apoptosis was measured through propidium iodide (PI)-AnnexinV-fluorescein isothiocyanate (FITC) apoptosis detection kit. Subsequently, immunofluorescence (IF) staining was performed to assess the expression of collagen II, aggrecan and matrix metalloproteinase 13 (MMP-13). In addition, bioinformatic prediction and Luciferase reporter assay were used to reveal the target gene of miR-365. Finally, we isolated the primary NP cells from rats and injected NP-miR-365 in rat IDD models. The results showed that overexpression of miR-365 could effectively inhibit NP cells apoptosis and MMP-13 expression and upregulate the expression of collagen II and aggrecan. Conversely, suppression of miR-365 enhanced NP cell apoptosis and elevated MMP-13 expression, but decreased the expression of collagen II and aggrecan. Moreover, the further data demonstrated that miR-365 mediated NP cell degradation through targeting ephrin-A3 (EFNA3). In addition, the cells apoptosis and catabolic markers were increased in NP cells when EFNA3 upregulated. More importantly, the vivo data supported that miR-365-NP cells injection ameliorated IDD in rats models. miR-365 could alleviate the development of IDD by regulating NP cell apoptosis and ECM degradation, which is likely mediated by targeting EFNA3. Therefore, miR-365 may be a promising therapeutic avenue for treatment IDD through EFNA3.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Youjun Liu
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Weigong Zhao
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yimin Yang
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhiwei Ren
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaohui Wang
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Dingjun Hao
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Heng Du
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Si Yin
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
3
|
Shao J, Wang M, Zhang A, Liu Z, Jiang G, Tang T, Wang J, Jia X, Lai S. Interference of a mammalian circRNA regulates lipid metabolism reprogramming by targeting miR-24-3p/Igf2/PI3K-AKT-mTOR and Igf2bp2/Ucp1 axis. Cell Mol Life Sci 2023; 80:252. [PMID: 37587272 PMCID: PMC11071982 DOI: 10.1007/s00018-023-04899-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
White adipose tissue (WAT) is important for regulating the whole systemic energy homeostasis. Excessive WAT accumulation further contributes to the development of obesity and obesity-related illnesses. More detailed mechanisms for WAT lipid metabolism reprogramming, however, are still elusive. Here, we report the abnormally high expression of a circular RNA (circRNA) mmu_circ_0001874 in the WAT and liver of mice with obesity. mmu_circ_0001874 interference achieved using a specific adeno-associated virus infects target tissues, down-regulating lipid accumulation in the obesity mice WAT, and liver tissues. Mechanistically, miR-24-3p directly interacts with the lipid metabolism effect of mmu_circ_0001874 and participates in adipogenesis and lipid accumulation by targeting Igf2/PI3K-AKT-mTOR axis. Moreover, mmu_circ_0001874 binds to Igf2bp2 to interact with Ucp1, up-regulating Ucp1 translation and increasing thermogenesis to decrease lipid accumulation. In conclusion, our data highlight a physiological role for circRNA in lipid metabolism reprogramming and suggest mmu_circ_0001874/miR-24-3p/Igf2/PI3K-AKT-mTOR and mmu_circ_0001874/Igf2bp2/Ucp1 axis may represent a potential mechanism for controlling lipid accumulation in obesity.
Collapse
Affiliation(s)
- Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Meigui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Anjing Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zheliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Genglong Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Wang X, Tan Y, Liu F, Wang J, Liu F, Zhang Q, Li J. Pharmacological network analysis of the functions and mechanism of kaempferol from Du Zhong in intervertebral disc degeneration (IDD). J Orthop Translat 2023; 39:135-146. [PMID: 36909862 PMCID: PMC9999173 DOI: 10.1016/j.jot.2023.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 03/14/2023] Open
Abstract
Background Senescence and apoptosis of the nucleus pulposus cells (NPCs) are essential components of the intervertebral disc degeneration (IDD) process. Senescence and anti-apoptosis treatments could be effective ways to delay or even stop disc degeneration. IDD has been treated with Eucommia ulmoides Oliver (Du Zhong, DZ) and its active ingredients. However, the roles and mechanisms of DZ in NPC apoptosis and senescence remain unclear. Methods Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to select the main active ingredients of DZ with the threshold of oral bioavailability (OB) ≥ 30% and drug-likeness (DL) ≥ 0.2. GSE34095 contained expression profile of degenerative intervertebral disc tissues and non-degenerative intervertebral disc tissues were downloaded for different expression genes analysis. The disease targets genes of IDD were retrieved from GeneCards. The online tool Metascape was used for functional enrichment annotation analysis. The specific effects of the ingredient on IL-1β treated NPC cell proliferation, cell senescence, reactive oxygen species (ROS) accumulation and cell apoptosis were determined by CCK-8, SA-β-gal staining, flowcytometry and western blot assays. Results A total of 8 active compounds of DZ were found to meet the threshold of OB ≥ 30% and DL ≥ 0.2 with 4151 drug targets. After the intersection of 879 IDD disease targets obtained from GeneCards and 230 DEGs obtained from the IDD-related GSE dataset, a total of 13 hub genes overlapped. According to functional enrichment annotation analysis by Metascape, these genes showed to be dramatically enriched in AGE-RAGE signaling, proteoglycans in cancer, wound healing, transmembrane receptor protein tyrosine kinase signaling, MAPK cascades, ERK1/2 cascades, PI3K/Akt signaling pathway, skeletal system, etc. Disease association analysis by DisGeNET indicated that these genes were significantly associated with IDD, intervertebral disc disease, skeletal dysplasia, and other diseases. Active ingredients-targets-signaling pathway networks were constructed by Cytoscape, and kaempferol was identified as the hub active compound of DZ. In the IL-1β-induced IDD in vitro model, kaempferol treatment significantly improved IL-1β-induced NPC cell viability suppression and senescence. In addition, kaempferol treatment significantly attenuated IL-1β-induced ROS accumulation and apoptosis. Furthermore, kaempferol treatment partially eliminated IL-1β-induced decreases in aggrecan, collagen II, SOX9, and FN1 levels and increases in MMP3, MMP13, ADAMTS-4, and ADAMTS-5. Moreover, kaempferol treatment significantly relieved the promotive effects of IL-1β stimulation upon p38, JNK, and ERK1/2 phosphorylation. ERK1/2 inhibitor PD0325901 further enhanced the effect of kaempferol on the inhibition of ERK1/2 phosphorylation, downregulation of MMP3 and ADAMTS-4 expression, and upregulation of aggrecan and collagen II expressions. Conclusion Kaempferol has been regarded as the major active compound of DZ, protecting NPCs from IL-1β-induced damages through promoting cell viability, inhibiting cell senescence and apoptosis, increasing ECM production, and decreasing ECM degradation. MAPK signaling pathway may be involved. The translational poteintial of this article This study provides in vitro experimental data support for the pharmacological effects of kaempferol in treating IDD, and lays a solid experimental foundation for its future clinical application in IDD treatment.
Collapse
Affiliation(s)
- Xiaobin Wang
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yanlin Tan
- PET/CT Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fusheng Liu
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingyu Wang
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fubin Liu
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Qianshi Zhang
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jing Li
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
5
|
Liu Z, Fu C. Application of single and cooperative different delivery systems for the treatment of intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:1058251. [PMID: 36452213 PMCID: PMC9702580 DOI: 10.3389/fbioe.2022.1058251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the most universal pathogenesis of low back pain (LBP), a prevalent and costly medical problem across the world. Persistent low back pain can seriously affect a patient's quality of life and even lead to disability. Furthermore, the corresponding medical expenses create a serious economic burden to both individuals and society. Intervertebral disc degeneration is commonly thought to be related to age, injury, obesity, genetic susceptibility, and other risk factors. Nonetheless, its specific pathological process has not been completely elucidated; the current mainstream view considers that this condition arises from the interaction of multiple mechanisms. With the development of medical concepts and technology, clinicians and scientists tend to intervene in the early or middle stages of intervertebral disc degeneration to avoid further aggravation. However, with the aid of modern delivery systems, it is now possible to intervene in the process of intervertebral disc at the cellular and molecular levels. This review aims to provide an overview of the main mechanisms associated with intervertebral disc degeneration and the delivery systems that can help us to improve the efficacy of intervertebral disc degeneration treatment.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Wei X, Yuan Y, Yang Q. Long noncoding RNA PVT1 accelerates the growth of placental trophoblasts in preeclampsia through the microRNA-24-3p/HSD11B2 axis. Mol Reprod Dev 2022; 89:271-280. [PMID: 35735229 DOI: 10.1002/mrd.23575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 11/11/2022]
Abstract
Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) is essential for the maintenance of normal functions of trophoblasts in preeclampsia (PE). This study aims to decipher the concrete mechanism of PVT1 with the microRNA-24-3p/Type-2 11β-hydroxysteroid dehydrogenase (miR-24-3p/HSD11B2) axis in PE. PVT1, miR-24-3p, and HSD11B2 expression levels in normal placental tissues and PE placental tissues were defined. HTR-8/SVneo cells were transfected to determine the effects of PVT1, miR-24-3p, and HSD11B2 on the growth of HTR-8/SVneo cells. The relationships among PVT1/miR-24-3p/HSD11B2 in HTR-8/SVneo cells were identified. PVT1 and HSD11B2 were downregulated, while miR-24-3p was upregulated in the placenta of PE. Upregulated/downregulated PVT1 promoted/impeded the growth of human placental trophoblast (HTR-8/SVneo) cells in PE. Restored/knocked down miR-24-3p impeded/enhanced the growth of HTR-8/SVneo cells in PE. PVT1 inhibited miR-24-3p to mediate HSD11B2. PVT1 sponges miR-24-3p to regulate HSD11B2; thereby, the growth of placental trophoblasts is promoted in PE.
Collapse
Affiliation(s)
- Xiaoying Wei
- Department of Obstetrics, Hubei Maternal and Child Health Hospital, Wuhan, Hubei, China
| | - Yichong Yuan
- Department of gynaecology, Hubei Maternal and Child Health Hospital, Wuhan, Hubei, China
| | - Qiong Yang
- Department of Obstetrics, Hubei Maternal and Child Health Hospital, Wuhan, Hubei, China
| |
Collapse
|
7
|
Noncoding RNA actions through IGFs and IGF binding proteins in cancer. Oncogene 2022; 41:3385-3393. [PMID: 35597813 PMCID: PMC9203274 DOI: 10.1038/s41388-022-02353-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/17/2022]
Abstract
The insulin-like growth factors (IGFs) and their regulatory proteins—IGF receptors and binding proteins—are strongly implicated in cancer progression and modulate cell survival and proliferation, migration, angiogenesis and metastasis. By regulating the bioavailability of the type-1 IGF receptor (IGF1R) ligands, IGF-1 and IGF-2, the IGF binding proteins (IGFBP-1 to -6) play essential roles in cancer progression. IGFBPs also influence cell communications through pathways that are independent of IGF1R activation. Noncoding RNAs (ncRNAs), which encompass a variety of RNA types including microRNAs (miRNAs) and long-noncoding RNAs (lncRNAs), have roles in multiple oncogenic pathways, but their many points of intersection with IGF axis functions remain to be fully explored. This review examines the functional interactions of miRNAs and lncRNAs with IGFs and their binding proteins in cancer, and reveals how the IGF axis may mediate ncRNA actions that promote or suppress cancer. A better understanding of the links between ncRNA and IGF pathways may suggest new avenues for prognosis and therapeutic intervention in cancer. Further, by exploring examples of intersecting ncRNA-IGF pathways in non-cancer conditions, it is proposed that new opportunities for future discovery in cancer control may be generated.
Collapse
|
8
|
Xin J, Wang Y, Zheng Z, Wang S, Na S, Zhang S. Treatment of Intervertebral Disc Degeneration. Orthop Surg 2022; 14:1271-1280. [PMID: 35486489 PMCID: PMC9251272 DOI: 10.1111/os.13254] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IDD) causes a variety of signs and symptoms, such as low back pain (LBP), intervertebral disc herniation, and spinal stenosis, which contribute to high social and economic costs. IDD results from many factors, including genetic factors, aging, mechanical injury, malnutrition, and so on. The pathological changes of IDD are mainly composed of the senescence and apoptosis of nucleus pulposus cells (NPCs), the progressive degeneration of extracellular matrix (ECM), the fibrosis of annulus fibrosus (AF), and the inflammatory response. At present, IDD can be treated by conservative treatment and surgical treatment based on patients' symptoms. However, all of these can only release the pain but cannot reverse IDD and reconstruct the mechanical function of the spine. The latest research is moving towards the field of biotherapy. Mesenchymal stem cells (MSCs) are regard as the potential therapy of IDD because of their ability to self-renew and differentiate into a variety of tissues. Moreover, the non-coding RNAs (ncRNAs) are found to regulate many vital processes in IDD. There have been many successes in the in vitro and animal studies of using biotherapy to treat IDD, but how to transform the experimental data to real therapy which can apply to humans is still a challenge. This article mainly reviews the treatment strategies and research progress of IDD and indicates that there are many problems that need to be solved if the new biotherapy is to be applied to clinical treatment of IDD. This will provide reference and guidance for clinical treatment and research direction of IDD.
Collapse
Affiliation(s)
- Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Shuo Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Shibo Na
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| |
Collapse
|
9
|
Yu B, Zhu Z, Shen B, Lu J, Guo K, Zhao W, Wu D. MicroRNA-137 inhibits the inflammatory response and extracellular matrix degradation in lipopolysaccharide-stimulated human nucleus pulposus cells by targeting activin a receptor type I. Bioengineered 2022; 13:6396-6408. [PMID: 35236255 PMCID: PMC8973860 DOI: 10.1080/21655979.2022.2042987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study aimed to investigate the role played by microRNA (miR)-137 in intervertebral disc degeneration via targeting activin A receptor type I (ACVR1) and the underlying mechanism. Human nucleus pulposus cells were exposed to 10 ng/mL lipopolysaccharide (LPS) to establish an in vitro intervertebral disc degeneration model. ACVR1, extracellular matrix degradation-associated genes (aggrecan and collagen type II) and miR-137 levels were assessed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting assays. The MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay and flow cytometry were used to evaluate nucleus pulposus cell viability and apoptosis. Additionally, the association between miR-137 and ACVR1 was predicted and verified using bioinformatic software and dual-luciferase reporter assays. Furthermore, the secretion of inflammatory factors was analyzed via enzyme linked immunosorbent assay (ELISA). Our results confirmed that ACVR1 was upregulated in lipopolysaccharide-treated nucleus pulposus cells. Lipopolysaccharide suppressed cell viability, promoted apoptosis, enhanced the secretion of inflammatory factors, and reduced aggrecan and collagen type II expression. However, these results were reversed upon ACVR1 silencing. Our data revealed that ACVR1 directly targets miR-137 and is negatively regulated by miR-137 in nucleus pulposus cells. Additionally, the miR-137 mimic promoted cell growth, reduced cell apoptosis, reduced the secretion of inflammatory cytokines, and accelerated extracellular matrix accumulation in lipopolysaccharide-exposed nucleus pulposus cells. However, ACVR1 plasmid abolished the functions of the miR-137 mimic in lipopolysaccharide-exposed nucleus pulposus cells. Together, these findings indicate that miR-137 suppresses the inflammatory response and extracellular matrix degradation in lipopolysaccharide-treated nucleus pulposus cells by targeting ACVR1.
Collapse
Affiliation(s)
- Bin Yu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziqi Zhu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Beiduo Shen
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiawei Lu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kai Guo
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weidong Zhao
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Cao J, Jiang M, Ren H, Xu K. MicroRNA‑200c‑3p suppresses intervertebral disc degeneration by targeting RAP2C/ERK signaling. Mol Med Rep 2021; 24:865. [PMID: 34676879 PMCID: PMC8554383 DOI: 10.3892/mmr.2021.12505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/18/2021] [Indexed: 02/03/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of lower back pain. The high morbidity associated with this disease diminishes the quality of life of those who are affected. MicroRNAs (miRs) play crucial roles in various diseases, including IDD. However, the mechanism via which miR‑200c‑3p plays a role in the development of IDD remains unknown. The present study aimed to investigate the effect of miR‑200c‑3p on the progression of IDD and the underlying mechanism. The expression level of miR‑200c‑3p was evaluated in intervertebral disc tissues from patients with IDD. To construct the IDD cell model, the nucleus pulposus (NP) cells were treated with lipopolysaccharide (LPS) 24 h following transfection with miR‑200c‑3p mimic or inhibitor. A luciferase activity assay was performed, while reverse transcription‑quantitative PCR and western blotting were conducted to determine the RNA and protein expression levels, respectively. The expression level of miR‑200c‑3p in the intervertebral disc tissues of patients with IDD was lower than that of normal subjects. LPS treatment reduced the expression level of miR‑200c‑3p in NP cells. Moreover, miR‑200c‑3p mimic inhibited LPS‑induced NP cell apoptosis. It was found that miR‑200c‑3p attenuated inflammatory cytokine levels and extracellular matrix (ECM) degradation in NP cells. Furthermore, miR‑200c‑3p targeted Ras‑related protein 2C (RAP2C) in NP cells. RAP2C promoted apoptosis, inflammatory cytokine levels and ECM degradation by activating ERK signaling. Knockdown of RAP2C and inhibition of ERK signaling by SCH772984 partially reversed the proinflammatory effect of the miR‑200c‑3p inhibitor on LPS‑treated NP cells. Thus, miR‑200c‑3p inhibits NP cell apoptosis, inflammatory cytokine levels and ECM degradation in IDD by targeting RAP2C/ERK signaling.
Collapse
Affiliation(s)
- Jianping Cao
- Department of Anesthesiology, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| | - Meng Jiang
- Department of Orthopedics, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| | - Huafeng Ren
- Department of Functional Inspection, Qingdao Haici Medical Treatment Group, Qingdao, Shandong 266033, P.R. China
| | - Kai Xu
- Department of Orthopedics, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
11
|
The Regulatory Effect of MicroRNA-101-3p on Disc Degeneration by the STC1/VEGF/MAPK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1073458. [PMID: 34650661 PMCID: PMC8510813 DOI: 10.1155/2021/1073458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 02/05/2023]
Abstract
Aims. Accumulating evidence reported that the microRNA (miRNA) took an important role in intervertebral disc degeneration (IDD). In this study, we revealed a novel miRNA regulatory mechanism in IDD. Main Methods. The miRNA microarray analyses of human degenerated and normal disc samples were employed to screen out the target miRNA. In vitro and in vivo experiments were conducted to verify the regulatory effect of miR-101-3p. Key Findings. The expression level of miR-101-3p was significantly decreased in the degenerated disc samples which were confirmed by qRT-PCR. Moreover, the miR-101-3p expression level was changed dynamically according to the disc degeneration grade. Upregulation of miR-101-3p expression level inhibited cell apoptosis. Furthermore, stanniocalcin-1 (STC1) was selected to be the target gene of miR-101-3p according to the bioinformatic algorithms. Mechanically, upregulation of miR-101-3p significantly decreased the expression of STC1, vascular endothelial growth factor (VEGF), and MAPK pathway expression levels. Therapeutically, in vivo experiment on IDD rat model illustrated that agomir-101-3p could effectively suspend IDD. Significance. Our findings demonstrated that miR-101-3p alleviated IDD process through the STC1/VEGF/MAPK pathway.
Collapse
|
12
|
Li S, Liu J, Chen L. MiR-330-5p inhibits intervertebral disk degeneration via targeting CILP. J Orthop Surg Res 2021; 16:440. [PMID: 34233701 PMCID: PMC8261929 DOI: 10.1186/s13018-021-02582-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/25/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Intervertebral disk degeneration (IDD) is caused by nucleus pulposus (NP) degeneration and extracellular matrix (ECM) remodeling and cartilage intermediate layer protein (CILP) expression has been confirmed to be increased in IDD. This study is mainly conducted to clarify the mechanism of CILP in the NP cell degeneration and ECM remodeling in IDD. METHODS CILP expression in the degenerated NP tissues and cells is quantified by quantitative real-time PCR and western blot. CILP function is assessed by cell cycle assay, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry, β-galactosidase staining, and the detection of ECM-related molecules aggrecan, collagen type I, collagen type II, MMP-3, and MMP-9 expression is accomplished by qRT-PCR. The potential mechanism is authenticated by dual-luciferase reporter gene assay. RESULTS CILP was increased in the degenerated NP tissues and cells, and the knockdown of CILP promoted the NP cell cycle, increased cell activity, and repressed cell apoptosis and repressed cell senescence and ECM production. Moreover, miR-330-5p targeted the CILP 3'-untranslated region, and miR-330-5p negatively regulated CILP expression. Moreover, the overexpression of miR-330-5p repressed NP cell degeneration and ECM remodeling to relieve IDD by downregulating CILP. CONCLUSION MiR-330-5p represses NP cell degeneration and ECM remodeling to ameliorate IDD by downregulating CILP.
Collapse
Affiliation(s)
- Shangzhi Li
- Department of Orthopaedics, Tianjin Hospital, Tianjin, 300211, People's Republic of China
| | - Jinwei Liu
- Department of Orthopaedics, Tianjin Hospital, Tianjin, 300211, People's Republic of China
| | - Liang Chen
- Department of Orthopaedic Surgery, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Xu J, Qian X, Ding R. MiR-24-3p attenuates IL-1β-induced chondrocyte injury associated with osteoarthritis by targeting BCL2L12. J Orthop Surg Res 2021; 16:371. [PMID: 34116684 PMCID: PMC8194242 DOI: 10.1186/s13018-021-02378-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/22/2021] [Indexed: 12/26/2022] Open
Abstract
Background MiR-24-3p has been reported to be involved in an osteoarthritis (OA)-resembling environment. However, the functional role and underlying mechanism of miR-24-3p in chondrocyte injury associated with OA remains unknown. Methods The expression of miR-24-3p was determined using reverse transcription quantitative PCR analysis in OA cases and control patients, as well as IL-1β-stimulated chondrocyte cell line CHON-001. The cell viability was analyzed by CCK-8 assay. Apoptosis status was assessed by caspase-3 activity detection. The pro-inflammatory cytokines (TNF-α and IL-18) were determined using ELISA assay. The association between miR-24-3p and B cell leukemia 2-like 12 (BCL2L12) was confirmed by luciferase reporter assay. Results We first observed that miR-24-3p expression level was lower in the OA cases than in the control patients and IL-1β decreased the expression of miR-24-3p in the chondrocyte CHON-001. Functionally, overexpression of miR-24-3p significantly attenuated IL-1β-induced chondrocyte injury, as reflected by increased cell viability, decreased caspase-3 activity, and pro-inflammatory cytokines (TNF-α and IL-18). Western blot analysis showed that overexpression of miR-24-3p weakened IL-1β-induced cartilage degradation, as reflected by reduction of MMP13 (Matrix Metalloproteinase-13) and ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs-5) protein expression, as well as markedly elevation of COL2A1 (collagen type II). Importantly, BCL2L12 was demonstrated to be a target of miR-24-3p. BCL2L12 knockdown imitated, while overexpression significantly abrogated the protective effects of miR-24-3p against IL-1β-induced chondrocyte injury. Conclusions In conclusion, our work provides important insight into targeting miR-24-3p/BCL2L12 axis in OA therapy.
Collapse
Affiliation(s)
- Jin Xu
- Department of Orthopedics, Baoshan District Shanghai Integrated Traditional Chinese and Western Medicine Hospital, No. 181 Youyi Road, Baoshan District, Shanghai, 201999, China
| | - Xiaozhong Qian
- Department of Orthopedics, Shuguang Hospital Baoshan Branch, Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China.,Department of Orthopedics, Community Health Center of Songnan Town, Baoshan District, Shanghai, 200441, China
| | - Ren Ding
- Department of Orthopedics, Baoshan District Shanghai Integrated Traditional Chinese and Western Medicine Hospital, No. 181 Youyi Road, Baoshan District, Shanghai, 201999, China.
| |
Collapse
|
14
|
He J, Yang J, Shen T, He J. Overexpression of long non-coding RNA XIST promotes IL-1β-induced degeneration of nucleus pulposus cells through targeting miR-499a-5p. Mol Cell Probes 2021; 57:101711. [PMID: 33722663 DOI: 10.1016/j.mcp.2021.101711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/07/2021] [Accepted: 03/08/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Long non-coding RNA X-interactive specific transcript (XIST) is implicated in many diseases. However, its role and interaction with microRNA (miR)-499a-5p in intervertebral disc degeneration (IDD) remained unclear. METHODS Nucleus pulposus (NP) tissue samples were collected and nucleus pulposus cells (NPCs) were isolated for Interleukin-1β (IL-1β) treatment and identification. XIST and miR-499a-5p expressions in the tissue were measured with quantitative real-time polymerase chain reaction (qRT-PCR). After IL-1β treatment, NPC apoptosis was detected by flow cytometry. The potential binding sites of XIST and miR-499a-5p were predicted by starBase and confirmed by dual-luciferase reporter assay. Relative expressions of tissue inhibitor of metalloproteinases-3 (TIMP-3), Matrix metalloproteinases-3 (MMP-3), MMP-13, Collagen II, Aggrecan and apoptosis-related proteins (Bcl-2 associated X protein, Bax; B-cell lymphoma 2, Bcl-2; cleaved caspase-3) were measured by qRT-PCR and Western blot as needed. RESULTS XIST expression was upregulated in the NP tissues of patients with IDD, and IL-1β treatment resulted in a degradation of NPCs. Overexpressed XIST promoted the effects of IL-1β on increasing NPC apoptosis and expressions of XIST, MMP-3, MMP-13, Bax and Cleaved caspase-3, but down-regulated TIMP-3, Collagen II, Aggrecan and Bcl-2 expressions. Silencing XIST, however, showed the opposite effects to its overexpression. MiR-499a-5p expression was downregulated in NP tissues of IDD patients and could bind with XIST, while its upregulation reversed the effects of overexpressed XIST in the IL-1β-treated NPCs. CONCLUSION Overexpressed XIST caused NPC degeneration through promoting apoptosis and extracellular matrix degradation of IL-1β-treated NPCs through targeting miR-499a-5p, and therefore can serve as a potential treatment for IDD.
Collapse
Affiliation(s)
- Jun He
- Department of Orthopedics, Zhejiang Hospital, Xihu District, Hangzhou City, Zhejiang Province, 310030, China
| | - Jing Yang
- Department of Cardiology, Zhejiang Hospital, Xihu District, Hangzhou, Zhejiang, 310013, China
| | - Tulan Shen
- Outpatient Department, Zhejiang Hospital, Xihu District, Hangzhou City, Zhejiang Province, 310030, China
| | - Jian He
- Department of Orthopedics, Zhejiang Hospital, Xihu District, Hangzhou City, Zhejiang Province, 310030, China.
| |
Collapse
|
15
|
Lan T, Shiyu-Hu, Shen Z, Yan B, Chen J. New insights into the interplay between miRNAs and autophagy in the aging of intervertebral discs. Ageing Res Rev 2021; 65:101227. [PMID: 33238206 DOI: 10.1016/j.arr.2020.101227] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Intervertebral disc degeneration (IDD) has been widely known as a main contributor to low back pain which has a negative socioeconomic impact worldwide. However, the underlying mechanism remains unclear. MicroRNAs (miRNAs) are a class of small noncoding RNAs that post-transcriptionally regulate gene expression and serve key roles in the ageing process of intervertebral disc. Autophagy is an evolutionarily conserved process that maintains cellular homeostasis through recycling of nutrients and degradation of damaged or aged cytoplasmic organelles. Autophagy has been proposed as a "double-edged sword" and autophagy dysfunction of IVD cells is considered as a crucial reason of IDD. A rapidly growing number of recent studies demonstrate that both miRNAs and autophagy play important roles in the progression of IDD. Furthermore, accumulated research has indicated that miRNAs target autophagy-related genes and influence the onset and development of IDD. Hence, this review focuses mainly on the current findings regarding the correlations between miRNA, autophagy, and IDD and provides new insights into the role of miRNA-autophagy pathway involved in IDD pathophysiology.
Collapse
|
16
|
MSC-Derived Exosomes Protect Vertebral Endplate Chondrocytes against Apoptosis and Calcification via the miR-31-5p/ATF6 Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:601-614. [PMID: 33230460 PMCID: PMC7569190 DOI: 10.1016/j.omtn.2020.09.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Apoptosis and calcification of endplate chondrocytes (EPCs) can exacerbate intervertebral disc degeneration (IVDD). Mesenchymal stem cell-derived exosomes (MSC-exosomes) are reported to have the therapeutic potential in IVDD. However, the effects and related mechanisms of MSC-exosomes on EPCs are still unclear. We aimed to investigate the role of MSC-exosomes on EPCs with a tert-butyl hydroperoxide (TBHP)-induced oxidative stress cell model and IVDD rat model. First, our study revealed that TBHP could result in apoptosis and calcification of EPCs, and MSC-exosomes could inhibit the detrimental effects. We also found that these protective effects were inhibited after miroRNA (miR)-31-5p levels were downregulated in MSC-exosomes. The target relationship between miR-31-5p and ATF6 was tested. miR-31-5p negatively regulated ATF6-related endoplasmic reticulum (ER) stress and inhibited apoptosis and calcification in EPCs. Our in vivo experiments indicated that sub-endplate injection of MSC-exosomes can ameliorate IVDD; however, after miR-31-5p levels were downregulated in MSC-exosomes, these protective effects were inhibited. In conclusion, MSC-exosomes reduced apoptosis and calcification in EPCs, and the underlying mechanism may be related to miR-31-5p/ATF6/ER stress pathway regulation.
Collapse
|