1
|
Gonçalves TAF, Lima VS, de Almeida AJPO, de Arruda AV, Veras ACMF, Lima TT, Soares EMC, Santos ACD, Vasconcelos MECD, de Almeida Feitosa MS, Veras RC, de Medeiros IA. Carvacrol Improves Vascular Function in Hypertensive Animals by Modulating Endothelial Progenitor Cells. Nutrients 2023; 15:3032. [PMID: 37447358 DOI: 10.3390/nu15133032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Carvacrol, a phenolic monoterpene, has diverse biological activities, highlighting its antioxidant and antihypertensive capacity. However, there is little evidence demonstrating its influence on vascular regeneration. Therefore, we evaluated the modulation of carvacrol on endothelial repair induced by endothelial progenitor cells (EPC) in hypertension. Twelve-week-old spontaneously hypertensive rats (SHR) were treated with a vehicle, carvacrol (50 or 100 mg/kg/day), or resveratrol (10 mg/kg/day) orally for four weeks. Wistar Kyoto (WKY) rats were used as the normotensive controls. Their systolic blood pressure (SBP) was measured weekly through the tail cuff. The EPCs were isolated from the bone marrow and peripherical circulation and were quantified by flow cytometry. The functionality of the EPC was evaluated after cultivation through the quantification of colony-forming units (CFU), evaluation of eNOS, intracellular detection of reactive oxygen species (ROS), and evaluation of senescence. The superior mesenteric artery was isolated to evaluate the quantification of ROS, CD34, and CD31. Treatment with carvacrol induced EPC migration, increased CFU formation and eNOS expression and activity, and reduced ROS and senescence. In addition, carvacrol reduced vascular ROS and increased CD31 and CD34 expression. This study showed that treatment with carvacrol improved the functionality of EPC, contributing to the reduction of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Viviane Silva Lima
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| | | | - Alinne Villar de Arruda
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| | | | - Thaís Trajano Lima
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| | | | | | | | | | - Robson Cavalcante Veras
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| | - Isac Almeida de Medeiros
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58059-900, PB, Brazil
| |
Collapse
|
2
|
Wolhuter K, Kong SM, Stanley CP, Kovacic JC. The Role of Oxidants in Percutaneous Coronary Intervention-Induced Endothelial Dysfunction: Can We Harness Redox Signaling to Improve Clinical Outcomes? Antioxid Redox Signal 2023; 38:1022-1040. [PMID: 36641638 PMCID: PMC10402708 DOI: 10.1089/ars.2022.0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/16/2023]
Abstract
Significance: Coronary artery disease (CAD) is commonly treated using percutaneous coronary interventions (PCI). However, PCI with stent placement damages the endothelium, and failure to restore endothelial function may result in PCI failure with poor patient outcomes. Recent Advances: Oxidative signaling is central to maintaining endothelial function. Potentiation of oxidant production, as observed post-PCI, results in endothelial dysfunction (ED). This review delves into our current understanding of the physiological role that endothelial-derived oxidants play within the vasculature and the effects of altered redox signaling during dysfunction. We then examine the impact of PCI and intracoronary stent placement on oxidant production in the endothelium, which can culminate in stent failure. Finally, we explore how recent advances in PCI and stent technologies aim to mitigate PCI-induced oxidative damage and improve clinical outcomes. Critical Issues: Current PCI technologies exacerbate cellular oxidant levels, driving ED. If left uncontrolled, oxidative signaling leads to increased intravascular inflammation, restenosis, and neoatherosclerosis. Future Directions: Through the development of novel biomaterials and therapeutics, we can limit PCI-induced oxidant production, allowing for the restoration of a healthy endothelium and preventing CAD recurrence.
Collapse
Affiliation(s)
- Kathryn Wolhuter
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Stephanie M.Y. Kong
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | | | - Jason C. Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Al-Azab M, Idiiatullina E, Safi M, Hezam K. Enhancers of mesenchymal stem cell stemness and therapeutic potency. Biomed Pharmacother 2023; 162:114356. [PMID: 37040673 DOI: 10.1016/j.biopha.2023.114356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 04/13/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that can differentiate into a range of cell types, including osteoblasts, chondrocytes, myocytes, and adipocytes. Multiple preclinical investigations and clinical trials employed enhanced MSCs-dependent therapies in treatment of inflammatory and degenerative diseases. They have demonstrated considerable and prospective therapeutic potentials even though the large-scale use remains a problem. Several strategies have been used to improve the therapeutic potency of MSCs in cellular therapy. Treatment of MSCs utilizing pharmaceutical compounds, cytokines, growth factors, hormones, and vitamins have shown potential outcomes in boosting MSCs' stemness. In this study, we reviewed the current advances in enhancing techniques that attempt to promote MSCs' therapeutic effectiveness in cellular therapy and stemness in vivo with potential mechanisms and applications.
Collapse
Affiliation(s)
- Mahmoud Al-Azab
- Department of Immunology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China.
| | - Elina Idiiatullina
- Department of Immunology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China; Department of Therapy and Nursing, Bashkir State Medical University, Ufa 450008, Russia
| | - Mohammed Safi
- Department of Respiratory Diseases, Shandong Second Provincial General Hospital, Shandong University, Shandong, China
| | - Kamal Hezam
- Nankai University School of Medicine, Tianjin 300071, China; Department of Microbiology, Faculty of Applied Science, Taiz University, 6350 Taiz, Yemen
| |
Collapse
|
4
|
Ebrahimi-Nozari T, Imani R, Haghbin-Nazarpak M, Nouri A. Multimodal effects of asymmetric coating of coronary stents by electrospinning and electrophoretic deposition. Int J Pharm 2022; 630:122437. [PMID: 36435505 DOI: 10.1016/j.ijpharm.2022.122437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Drug-eluting stents (DESs) are drug-coated vascular implants that inhibit smooth muscle cell proliferation and limit in-stent re-stenosis. However, traditional DESs release a single drug into the blood and cannot cope with complex mechanisms in atherosclerosis and body responses. The present study aimed to develop a novel multimodal stent by fabricating asymmetric coating with electrophoretic deposition and electrospinning. Herein, we use heparin-loaded alginate (Hep/Alg) and atorvastatin calcium-loaded polyurethane (AtvCa/PU) coatings on the stent luminal and abluminal surfaces, respectively. Scanning electron microscopy (SEM) micrographs showed that the alginate coatings had uniformity and thin thickness. Meanwhile, the PU fibers were formed without beads, with an acceptable diameter and suitable mechanical properties. PU nanofiber revealed minimal degradation in a 1-month study. The release of AtvCa and Hep continued for 8 days without a significant initial burst release. None of the stent coatings were cytotoxic or hemolytic, and PU nanofibers supported the survival of human umbilical endothelial cells (HUVEC) with high adhesion and flattened morphologies. The results indicate that electrophoretic deposition and electrospinning have significant potential for achieving asymmetric coating on stents and a promising approach for dual drug release for multimodal effects in vascular stent applications.
Collapse
Affiliation(s)
- Tahoura Ebrahimi-Nozari
- Biomedical Engineering Department, Amirkabir University of Technology, (Tehran Polytechnic), Tehran, Iran
| | - Rana Imani
- Biomedical Engineering Department, Amirkabir University of Technology, (Tehran Polytechnic), Tehran, Iran.
| | - Masoumeh Haghbin-Nazarpak
- New Technologies Research Center (NTRC), Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Alireza Nouri
- Biomedical Engineering Department, Amirkabir University of Technology, (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
5
|
Clare J, Ganly J, Bursill CA, Sumer H, Kingshott P, de Haan JB. The Mechanisms of Restenosis and Relevance to Next Generation Stent Design. Biomolecules 2022; 12:biom12030430. [PMID: 35327622 PMCID: PMC8945897 DOI: 10.3390/biom12030430] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Stents are lifesaving mechanical devices that re-establish essential blood flow to the coronary circulation after significant vessel occlusion due to coronary vessel disease or thrombolytic blockade. Improvements in stent surface engineering over the last 20 years have seen significant reductions in complications arising due to restenosis and thrombosis. However, under certain conditions such as diabetes mellitus (DM), the incidence of stent-mediated complications remains 2–4-fold higher than seen in non-diabetic patients. The stents with the largest market share are designed to target the mechanisms behind neointimal hyperplasia (NIH) through anti-proliferative drugs that prevent the formation of a neointima by halting the cell cycle of vascular smooth muscle cells (VSMCs). Thrombosis is treated through dual anti-platelet therapy (DAPT), which is the continual use of aspirin and a P2Y12 inhibitor for 6–12 months. While the most common stents currently in use are reasonably effective at treating these complications, there is still significant room for improvement. Recently, inflammation and redox stress have been identified as major contributing factors that increase the risk of stent-related complications following percutaneous coronary intervention (PCI). The aim of this review is to examine the mechanisms behind inflammation and redox stress through the lens of PCI and its complications and to establish whether tailored targeting of these key mechanistic pathways offers improved outcomes for patients, particularly those where stent placement remains vulnerable to complications. In summary, our review highlights the most recent and promising research being undertaken in understanding the mechanisms of redox biology and inflammation in the context of stent design. We emphasize the benefits of a targeted mechanistic approach to decrease all-cause mortality, even in patients with diabetes.
Collapse
Affiliation(s)
- Jessie Clare
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Justin Ganly
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Christina A. Bursill
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia;
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5000, Australia
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- Correspondence: (H.S.); (J.B.d.H.)
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Judy B. de Haan
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Correspondence: (H.S.); (J.B.d.H.)
| |
Collapse
|