1
|
Wang L, Mi LY, Chen XY, He HW, Long Y. Effects of different antiplatelet therapy drugs on platelet activation and platelet-leukocyte aggregate formation in early septic ARDS. BMC Pharmacol Toxicol 2025; 26:4. [PMID: 39762913 PMCID: PMC11705853 DOI: 10.1186/s40360-024-00806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND In patients with sepsis, platelets are activated and adhere to neutrophils, forming platelet-leukocyte aggregates (PLAs) that lead to the development of MODS. ARDS is one of the main manifestations of septic MODS. We designed this study to explore the effects of different anti-plate therapy drugs on platelet activation and platelet-leukocyte aggregate (PLA) formation in the early stage of septic ARDS. METHODS Sixty adult male SD rats were randomly divided into: Control group; ARDS group, ARDS + aspirin group, ARDS + clopidogrel group and ARDS + tirofiban group. ARDS was performed via instill lipopolysaccharide (LPS) intratracheally at a dose of 5 mg/kg. Aspirin or clopidogrel were given by gavage immediately after modeling. Tirofiban were given by intraperitoneal injection immediately after modeling. Rats in every group were euthanized by rapid decapitation 6 h after modeling. Platelet activation and PLA were assessed using flow cytometry and immunofluorescence staining. Histology of lung was performed by hematoxylin and eosin staining. RESULTS Aspirin, clopidogrel and tirofiban decreased CRP, IL-1 and TNF-α significantly in septic ARDS (P < 0.05). Aspirin, clopidogrel and tirofiban decreased platelet function and ratio of wet/dry significantly in septic ARDS (P < 0.05). Aspirin, clopidogrel and tirofiban increased PaO2 significantly in septic ARDS (P < 0.05). Platelet activation and PLA in the ARDS + aspirin group, ARDS + clopidogrel group and ARDS + tirofiban group decreased significantly compared to the ARDS group (P < 0.05). At 6 h after ARDS operation, obvious histological damage was observed in the lungs. All of these histological changes were quantitatively evaluated using injury scores. Aspirin, clopidogrel and tirofiban reduced the histological damages in ARDS group (P < 0.05). CONCLUSIONS Aspirin, clopidogrel and tirofiban alleviated the inflammatory response and pulmonary edema, reduced platelet function, and alleviated hypoxemia in early septic ARDS. Aspirin, clopidogrel and tirofiban reduced platelet activation and PLA formation in early septic ARDS. Aspirin, clopidogrel and tirofiban ultimately alleviated lung injury in early septic ARDS.
Collapse
Affiliation(s)
- Lu Wang
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Liang-Yu Mi
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiang-Yu Chen
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huai-Wu He
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
2
|
Zhou L, Sun J, Gu L, Wang S, Yang T, Wei T, Shan T, Wang H, Wang L. Programmed Cell Death: Complex Regulatory Networks in Cardiovascular Disease. Front Cell Dev Biol 2021; 9:794879. [PMID: 34901035 PMCID: PMC8661013 DOI: 10.3389/fcell.2021.794879] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Abnormalities in programmed cell death (PCD) signaling cascades can be observed in the development and progression of various cardiovascular diseases, such as apoptosis, necrosis, pyroptosis, ferroptosis, and cell death associated with autophagy. Aberrant activation of PCD pathways is a common feature leading to excessive cardiac remodeling and heart failure, involved in the pathogenesis of various cardiovascular diseases. Conversely, timely activation of PCD remodels cardiac structure and function after injury in a spatially or temporally restricted manner and corrects cardiac development similarly. As many cardiovascular diseases exhibit abnormalities in PCD pathways, drugs that can inhibit or modulate PCD may be critical in future therapeutic strategies. In this review, we briefly describe the process of various types of PCD and their roles in the occurrence and development of cardiovascular diseases. We also discuss the interplay between different cell death signaling cascades and summarize pharmaceutical agents targeting key players in cell death signaling pathways that have progressed to clinical trials. Ultimately a better understanding of PCD involved in cardiovascular diseases may lead to new avenues for therapy.
Collapse
Affiliation(s)
- Liuhua Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiateng Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingfeng Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sibo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tongtong Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianwen Wei
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tiankai Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Hjortbak MV, Olesen KKW, Seefeldt JM, Lassen TR, Jensen RV, Perkins A, Dodd M, Clayton T, Yellon D, Hausenloy DJ, Bøtker HE. Translation of experimental cardioprotective capability of P2Y 12 inhibitors into clinical outcome in patients with ST-elevation myocardial infarction. Basic Res Cardiol 2021; 116:36. [PMID: 34037861 DOI: 10.1007/s00395-021-00870-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/13/2021] [Indexed: 11/25/2022]
Abstract
We studied the translational cardioprotective potential of P2Y12 inhibitors against acute myocardial ischemia/reperfusion injury (IRI) in an animal model of acute myocardial infarction and in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). P2Y12 inhibitors may have pleiotropic effects to induce cardioprotection against acute myocardial IRI beyond their inhibitory effects on platelet aggregation. We compared the cardioprotective effects of clopidogrel, prasugrel, and ticagrelor on infarct size in an in vivo rat model of acute myocardial IRI, and investigated the effects of the P2Y12 inhibitors on enzymatic infarct size (48-h area-under-the-curve (AUC) troponin T release) and clinical outcomes in a retrospective study of STEMI patients from the CONDI-2/ERIC-PPCI trial using propensity score analyses. Loading with ticagrelor in rats reduced infarct size after acute myocardial IRI compared to controls (37 ± 11% vs 52 ± 8%, p < 0.01), whereas clopidogrel and prasugrel did not (50 ± 11%, p > 0.99 and 49 ± 9%, p > 0.99, respectively). Correspondingly, troponin release was reduced in STEMI patients treated with ticagrelor compared to clopidogrel (adjusted 48-h AUC ratio: 0.67, 95% CI 0.47-0.94). Compared to clopidogrel, the composite endpoint of cardiac death or hospitalization for heart failure within 12 months was reduced in STEMI patients loaded with ticagrelor (HR 0.63; 95% CI 0.42-0.94) but not prasugrel (HR 0.84, 95% CI 0.43-1.63), prior to PPCI. Major adverse cardiovascular events did not differ between clopidogrel, ticagrelor, or prasugrel. The cardioprotective effects of ticagrelor in reducing infarct size may contribute to the clinical benefit observed in STEMI patients undergoing PPCI.
Collapse
Affiliation(s)
- Marie V Hjortbak
- Department of Clinical Medicine, Cardiology, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
| | - Kevin K W Olesen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob M Seefeldt
- Department of Clinical Medicine, Cardiology, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Thomas R Lassen
- Department of Clinical Medicine, Cardiology, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Rebekka V Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Alexander Perkins
- London School of Hygiene and Tropical Medicine, Clinical Trials Unit, London, UK
| | - Matthew Dodd
- London School of Hygiene and Tropical Medicine, Clinical Trials Unit, London, UK
| | - Tim Clayton
- London School of Hygiene and Tropical Medicine, Clinical Trials Unit, London, UK
| | - Derek Yellon
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Hearts Centre, Singapore Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Singapore, Singapore
| | - Hans Erik Bøtker
- Department of Clinical Medicine, Cardiology, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.,Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|