1
|
Liu Z, Bai Z, Chen X, Chen Y, Chen Z, Wang L, He Y, Guo Y. Advances and applications of biosensors in pulmonary hypertension. Respir Res 2025; 26:147. [PMID: 40234824 PMCID: PMC11998464 DOI: 10.1186/s12931-025-03221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/05/2025] [Indexed: 04/17/2025] Open
Abstract
Pulmonary hypertension (PH) is a serious disease characterized by elevated pulmonary artery pressure, with its prevalence and incidence continuously increasing, posing a threat to the lives of many patients worldwide. Due to the complex etiology of PH and the lack of specificity in clinical manifestations, there is currently a lack of effective and specific methods for early diagnosis in clinical practice. Biosensors hold significant promise for the early detection, therapeutic monitoring, prognostic evaluation, and personalized treatment of PH, owing to their rapid, sensitive, and highly selective characteristics. The rapid development of various types of biosensors, such as electrochemical biosensors, optical biosensors, microfluidic biosensors, and wireless biosensors, combined with the use of nanomaterials, makes the rapid and accurate detection of PH-related biomarkers possible. Despite the broad application prospects of biosensors in the field of PH, challenges remain in terms of sensitivity, selectivity, stability, and regulation. This article reviews the main pathophysiological mechanisms and commonly used biomarkers of PH, the types and principles of biosensors, and summarizes the progress of biosensors in PH research as well as the current challenges, in order to promote further in-depth research and the development of biosensor technology, thereby improving the diagnosis and treatment effects of PH. Clinical trial number: Not applicable.
Collapse
Affiliation(s)
- Zhi Liu
- Graduate Collaborative Training Base of Zhuzhou Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116 South Changjiang Road, Zhuzhou, 412007, Hunan, China
| | - Zhuojun Bai
- Department of Laboratory, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116 South Changjiang Road, Zhuzhou, 412007, Hunan, China
| | - Xiang Chen
- Department of Laboratory, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116 South Changjiang Road, Zhuzhou, 412007, Hunan, China
| | - Yajie Chen
- Graduate Collaborative Training Base of Zhuzhou Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhu Chen
- Graduate Collaborative Training Base of Zhuzhou Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Li Wang
- Department of Laboratory, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116 South Changjiang Road, Zhuzhou, 412007, Hunan, China.
| | - Yi He
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116 South Changjiang Road, Zhuzhou, 412007, Hunan, China.
| | - Yuan Guo
- Graduate Collaborative Training Base of Zhuzhou Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116 South Changjiang Road, Zhuzhou, 412007, Hunan, China.
| |
Collapse
|
2
|
Wang X, Wang Y, Yuan T, Wang H, Zeng Z, Tian L, Cui L, Guo J, Chen Y. Network pharmacology provides new insights into the mechanism of traditional Chinese medicine and natural products used to treat pulmonary hypertension. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156062. [PMID: 39305743 DOI: 10.1016/j.phymed.2024.156062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/31/2024] [Accepted: 09/14/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a rare cardiovascular disease with high morbidity and mortality rates. It is characterized by increased pulmonary arterial pressure. Current research into relevant therapeutic drugs and targets for PH, however, is insufficient still. Traditional Chinese medicine (TCM) and natural products have a long history as therapeutics for PH. Network pharmacology is an approach that integrates drug-target interactions and signaling pathways based on biomarkers information obtained from drug and disease databases. The concept of network pharmacology shows many similarities with the TCM philosophy. Network pharmacology help elucidate the mechanisms of TCM in PH. This review presents representative applications of network pharmacology in the study of the mechanisms of TCM and natural products for the treatment of PH. METHODS In this review, we used ("pulmonary hypertension" OR "pulmonary arterial hypertension" OR "chronic thromboembolic pulmonary hypertension") AND ("network pharmacology" OR "systematic pharmacology") as keywords to search for reports from PubMed, Web of Science, and Google Scholar databases from ten years ago. The studies were screened and those chosen are summarized here. The TCM and natural products inPH and their corresponding targets and signaling pathways are described. Additionally, we discuss the application of network pharmacology in the study of TCM in PH to provide insights for future application strategies. RESULTS Network pharmacology have shown that AKT-related pathways, HIF-1 signaling pathway, MAPK signaling pathway, TGF-β-Smad pathway, cell cycle-related pathways and inflammation-related pathways are the main signaling pathways enriched in the PH targets of TCM. Reservatrol, curcumol, genistin, formononetin, wogonin, luteolin, baicalein, berberine, triptolide and tanshinone llA are active ingredients specific for PH treatment. A number of databases and tools specific for the treatment of PH are used in network pharmacology and natural product research. CONCLUSION Through the reasonable combination of molecular docking, omics technology and bioinformatics technology, the mechanism of multi-targets can be explained more comprehensively. Analyzing the complex mechanism of TCM from the clinical perspective may be a potential development trend of network pharmacology. Combination of predicted targets and traditional pharmacology improves efficiency of drug development.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yichen Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongjuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zuomei Zeng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Leiyu Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lidan Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yucai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
3
|
Liu X, Liu B, Luo X, Liu Z, Tan X, Zhu K, Ouyang F. Research progress on the role of p53 in pulmonary arterial hypertension. Respir Investig 2024; 62:541-550. [PMID: 38643536 DOI: 10.1016/j.resinv.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
PURPOSE OF REVIEW Pulmonary arterial hypertension (PAH) is a devastating disease characterized by increased pulmonary vascular resistance and pulmonary arterial pressure. At present, the definitive pathology of PAH has not been elucidated and its effective treatment remains lacking. Despite PAHs having multiple pathogeneses, the cancer-like characteristics of cells have been considered the main reason for PAH progression. RECENT FINDINGS p53 protein, an important tumor suppressor, regulates a multitude of gene expressions to maintain normal cellular functions and suppress the progression of malignant tumors. Recently, p53 has been found to exert multiple biological effects on cardiovascular diseases. Since PAH shares similar metabolic features with cancer cells, the regulatory roles of p53 in PAH are mainly the induction of cell cycle, inhibition of cell proliferation, and promotion of apoptosis. SUMMARY This paper summarized the advanced findings on the molecular mechanisms and regulatory functions of p53 in PAH, aiming to reveal the potential therapeutic targets for PAH.
Collapse
Affiliation(s)
- Xiangyang Liu
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China
| | - Biao Liu
- Department of Cardiovascular Medicine, Taojiang County People's Hospital, No.328 Taohuaxi Road, Taohuajiang Town, Taojiang County, Yiyang City, 413499, Hunan, China
| | - Xin Luo
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China
| | - Zhenfang Liu
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China
| | - Xiaoli Tan
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China
| | - Ke Zhu
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China.
| | - Fan Ouyang
- Department of Cardiovascular Medicine, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, No.116 Changjiangnan Road, Tianyuan District, Zhuzhou City, 412000, Hunan, China.
| |
Collapse
|
4
|
Chen J, Li G, Sun D, Li H, Chen L. Research progress of hexokinase 2 in inflammatory-related diseases and its inhibitors. Eur J Med Chem 2024; 264:115986. [PMID: 38011767 DOI: 10.1016/j.ejmech.2023.115986] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Hexokinase 2 (HK2) is a crucial enzyme involved in glycolysis, which converts glucose into glucose-6-phosphate and plays a significant role in glucose metabolism. HK2 can mediate glycolysis, which is linked to the release of inflammatory factors. The over-expression of HK2 increases the production of pro-inflammatory cytokines, exacerbating the inflammatory reaction. Consequently, HK2 is closely linked to various inflammatory-related diseases affecting multiple systems, including the digestive, nervous, circulatory, respiratory, reproductive systems, as well as rheumatoid arthritis. HK2 is regarded as a novel therapeutic target for inflammatory-related diseases, and this article provides a comprehensive review of its roles in these conditions. Furthermore, the development of potent HK2 inhibitors has garnered significant attention in recent years. Therefore, this review also presents a summary of potential HK2 inhibitors, offering promising prospects for the treatment of inflammatory-related diseases in the future.
Collapse
Affiliation(s)
- Jinxia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guirong Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
5
|
Ding R, Sang S, Yi J, Xie H, Wang F, Dai A. G6PD is a prognostic biomarker correlated with immune infiltrates in lung adenocarcinoma and pulmonary arterial hypertension. Aging (Albany NY) 2024; 16:466-492. [PMID: 38194707 PMCID: PMC10817399 DOI: 10.18632/aging.205381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) with Pulmonary arterial hypertension (PAH) shows a poor prognosis. Detecting related genes is imperative for prognosis prediction. METHODS The gene expression profiles of LUAD and PAH were acquired from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, respectively. The co-expression modules associated with LUAD and PAH were evaluated using the Weighted Gene Co-Expression Network Analysis (WGCNA). The relationship between key gene expression with immune-cell infiltration and the tumor immune microenvironment (TIME) was evaluated. We confirmed the mRNA and protein levels in vivo and vitro. G6PD knockdown was used to conduct the colony formation assay, transwell invasion assay, and scratch wound assay of A549 cells. EDU staining and CCK8 assay were performed on G6PD knockdown HPASMCs. We identified therapeutic drug molecules and performed molecular docking between the key gene and small drug molecules. RESULTS Three major modules and 52 overlapped genes were recognized in LUAD and PAH. We identified the key gene G6PD, which was significantly upregulated in LUAD and PAH. In addition, we discovered a significant difference in infiltration for most immune cells between high- and low-G6PD expression groups. The mRNA and protein expressions of G6PD were significantly upregulated in LUAD and PAH. G6PD knockdown decreased proliferation, cloning, and migration of A549 cells and cell proliferation in HPASMCs. We screened five potential drug molecules against G6PD and targeted glutaraldehyde by molecular docking. CONCLUSIONS This study reveals that G6PD is an immune-related biomarker and a possible therapeutic target for LUAD and PAH patients.
Collapse
Affiliation(s)
- Rongzhen Ding
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
- Department of Respiratory Medicine, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Shuliu Sang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Yi
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
| | - Haiping Xie
- Department of Urinary Surgery, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Feiying Wang
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
| | - Aiguo Dai
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
- Department of Respiratory Medicine, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Geng Y, Hu Y, Zhang F, Tuo Y, Ge R, Bai Z. Mitochondria in hypoxic pulmonary hypertension, roles and the potential targets. Front Physiol 2023; 14:1239643. [PMID: 37645564 PMCID: PMC10461481 DOI: 10.3389/fphys.2023.1239643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
Mitochondria are the centrol hub for cellular energy metabolisms. They regulate fuel metabolism by oxygen levels, participate in physiological signaling pathways, and act as oxygen sensors. Once oxygen deprived, the fuel utilizations can be switched from mitochondrial oxidative phosphorylation to glycolysis for ATP production. Notably, mitochondria can also adapt to hypoxia by making various functional and phenotypes changes to meet the demanding of oxygen levels. Hypoxic pulmonary hypertension is a life-threatening disease, but its exact pathgenesis mechanism is still unclear and there is no effective treatment available until now. Ample of evidence indicated that mitochondria play key factor in the development of hypoxic pulmonary hypertension. By hypoxia-inducible factors, multiple cells sense and transmit hypoxia signals, which then control the expression of various metabolic genes. This activation of hypoxia-inducible factors considered associations with crosstalk between hypoxia and altered mitochondrial metabolism, which plays an important role in the development of hypoxic pulmonary hypertension. Here, we review the molecular mechanisms of how hypoxia affects mitochondrial function, including mitochondrial biosynthesis, reactive oxygen homeostasis, and mitochondrial dynamics, to explore the potential of improving mitochondrial function as a strategy for treating hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Yumei Geng
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Yu Hu
- Department of Pharmacy, Qinghai Provincial Traffic Hospital, Xining, China
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Yajun Tuo
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Rili Ge
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Zhenzhong Bai
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|
7
|
Employing Molecular Docking Calculations for the Design of Alkyl (2-Alcoxy-2-Hydroxypropanoyl)-L-Tryptophanate Derivatives as Potential Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1). REACTIONS 2023. [DOI: 10.3390/reactions4010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this paper, we presented the design by computational tools of novel alkyl (2-alcoxy-2-hydroxypropanoyl)-L-tryptophanate derivatives, which can be potential inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). The molecular structure optimization of a group of 36 compounds was performed employing DFT-B3LYP calculations at the level 6-311G(d,p). Then, molecular docking calculations were performed using Autodock tools software, employing the Lamarckian genetic algorithm (LGA). Four parameters (binding, intermolecular and Van Der Waals hydrogen bonding desolvation energies, and HOMO-LUMO gap) were used to evaluate the potential as 11β-HSD1 inhibitors, which nominate L-tryptophan derivatives as the most promissory molecules. Finally, these molecules were obtained starting from the amino acid and pyruvic acid in a convergent methodology with moderate to low yields.
Collapse
|
8
|
Chen YJ, Li Y, Guo X, Huo B, Chen Y, He Y, Xiao R, Zhu XH, Jiang DS, Wei X. Upregulation of IRF9 Contributes to Pulmonary Artery Smooth Muscle Cell Proliferation During Pulmonary Arterial Hypertension. Front Pharmacol 2021; 12:773235. [PMID: 34925032 PMCID: PMC8672195 DOI: 10.3389/fphar.2021.773235] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
Abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is a critical pathological feature in the pathogenesis of pulmonary arterial hypertension (PAH), but the regulatory mechanisms remain largely unknown. Herein, we demonstrated that interferon regulatory factor 9 (IRF9) accelerated PASMCs proliferation by regulating Prohibitin 1 (PHB1) expression and the AKT-GSK3β signaling pathway. Compared with control groups, the rats treated with chronic hypoxia (CH), monocrotaline (MCT) or sugen5416 combined with chronic hypoxia (SuHx), and mice challenged with CH had significantly thickened pulmonary arterioles and hyperproliferative PASMCs. More importantly, the protein level of IRF9 was found to be elevated in the thickened medial wall of the pulmonary arterioles in all of these PAH models. Notably, overexpression of IRF9 significantly promoted the proliferation of rat and human PASMCs, as evidenced by increased cell counts, EdU-positive cells and upregulated biomarkers of cell proliferation. In contrast, knockdown of IRF9 suppressed the proliferation of rat and human PASMCs. Mechanistically, IRF9 directly restrained PHB1 expression and interacted with AKT to inhibit the phosphorylation of AKT at thr308 site, which finally led to mitochondrial dysfunction and PASMC proliferation. Unsurprisingly, MK2206, a specific inhibitor of AKT, partially reversed the PASMC proliferation inhibited by IRF9 knockdown. Thus, our results suggested that elevation of IRF9 facilitates PASMC proliferation by regulating PHB1 expression and AKT signaling pathway to affect mitochondrial function during the development of PAH, which indicated that targeting IRF9 may serve as a novel strategy to delay the pathological progression of PAH.
Collapse
Affiliation(s)
- Yong-Jie Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yi Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
9
|
Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T, Shao P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front Immunol 2021; 12:779787. [PMID: 34899740 PMCID: PMC8651870 DOI: 10.3389/fimmu.2021.779787] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a classic autoimmune disease characterized by uncontrolled synovial proliferation, pannus formation, cartilage injury, and bone destruction. The specific pathogenesis of RA, a chronic inflammatory disease, remains unclear. However, both key glycolysis rate-limiting enzymes, hexokinase-II (HK-II), phosphofructokinase-1 (PFK-1), and pyruvate kinase M2 (PKM2), as well as indirect rate-limiting enzymes, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), are thought to participate in the pathogenesis of RA. In here, we review the latest literature on the pathogenesis of RA, introduce the pathophysiological characteristics of HK-II, PFK-1/PFKFB3, and PKM2 and their expression characteristics in this autoimmune disease, and systematically assess the association between the glycolytic rate-limiting enzymes and RA from a molecular level. Moreover, we highlight HK-II, PFK-1/PFKFB3, and PKM2 as potential targets for the clinical treatment of RA. There is great potential to develop new anti-rheumatic therapies through safe inhibition or overexpression of glycolysis rate-limiting enzymes.
Collapse
Affiliation(s)
- Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinshuo Tang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhongsheng Zhou
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hao Tian
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enbo Liu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baoying Gao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pu Shao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Curcumin Improves Pulmonary Hypertension Rats by Regulating Mitochondrial Function. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1078019. [PMID: 34497845 PMCID: PMC8421153 DOI: 10.1155/2021/1078019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022]
Abstract
Objective To investigate the role of curcumin in regulating pathogenesis of pulmonary arterial smooth muscle cells (PASMCs) derived from pulmonary arterial hypertension (PAH) model. Methods Male Sprague Dawley rats were injected with monocrotaline (MCT) to establish the PAH experimental model. The rats were divided into control group, MCT group, and curcumin group. At the end of the study, hemodynamic data were measured to determine pulmonary hypertension. Proliferation ability of PASMCs, a remodeling indicator of pulmonary artery and right ventricle, was detected. In addition, the morphology and function of mitochondria, antiglycolysis and antiproliferation pathways, and genes were also analyzed. Results Curcumin may function by reversing MCT-mediated pulmonary vascular remodeling in rats. Curcumin effectively improved pulmonary vascular remodeling, promoted PASMC apoptosis, and protected mitochondrial function. In addition, curcumin treatment suppressed the PI3K/AKT pathway in PASMCs and regulated the expression of antiproliferative genes. Conclusion Curcumin can improve energy metabolism and reverse the process of PAHS. However, there were side effects of curcumin in MCT-induced rats, suggesting that the dosage should be treated with caution and its toxicological mechanism should be further studied and evaluated.
Collapse
|
11
|
Qiu H, Zhang Y, Li Z, Jiang P, Guo S, He Y, Guo Y. Donepezil Ameliorates Pulmonary Arterial Hypertension by Inhibiting M2-Macrophage Activation. Front Cardiovasc Med 2021; 8:639541. [PMID: 33791350 PMCID: PMC8005547 DOI: 10.3389/fcvm.2021.639541] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The beneficial effects of parasympathetic stimulation in pulmonary arterial hypertension (PAH) have been reported. However, the specific mechanism has not been completely clarified. Donepezil, an oral cholinesterase inhibitor, enhances parasympathetic activity by inhibiting acetylcholinesterase, whose therapeutic effects in PAH and its mechanism deserve to be investigated. Methods: The PAH model was established by a single intraperitoneal injection of monocrotaline (MCT, 50 mg/kg) in adult male Sprague-Dawley rats. Donepezil was administered via intraperitoneal injection daily after 1 week of MCT administration. At the end of the study, PAH status was confirmed by echocardiography and hemodynamic measurement. Testing for acetylcholinesterase activity and cholinergic receptor expression was used to evaluate parasympathetic activity. Indicators of pulmonary arterial remodeling and right ventricular (RV) dysfunction were assayed. The proliferative and apoptotic ability of pulmonary arterial smooth muscle cells (PASMCs), inflammatory reaction, macrophage infiltration in the lung, and activation of bone marrow-derived macrophages (BMDMs) were also tested. PASMCs from the MCT-treated rats were co-cultured with the supernatant of BMDMs treated with donepezil, and then, the proliferation and apoptosis of PASMCs were evaluated. Results: Donepezil treatment effectively enhanced parasympathetic activity. Furthermore, it markedly reduced mean pulmonary arterial pressure and RV systolic pressure in the MCT-treated rats, as well as reversed pulmonary arterial remodeling and RV dysfunction. Donepezil also reduced the proliferation and promoted the apoptosis of PASMCs in the MCT-treated rats. In addition, it suppressed the inflammatory response and macrophage activation in both lung tissue and BMDMs in the model rats. More importantly, donepezil reduced the proliferation and promoted the apoptosis of PASMCs by suppressing M2-macrophage activation. Conclusion: Donepezil could prevent pulmonary vascular and RV remodeling, thereby reversing PAH progression. Moreover, enhancement of the parasympathetic activity could reduce the proliferation and promote the apoptosis of PASMCs in PAH by suppressing M2-macrophage activation.
Collapse
Affiliation(s)
- Haihua Qiu
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Yibo Zhang
- Department of Ultrasound, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Zhongyu Li
- Laboratory Medicine Center, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Ping Jiang
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Shuhong Guo
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Yi He
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Yuan Guo
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
mTOR Signaling in Pulmonary Vascular Disease: Pathogenic Role and Therapeutic Target. Int J Mol Sci 2021; 22:ijms22042144. [PMID: 33670032 PMCID: PMC7926633 DOI: 10.3390/ijms22042144] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease without a cure. The exact pathogenic mechanisms of PAH are complex and poorly understood, yet a number of abnormally expressed genes and regulatory pathways contribute to sustained vasoconstriction and vascular remodeling of the distal pulmonary arteries. Mammalian target of rapamycin (mTOR) is one of the major signaling pathways implicated in regulating cell proliferation, migration, differentiation, and protein synthesis. Here we will describe the canonical mTOR pathway, structural and functional differences between mTOR complexes 1 and 2, as well as the crosstalk with other important signaling cascades in the development of PAH. The pathogenic role of mTOR in pulmonary vascular remodeling and sustained vasoconstriction due to its contribution to proliferation, migration, phenotypic transition, and gene regulation in pulmonary artery smooth muscle and endothelial cells will be discussed. Despite the progress in our elucidation of the etiology and pathogenesis of PAH over the two last decades, there is a lack of effective therapeutic agents to treat PAH patients representing a significant unmet clinical need. In this review, we will explore the possibility and therapeutic potential to use inhibitors of mTOR signaling cascade to treat PAH.
Collapse
|