1
|
He Q, Qu M, Xu C, Wu L, Xu Y, Su J, Bao H, Shen T, He Y, Cai J, Xu D, Zeng LH, Wu X. Smoking-induced CCNA2 expression promotes lung adenocarcinoma tumorigenesis by boosting AT2/AT2-like cell differentiation. Cancer Lett 2024; 592:216922. [PMID: 38704137 DOI: 10.1016/j.canlet.2024.216922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Lung adenocarcinoma (LUAD), a type of non-small cell lung cancer (NSCLC), originates from not only bronchial epithelial cells but also alveolar type 2 (AT2) cells, which could differentiate into AT2-like cells. AT2-like cells function as cancer stem cells (CSCs) of LUAD tumorigenesis to give rise to adenocarcinoma. However, the mechanism underlying AT2 cell differentiation into AT2-like cells in LUAD remains unknown. We analyze genes differentially expressed and genes with significantly different survival curves in LUAD, and the combination of these two analyses yields 147 differential genes, in which 14 differentially expressed genes were enriched in cell cycle pathway. We next analyze the protein levels of these genes in LUAD and find that Cyclin-A2 (CCNA2) is closely associated with LUAD tumorigenesis. Unexpectedly, high CCNA2 expression in LUAD is restrictedly associated with smoking and independent of other driver mutations. Single-cell sequencing analyses reveal that CCNA2 is predominantly involved in AT2-like cell differentiation, while inhibition of CCNA2 significantly reverses smoking-induced AT2-like cell differentiation. Mechanistically, CCNA2 binding to CDK2 phosphorylates the AXIN1 complex, which in turn induces ubiquitination-dependent degradation of β-catenin and inhibits the WNT signaling pathway, thereby failing AT2 cell maintenance. These results uncover smoking-induced CCNA2 overexpression and subsequent WNT/β-catenin signaling inactivation as a hitherto uncharacterized mechanism controlling AT2 cell differentiation and LUAD tumorigenesis.
Collapse
Affiliation(s)
- Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Meiyu Qu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China
| | - Lichao Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiakun Su
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Hangyang Bao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yangxun He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jibao Cai
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Da Xu
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
2
|
Suppression of VEGFD expression by S-nitrosylation promotes the development of lung adenocarcinoma. J Exp Clin Cancer Res 2022; 41:239. [PMID: 35941690 PMCID: PMC9358865 DOI: 10.1186/s13046-022-02453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background Vascular endothelial growth factor D (VEGFD), a member of the VEGF family, is implicated in angiogenesis and lymphangiogenesis, and is deemed to be expressed at a low level in cancers. S-nitrosylation, a NO (nitric oxide)-mediated post-translational modification has a critical role in angiogenesis. Here, we attempt to dissect the role and underlying mechanism of S-nitrosylation-mediated VEGFD suppression in lung adenocarcinoma (LUAD). Methods Messenger RNA and protein expression of VEGFD in LUAD were analyzed by TCGA and CPTAC database, respectively, and Assistant for Clinical Bioinformatics was performed for complex analysis. Mouse models with urethane (Ure)–induced LUAD or LUAD xenograft were established to investigate the role of S-nitrosylation in VEGFD expression and of VEGFD mutants in the oncogenesis of LUAD. Molecular, cellular, and biochemical approaches were applied to explore the underlying mechanism of S-nitrosylation-mediated VEGFD suppression. Tube formation and wound healing assays were used to examine the role of VEGFD on the angiogenesis and migration of LUAD cells, and the molecular modeling was applied to predict the protein stability of VEGFD mutant. Results VEGFD mRNA and protein levels were decreased to a different extent in multiple primary malignancies, especially in LUAD. Low VEGFD protein expression was closely related to the oncogenesis of LUAD and resultant from excessive NO-induced VEGFD S-nitrosylation at Cys277. Moreover, inhibition of S-nitrosoglutathione reductase consistently decreased the VEGFD denitrosylation at Cys277 and consequently promoted angiogenesis of LUAD. Finally, the VEGFDC277S mutant decreased the secretion of mature VEGFD by attenuating the PC7-dependent proteolysis and VEGFDC277S mutant thus reversed the effect of VEGFD on angiogenesis of LUAD. Conclusion Low-expression of VEGFD positively correlates with LUAD development. Aberrant S-nitrosylation of VEGFD negates itself to induce the tumorigenesis of LUAD, whereas normal S-nitrosylation of VEGFD is indispensable for its secretion and repression of angiogenesis of LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02453-8.
Collapse
|
3
|
Mei L, Qv M, Bao H, He Q, Xu Y, Zhang Q, Shi W, Ren Q, Yan Z, Xu C, Tang C, Hussain M, Zeng LH, Wu X. SUMOylation activates large tumour suppressor 1 to maintain the tissue homeostasis during Hippo signalling. Oncogene 2021; 40:5357-5366. [PMID: 34267330 DOI: 10.1038/s41388-021-01937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Large tumour suppressor (LATS) 1/2, the core kinases of Hippo signalling, are critical for maintaining tissue homeostasis. Here, we investigate the role of SUMOylation in the regulation of LATS activation. High cell density induces the expression of components of the SUMOylation machinery and enhances the SUMOylation and activation of Lats1 but not Lats2, whereas genetic deletion of the SUMOylation E2 ligase, Ubc9, abolishes this Lats1 activation. Moreover, SUMOylation occurs at the K830 (mouse K829) residue to activate LATS1 and depends on the PIAS1/2 E3 ligase. Whereas the K830 deSUMOylation mutation of LATS1 found in the human metastatic prostate cancers eliminates the kinase activity by attenuating the formation of the phospho-MOB1/phospho-LATS1 complex. As a result, the LATS1(K830R) transgene phenocopies Yap transgene to cause the oversized livers in mice, whereas Lats1(K829R) knock-in phenocopies the deletion of Lats1 in causing the reproductive and endocrine defects and ovary tumours in mice. Thus, SUMOylation-mediated LATS1 activation is an integral component of Hippo signalling in the regulation of tissues homeostasis.
Collapse
Affiliation(s)
- Liu Mei
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Meiyu Qv
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangyang Bao
- Department of Physiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Zhang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shi
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biology and Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Qianlei Ren
- Department of Pharmacology, Zhejiang University City College, Hangzhou, China
| | - Ziyi Yan
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Tang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Musaddique Hussain
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|