1
|
Santos AM, Vieira EM, de Jesus JR, Santana Júnior CC, Nascimento Júnior JAC, Oliveira AMS, Araújo AADS, Picot L, Alves IA, Serafini MR. Development and characterization of farnesol complexed in β- and hydroxypropyl-β-cyclodextrin and their antibacterial activity. Carbohydr Res 2025; 550:109406. [PMID: 39864120 DOI: 10.1016/j.carres.2025.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Farnesol (FAR) belongs to terpenes group and is a sesquiterpene alcohol and a hydrophobic compound, which can be extracted from natural sources or obtained by organic chemical or biological synthesis. Recent advances in the field of nanotechnology allow the drawbacks of low drug solubility, which can improve the drug therapeutic index. Therefore, this study aimed to prepare the FAR inclusion complexes with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) through freeze-drying method, proposing their physicochemical characterization, comparing their toxicity, and evaluating their in vitro antibacterial activity. Initially, physical mixture and freeze-dried inclusion complexes of FAR/β-CD and FAR/HP-β-CD were obtained in the molar ratio (1:1). The samples were characterized by DSC, TG/DTG, FTIR, PXRD, SEM, pHPZC, and the complexation efficiency were performed by HPLC. In vivo toxicity assay was performed using Tenebrio molitor larvae to determine the LD50 and toxic dose of the samples. Also, it was proposed that the evaluation of the fluorescence suppression of Bovine Serum Albumin and the antibacterial activity. The complexation of FAR was evidenced with β-CD and HP-β-CD by the characterization techniques analyzed. The complexation efficiency of FAR/β-CD and FAR/HP-β-CD were 73,53 % and 74.12 %, respectively. The inclusion complexes demonstrated a reduction in toxicity, as evidenced by lower toxic and LD50 doses compared to the free FAR. The inclusion complexes induced conformational changes in BSA, suggesting that they reached the subdomains containing tryptophan residues. In terms of antibacterial activity, FAR/β-CD and FAR/HP-β-CD did not exhibit significant MIC results compared to free FAR, except for FAR/HP-β-CD against S. aureus ATCC 25923.
Collapse
Affiliation(s)
- Anamaria Mendonça Santos
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil.
| | - Edileuza Marcelo Vieira
- Research Laboratory in Biomaterials, LPBio, Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jemmyson Romário de Jesus
- Research Laboratory in Biomaterials, LPBio, Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Laurent Picot
- La Rochelle Université, UMR CNRS 7266 LIENSs, La Rochelle, France
| | - Izabel Almeida Alves
- Postgraduate Program in Pharmaceutical Sciences, University of the State of Bahia and Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
2
|
Rajamohan R, Muthuraja P, Murugavel K, Mani MK, Prabakaran DS, Seo JH, Malik T, Lee YR. Significantly improving the solubility and anti-inflammatory activity of fenofibric acid with native and methyl-substituted beta-cyclodextrins via complexation. Sci Rep 2025; 15:853. [PMID: 39757237 PMCID: PMC11701116 DOI: 10.1038/s41598-024-84745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025] Open
Abstract
The solubility of commonly used anti-inflammatory drugs has become a significant concern in contemporary medicine. Furthermore, inflammatory arthritis stands out as the most prevalent chronic inflammatory disease globally. The disease's pathology is characterized by heightened inflammation and oxidative stress, culminating in chronic pain and the loss of joint functionality. Fenofibric acid (FFA) exhibits notable anti-inflammatory potential. This research assesses the anti-inflammatory effects of FFA, both in its standalone form and as inclusion complexes (ICs) with β-cyclodextrin and its methyl derivatives. FFA is encapsulated within the cavities of cyclodextrins (CDs), a fact confirmed by spectral changes observed in FFA. Distinct rock and seed-like morphologies are apparent for FFA with CDs, indicating that the CDs have influenced the surface of the guest. The introduction of CDs significantly enhances the thermal stability of FFA. ICs demonstrate superior results in inflammation activity compared to FFA alone. The efficacy of FFA complexed with CDs in mitigating inflammation positions it as a promising new drug. Additionally, our findings reveal that incorporating FFA into the CD cavity as a drug release system enhances the pharmacological profile of this substance, FFA.
Collapse
Affiliation(s)
- Rajaram Rajamohan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Perumal Muthuraja
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kuppusamy Murugavel
- PG & Research Department of Chemistry, Government Arts College, Chidambaram, Tamil Nadu, 608 102, India
| | - Murali Krishnan Mani
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, 638 401, India
| | - D S Prabakaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur, Tamil Nadu, 626 124, India
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
- Division of Research & Development, Lovely Professional University, Phagwara, 144 411, India.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
3
|
Han J, Wu B, Wang D. The potential efficacy of sesquiterpenes and their derivatives in treating rheumatoid arthritis: A systematic review. Int Immunopharmacol 2024; 141:112946. [PMID: 39159562 DOI: 10.1016/j.intimp.2024.112946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder primarily targeting peripheral joints. The global prevalence of RA is increasing, posing a significant challenge in patient care management. Despite therapeutic advancements, their inherent limitations highlight the need for further research on safer treatment interventions. Among potential candidates, sesquiterpenes, a subclass of plant secondary metabolites composed of three isoprene units, have exhibited remarkable efficacy in treating various inflammatory disorders, including RA. In this systematic review, we summarized the treatment evidence of sesquiterpenes and their derivatives on RA. Specific major sesquiterpenoids have been discussed in detail, as well as the possible mechanisms by which cells and chemical messengers are involved in treating RA. Our review indicated that sesquiterpenes are potential novel, bioactive compounds for RA prevention and treatment strategies.
Collapse
Affiliation(s)
- Jing Han
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bingrong Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dongsheng Wang
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
4
|
Rajamohan R, Kamaraj E, Muthuraja P, Murugavel K, Govindasamy C, Prabakaran DS, Malik T, Lee YR. Enhancing ketoprofen's solubility and anti-inflammatory efficacy with safe methyl-β-cyclodextrin complexation. Sci Rep 2024; 14:21516. [PMID: 39277667 PMCID: PMC11401905 DOI: 10.1038/s41598-024-71615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
Improved solubility and anti-inflammatory (AI) properties are imperative for enhancing the effectiveness of poorly water-soluble drugs, particularly non-steroidal anti-inflammatory drugs (NSAIDs). To address these critical issues, our focus is on obtaining NSAID materials in the form of inclusion complexes (IC) with methyl-beta-cyclodextrin (MCD). Ketoprofen (KTP) is selected as the NSAID for this study due to its potency in treating various types of pain, inflammation, and arthritis. Our objective is to tackle the solubility challenge followed by enhancing the AI activity. Confirmation of complexation is achieved through observing changes in the absorbance and fluorescence intensities of KTP upon the addition of MCD, indicating a 1:1 stoichiometric ratio. Phase solubility studies demonstrated improved dissolution rates after the formation of ICs. Further analysis of the optimized IC is conducted using FT-IR, NMR, FE-SEM, and TG/DTA techniques. Notable shifts in chemical shift values and morphological alterations on the surface of the ICs are observed compared to their free form. Most significantly, the IC exhibited superior AI and anti-arthritic (AA) activity compared to KTP alone. These findings highlight the potential of ICs in expanding the application of KTP, particularly in pharmaceuticals, where enhanced stability and efficacy of natural AIs and AAs are paramount.
Collapse
Affiliation(s)
- Rajaram Rajamohan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Eswaran Kamaraj
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Perumal Muthuraja
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kuppusamy Murugavel
- PG & Research Department of Chemistry, Government Arts College, Chidambaram, 608 102, Tamil Nadu, India
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, 11433, Riyadh, Saudi Arabia
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro Seowon-gu, Cheongju, 28644, Republic of Korea
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, 603203, Tamil Nadu, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
- Division of Research & Development, Lovely Professional University, Phagwara, India, 144411.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
5
|
Cui L, Pi J, Qin B, Cui T, Liu Z, Lei L, Wu S. Advanced application of carbohydrate-based micro/nanoparticles for rheumatoid arthritis. Int J Biol Macromol 2024; 269:131809. [PMID: 38677672 DOI: 10.1016/j.ijbiomac.2024.131809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
Rheumatoid arthritis (RA) is a kind of synovitis and progressive joint destruction disease. Dysregulated immune cell activation, inflammatory cytokine overproduction, and subsequent reactive oxidative species (ROS) production contribute to the RA process. Carbohydrates, including cellulose, chitosan, alginate and dextran, are among the most abundant and important biomolecules in nature and are widely used in biomedicine. Carbohydrate-based micro/nanoparticles(M/NPs) as functional excipients have the ability to improve the bioavailability, solubility and stability of numerous drugs used in RA therapy. For on-demand therapy, smart reactive M/NPs have been developed to respond to a variety of chemical and physical stimuli, including light, temperature, enzymes, pH and ROS, alternating their physical and macroscopic properties, resulting in innovative new drug delivery systems. In particular, advanced products with targeted dextran or hyaluronic acid are exploiting multiple beneficial properties at the same time. In addition to those that respond, there are promising new derivatives in development with microenvironment and chronotherapy effects. In this review, we provide an overview of these recent developments and an outlook on how this class of agents will further shape the landscape of drug delivery for RA treatment.
Collapse
Affiliation(s)
- Linxian Cui
- Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan 611130, PR China
| | - Jinkui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Boquan Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ting Cui
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zhenfei Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Shizhou Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
6
|
Lv Y, Li J, Li Y, Su J, Ding X, Yuan Y, Liu S, Mou Y, Li G, Zhang L. Unveiling the potential mechanisms of Amomi fructus against gastric ulcers via integrating network pharmacology and in vivo experiments. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117179. [PMID: 37777029 DOI: 10.1016/j.jep.2023.117179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a well-known traditional Chinese medicine, Amomi fructus (A. fructus) (Sharen) has been used therapeutically to treat gastrointestinal illnesses, including gastric ulcer (GU). The mechanism underlying this impact is still not fully known, though. AIM OF THE STUDY To investigate the hidden mechanism by which A. fructus influences the pathogenesis of GU, we employed network pharmacology approaches and in vivo validated studies. MATERIALS AND METHODS Multiple public databases were used to compile information on bioactive compounds, potential targets of A. fructus, and associated genes of GU. Then, the STRING database's protein-protein interaction (PPI) data of the drug-disease overlapping gene targets was obtained, and the core targets for A. fructus against GU were discovered. Additionally, molecular docking was done to examine the binding capabilities of the active substances and core targets. Then, the pathways of A. fructus that target GU were examined using the Annotation, Visualization and Integrated Discovery (DAVID)'s Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway studies. In a mouse model of acute stomach mucosal damage brought on by absolute ethanol, the findings of network pharmacology were finally validated. RESULTS In total, 610 targets derived from the 196 bioactive compounds in A. fructus, were discovered, and along with 115 A. fructus target genes for therapy of GU. Then, ten core targets associated with apoptosis and inflammation were determined based on node degree, and ALB, AKT1, TNF, EGFR, MAPK3, CASP3, MMP9, STAT3, SRC, and HRAS were identified as promising therapeutic targets of A. fructus against GU. The results of molecular docking also revealed that 65 active compounds had strong binding activity with the core targets, with volatile chemicals being the most significant active ingredients. So, for following in vivo tests, A. fructus volatile oils (AVO) were used. The KEGG analysis showed that the phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) signaling pathway may be crucial for the therapeutic mechanism of GU. In experiments that were validated in vivo, AVO considerably decreased the ulcer area and enhanced the histological appearance of the gastric tissues. In addition, compared to the model group, up-regulated the expression of IGF-1, p-PI3K, and p-AKT and down-regulated the protein levels of TNF-α and Caspase 3 in the stomach tissues. CONCLUSION According to preliminary findings from this work, A. fructus may influence inflammatory response and apoptosis via regulating the PI3K/AKT signaling pathway and associated gene targets. Importantly, our research might offer a theoretical foundation for future research into the intricate anti-GU mechanism of A. fructus.
Collapse
Affiliation(s)
- Yana Lv
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.
| | - Jiaxin Li
- Heilongjiang University of Chinese Medicine, Haerbin, 150006, China.
| | - Yao Li
- West Yunnan University of Applied Sciences, Dali, 671006, China.
| | - Jing Su
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China; Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China.
| | - Xuan Ding
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China; Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China.
| | - Yin Yuan
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China; Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China.
| | - Shifang Liu
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China; Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China.
| | - Yan Mou
- Yuxi Normal College, Yuxi, 653100, China.
| | - Guang Li
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China; Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China.
| | - Lixia Zhang
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China; Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China.
| |
Collapse
|
7
|
Acar T, Arayici PP, Ucar B, Coksu I, Tasdurmazli S, Ozbek T, Acar S. Host-Guest Interactions of Caffeic Acid Phenethyl Ester with β-Cyclodextrins: Preparation, Characterization, and In Vitro Antioxidant and Antibacterial Activity. ACS OMEGA 2024; 9:3625-3634. [PMID: 38284065 PMCID: PMC10809231 DOI: 10.1021/acsomega.3c07643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
The aim of this study is to improve the solubility, chemical stability, and in vitro biological activity of caffeic acid phenethyl ester (CAPE) by forming inclusion complexes with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (Hβ-CD) using the solvent evaporation method. The CAPE contents of the produced complexes were determined, and the complexes with the highest CAPE contents were selected for further characterization. Detailed characterization of inclusion complexes was performed by using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrospray ionization-mass spectrometry (ESI-MS). pH and thermal stability studies showed that both selected inclusion complexes exhibited better stability compared to free CAPE. Moreover, their antimicrobial activities were evaluated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for the first time. According to the broth dilution assay, complexes with the highest CAPE content (10C/β-CD and 10C/Hβ-CD) exhibited considerable growth inhibition effects against both bacteria, 31.25 μg/mL and 62.5 μg/mL, respectively; contrarily, this value for free CAPE was 500 μg/mL. Furthermore, it was determined that the in vitro antioxidant activity of the complexes increased by about two times compared to free CAPE.
Collapse
Affiliation(s)
- Tayfun Acar
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Pelin Pelit Arayici
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Burcu Ucar
- Department
of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Istanbul 34537, Turkey
| | - Irem Coksu
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Semra Tasdurmazli
- Molecular
Biology and Genetics Department, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul 34220, Turkey
| | - Tulin Ozbek
- Molecular
Biology and Genetics Department, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul 34220, Turkey
| | - Serap Acar
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| |
Collapse
|
8
|
de Jesus GS, Silva Trentin D, Barros TF, Ferreira AMT, de Barros BC, de Oliveira Figueiredo P, Garcez FR, Dos Santos ÉL, Micheletti AC, Yoshida NC. Medicinal plant Miconia albicans synergizes with ampicillin and ciprofloxacin against multi-drug resistant Acinetobacter baumannii and Staphylococcus aureus. BMC Complement Med Ther 2023; 23:374. [PMID: 37872494 PMCID: PMC10594757 DOI: 10.1186/s12906-023-04147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Given the rising occurrence of antibiotic resistance due to the existence and ongoing development of resistant bacteria and phenotypes, the identification of new treatments and sources of antimicrobial agents is of utmost urgency. An important strategy for tackling bacterial resistance involves the utilization of drug combinations, and natural products derived from plants hold significant potential as a rich source of bioactive compounds that can act as effective adjuvants. This study, therefore, aimed to assess the antibacterial potential and the chemical composition of Miconia albicans, a Brazilian medicinal plant used to treat various diseases. METHODS Ethanolic extracts from leaves and stems of M. albicans were obtained and subsequently partitioned to give the corresponding hexane, chloroform, ethyl acetate, and hydromethanolic phases. All extracts and phases had their chemical constitution investigated by HPLC-DAD-MS/MS and GC-MS and were assessed for their antibiofilm and antimicrobial efficacy against Staphylococcus aureus. Furthermore, their individual effects and synergistic potential in combination with antibiotics were examined against clinical strains of both S. aureus and Acinetobacter baumannii. In addition, 10 isolated compounds were obtained from the leaves phases and used for confirmation of the chemical profiles and for antibacterial assays. RESULTS Based on the chemical profile analysis, 32 compounds were successfully or tentatively identified, including gallic and ellagic acid derivatives, flavonol glycosides, triterpenes and pheophorbides. Extracts and phases obtained from the medicinal plant M. albicans demonstrated synergistic effects when combined with the commercial antibiotics ampicillin and ciprofloxacin, against multi-drug resistant bacteria S. aureus and A. baumannii, restoring their antibacterial efficacy. Extracts and phases also exhibited antibiofilm property against S. aureus. Three key compounds commonly found in the samples, namely gallic acid, quercitrin, and corosolic acid, did not exhibit significant antibacterial activity when assessed individually or in combination with antibiotics against clinical bacterial strains. CONCLUSIONS Our findings reveal that M. albicans exhibits remarkable adjuvant potential for enhancing the effectiveness of antimicrobial drugs against resistant bacteria.
Collapse
Affiliation(s)
- Genilson Silva de Jesus
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil
| | - Danielle Silva Trentin
- Laboratório de Bacteriologia & Modelos Experimentais Alternativos (BACMEA), Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Thayná Fernandes Barros
- Laboratório de Bacteriologia & Modelos Experimentais Alternativos (BACMEA), Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | - Bruna Castro de Barros
- Instituto de Biociências, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil
| | - Patrícia de Oliveira Figueiredo
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil
| | - Fernanda Rodrigues Garcez
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil
| | - Érica Luiz Dos Santos
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil
| | - Ana Camila Micheletti
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil.
| | - Nidia Cristiane Yoshida
- Laboratório de Produtos Naturais Bioativos-PRONABio, Instituto de Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil.
| |
Collapse
|
9
|
de Oliveira Nonato R, Krawczyk-Santos AP, Cardoso G, Kogawa AC, Ricommini K, de Lima ÁAN, Heimfarth L, Quintans-Júnior LJ, Cunha-Filho M, Taveira SF, Marreto RN. Cyclodextrin inclusion complex of a multi-component natural product by hot-melt extrusion. Drug Deliv Transl Res 2023; 13:1140-1152. [PMID: 36564661 DOI: 10.1007/s13346-022-01280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 12/25/2022]
Abstract
This study aimed to investigate whether hot-melt extrusion (HME) processing can promote molecular encapsulation of a multi-component natural product composed of volatile and pungent hydrophobic substances (ginger oleoresin (OR)) with cyclodextrins. 6-Gingerol and 6-shogaol, the biomarkers of ginger OR, were quantified by HPLC. Phase-solubility studies were performed using β-cyclodextrin (βCD) and hydroxypropyl-β-cyclodextrin (HPβCD) for ginger OR complexation. Solid complexes were then prepared by thermal (HME)- and solvent (slurry (SL))-based methods. Morphology, thermal behavior, solubility, in vitro dissolution, and in vivo anti-inflammatory activity were evaluated. HPβCD gave rise to AL-type complexes with ginger OR, whereas βCD led to materials with limited solubility. Ginger OR was complexed with HPβCD by HME without significant change in gingerol and shogaol content. Additionally, thermogravimetric analysis (TGA) suggested higher volatile retention in HME complexes than in SL ones. Shogaol and gingerol solubility and dissolution significantly increased from SL and HME complexes compared with ginger OR. In turn, 1:2 OR/HPβCD HME complex showed higher 6-shogaol solubility than SL, associated with a gradual release. The carrageenan-induced pleurisy test showed that the anti-inflammatory activity of ginger OR was maintained after complexation with HPβCD. The complexes significantly decrease the levels of IL-1β and inhibit cell migration. HME complex showed performance equivalent to the positive control and superior to the SL material. Taken together, these results indicate that HME can be useful for promoting the molecular encapsulation of complex natural products that contain volatile and thermolabile substances. HME complexes showed better in vivo and in vitro performance than complexes prepared using the solvent-based method.
Collapse
Affiliation(s)
- Rhayssa de Oliveira Nonato
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Setor Leste Universitário, Rua 240, Goiânia, GO, 74605-170, Brazil
| | - Anna Paula Krawczyk-Santos
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Setor Leste Universitário, Rua 240, Goiânia, GO, 74605-170, Brazil
| | - Gleidson Cardoso
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Setor Leste Universitário, Rua 240, Goiânia, GO, 74605-170, Brazil
| | - Ana Carolina Kogawa
- School of Pharmacy, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Karina Ricommini
- Pharmaceutical Application Laboratory, Ashland Specialty Ingredients, São Paulo, SP, Brazil
| | | | - Luana Heimfarth
- Department of Physiology (DFS), Laboratory of Neuroscience and Pharmacological Assays (LANEF), Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Lucindo José Quintans-Júnior
- Department of Physiology (DFS), Laboratory of Neuroscience and Pharmacological Assays (LANEF), Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Marcílio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, Universidade de Brasilia, Brasília, DF, Brazil
| | - Stephania Fleury Taveira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Setor Leste Universitário, Rua 240, Goiânia, GO, 74605-170, Brazil
| | - Ricardo Neves Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Setor Leste Universitário, Rua 240, Goiânia, GO, 74605-170, Brazil.
| |
Collapse
|
10
|
Yu Y, Velu P, Ma Y, Vijayalakshmi A. Nerolidol induced apoptosis via PI3K/JNK regulation through cell cycle arrest in MG-63 osteosarcoma cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:1750-1758. [PMID: 35357761 DOI: 10.1002/tox.23522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The aim of the present study was to determine the cell proliferation, apoptotic pathway analysis through protein, mRNA and cell cycle arrest mechanism in nerolidol induced osteosarcoma MG-63 cells. The osteosarcoma MG-63 cells were treated with various doses of nerolidol (15 and 20 μM/ml) for 24 h. Cell proliferation was examined using assist method of MTT assay, fixed the IC50 value of nerolidol 15 μM/ml. Reactive oxygen species (ROS) generation was analyzed by DCFH-DA dye, mitochondrial potential detected by Rh-123 dye, apoptotic morphological changes identified by AO/EtBr, PI, DAPI staining, and cell adhesion were detected by using fluorescence microscope. Cell proliferation, and apoptotic molecular protein and mRNA expressions such as ERK, P38, p-PI3K, p-JNK, Bcl-2, JNK, p-P38, cyclin-D1, and Bax were analyzed in osteosarcoma MG-63 cells. Nerolidol significantly suppressed the osteosarcoma cells progression in a dose dependent manner (p < .05) evident in the oxidative stress induction and apoptotic morphological changes. Nerolidol also regulated the protein PI3K/AKT mechanistically via induction of apoptosis Nerolidol suppresses osteosarcoma MG-63 cells by PI3K/AKT by cell cycle arrest at early phase of G0/G1. To sum up, nerolidol suppressed the growth of bone cancer cells and can be finally targeted as a potent drug for analyzing its chemotherapeutic effects in future.
Collapse
Affiliation(s)
- Yang Yu
- Department of Traumatic Joint Surgery, 3201 Hospital, Hanzhong, China
| | - Periyannan Velu
- Department of Biotechnology and Biochemistry, Annamalai University, Chidambaram, India
| | - Yulong Ma
- Department of Orthopedics and Burn Plastic Surgery, Xi'an Children's Hospital, Xi'an, China
| | - Annamalai Vijayalakshmi
- PG & Research Department of Biochemistry, Rabiammal Ahamed Maideen College for Women, Thiruvarur, India
| |
Collapse
|