1
|
Misar PL, Otari KV. Investigation of the protective effect of cilostazol on acute lung injury-mediated inflammation and in silico molecular modelling studies of inflammatory signalling pathway: a repurposing study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03734-z. [PMID: 39754679 DOI: 10.1007/s00210-024-03734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025]
Abstract
Acute lung injury i.e. ALI and its serious form acute respiratory distress syndrome (ARDS) are incurable medical conditions associated with significant global mortality and morbidity. The objective of the present research was to repurpose cilostazol, an antiplatelet drug with anti-inflammatory, antioxidant and antiapoptotic effect, as a potential approach for treatment of ALI. Its multifaceted effects make it promising candidate but its mechanism against ALI remains elusive. Hence it is needed to elucidate its mechanism of action to revealed its therapeutic potential and improve its clinical outcomes. This study investigated the potential inflammatory therapeutic targets of cilostazol with its protective effect against lipopolysaccharide (LPS)-induced ALI. We have identified 10 inflammatory target proteins of cilostazol i.e. PDK1, RAC1, PTK6, KDR, EGFR, endothelin-I, caspase-3, TNF-α, NF-κB1/BTK, a TLR/IRAK4 by molecular docking and validated by in vivo evaluation to demonstrate its therapeutic efficacy. In vivo experiment was performed in two sets; first to determine cellular inflammation by analysing the biomarkers in both lung homogenate and bronchoalveolar fluid and second set to study lung edema with dexamethasone as a standard. Additionally, respiratory parameters, related mRNA expressions and histopathology was evaluated. Our results, molecular docking showed that cilostazol binds to identified inflammatory target proteins with the same binding affinity as that of experimental inhibitors. In vivo, downregulated oxidative stress, and inflammation i.e. attenuated the pulmonary edema and vascular leakage, release of inflammatory mediators i.e. IL-6, TNF-α, NO, C-reactive protein (CRP), lactate dehydrogenase (LDH) myeloperoxidase (MPO), Krebs von den Lungen 6 (KL-6), and the recruitment of inflammatory cells; downregulated the m-RNA gene expressions of tumour necrosis factor alpha (TNF-α), nuclear factor kappa B( NF-kB), Toll-like receptor 4 (TLR4), Janus kinase/signal transducer, and activator of transcription 3 (JAK and STAT3); and improved total lung capacity in LPS-challenged rats. These findings revealed the cilostazol's efficacy as promising therapeutic agent for ALI by inhibiting the NF-κB/TLR4/JAK-STAT3 signalling pathway.
Collapse
Affiliation(s)
- Pranaya L Misar
- Dr. Babasaheb Ambedkar Technological University, Lonere, Raigad, 402103, India.
- N.N. Sattha College of Pharmacy, Ahmednagar, Maharashtra, 414003, India.
| | - Kishor V Otari
- Dr. Babasaheb Ambedkar Technological University, Lonere, Raigad, 402103, India
- Navsahyadri College of Pharmacy, Nasrapur, Pune, Maharashtra, 412213, India
| |
Collapse
|
2
|
El-Shitany NA, El-Saidy EA, El-Naggar ME, Sokar SS. Cilostazol protects against gastric ulcers by regulating PPAR-γ, HO-1, PECAM-1, pErk-1, NF-κB, Bcl-2, and cleaved caspase-3 protein expression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9033-9050. [PMID: 38884677 PMCID: PMC11522149 DOI: 10.1007/s00210-024-03176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Millions of individuals worldwide, across all age groups, suffer from the widespread health issue of gastric ulcers. In many experiments, cilostazol (Cls), a phosphodiesterase-3 inhibitor, was recently shown to have anti-ulcer activity. Notably, Cls increases the expression and transcriptional activity of PPAR-γ in vitro and in vivo. This study aimed to evaluate the protective effect of Cls against ethanol-induced gastric ulcers and clarify the possible underlying mechanisms with an emphasis on the role of PPAR-γ. Male albino rats were treated with ethanol to induce gastric ulcers, or they were pretreated with Cls, omeprazole (Omp), GW9662, or Cls + GW9662 for 14 consecutive days before receiving ethanol. Cls protects against ethanol-induced gastric ulcers. Cls treatment significantly reduced ethanol-induced upregulation of the pro-inflammatory markers (IL-1β, IL-6, TNF-α, and NF-κB), MDA (a marker of lipid peroxidation), and caspase-3 and cleaved caspase-3 (apoptotic markers). On the other hand, Cls treatment counteracted ethanol-induced downregulation of PPAR-γ, pErk-1, HO-1 and GSH (antioxidant markers), PECAM-1 and NO (healing markers), and Bcl-2 (antiapoptotic marker). However, when combined with GW9662, a potent antagonist of PPAR-γ, Cls loses its effects. In conclusion, these results suggest that PPAR-γ and pErk-1 are essential for Cls's protective effects against ethanol-induced gastric ulcers.
Collapse
Affiliation(s)
- Nagla A El-Shitany
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Eman A El-Saidy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Mostafa E El-Naggar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Samia S Sokar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Rawat A, Chauhan S, Monika, Singh RP, Gupta S, Jhawat V. Preclinical pharmacology and pharmacokinetics of curcumin tagged cilostazol nanodispersion for the management of diabetic nephropathy in wister rat model. In Silico Pharmacol 2024; 12:81. [PMID: 39233909 PMCID: PMC11368884 DOI: 10.1007/s40203-024-00256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
To evaluate the therapeutic potential of curcumin tagged cilostazol solid nano dispersion in wistar rat streptozotocin-nicotinamide-induced diabetic nephropathy. Cilostazol (CLT), a Phosphodiesterase (PDE) inhibitor has an inhibitory effect on reactive oxygen species (ROS), and Curcumin (Cur), an antioxidant, and anti-inflammatory, are water-soluble. Solid Nano dispersions were developed using the "Box-Behnken Design" and emulsion solvent evaporation procedure to improve the solubility and bioavailability. Streptozotocin (SPZ) and Nicotinamide (NA) caused diabetes in Wistar rats. DN developed 30-45 days after disease induction. All rat groups underwent histological, biochemical and pharmacokinetic evaluation. The optimized batch of Cilostazol Loaded Novel Curcumin Tagged Solid Nanodispersion (CLT-15 SND) estimated renal, lipid, and cytokine profiles better than the conventional batch. CLT-15 SND, given orally to diabetic rats for 45 days, significantly lowered fasting BGL and IL-6 levels and improved lipid and kidney-profile markers and body weight compared to plain Cilostazol Loaded Solid Nanodispersion (CLT-15 WC SND). CLT-15 SND treatment groups showed decreased blood glucose by 3.38 and 9.71 percent, increased body weight by 2.81 and 5.27 percent, improved Interleukin-6 (IL-6) by 21.36 and 18.36 percent, improved urine albumin levels by 5.67 and 14.19 percent and creatinine levels by 3.125 and 37.5 percent, improved serum urea by 30.48 percent, increased serum albumin by 2.59 and 11.18 percent, and decreased creatinine and 5.03 and 8.12 percent, respectively as compared to CLT-15 WC and MP treatment animal groups. CLT and Cur reduced IL-6, kidney, and lipid markers, demonstrating their renoprotective and pancreas-protective effects. CLT and Cur's inhibition may be the mechanism. Graphical abstract
Collapse
Affiliation(s)
- Aruna Rawat
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab India
| | - Monika
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana India
| | - Rahul Pratap Singh
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana India
| | - Sumeet Gupta
- Department of Pharmacy, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, Haryana India
| | - Vikas Jhawat
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana India
| |
Collapse
|
4
|
Mansour SM, Sabra O, El-Komy F, Ahmed K, El-Abhar H. Novel insights into gut health: Cilostazol strengthens gut integrity by adjusting TLR-2/NF-κB/IL-23 and CD44/AKT/GSK-3β/cyclin-D1 trajectories in methotrexate-induced mucositis model. Eur J Pharmacol 2024; 975:176669. [PMID: 38795758 DOI: 10.1016/j.ejphar.2024.176669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Methotrexate (MTX)-induced gastrointestinal mucositis is a common adverse effect characterized by redox imbalance and overproduction of inflammatory mediators that perturb intestinal integrity. Currently, there is no definitive treatment for this condition and its prevention is still far beyond comprehension. Because of its pleiotropic pharmacological actions, we aimed to explore the potential mechanisms through which cilostazol (CILO) can protect against MTX-induced intestinal mucositis. Wistar rats were allocated into 4 groups, control, CILO (100 mg/kg, p.o for 14 days), MTX (7.5 mg/kg for 4 successive days), and CILO + MTX. The improving effect of CILO on the morphological structure was confirmed by an upturn in the histopathological and transition electron microscope examinations evidenced by the increased jejunal villus height/width and the crypt depth besides the maintenance of tight junctions. These findings were verified biochemically; on the molecular level, CILO reduced the MTX-induced lipid peroxidation, cleaved caspase-3, p53, and the inflammatory parameters (TLR-2, NF-κB, IL-23, TNF-α, IL-1β), while increasing the anti-inflammatory marker IL-10 and the antioxidant enzyme SOD. Moreover, CILO decreased the injurious axis AKT/GSK-3β/cyclin-D1, and CD44+, but increased the immunoexpression of the cell proliferating marker PCNA. CILO also upheld the intestinal barrier by enhancing the tight junction molecules (ZO-1, claudin-4) and the E-cadherin/β-catenin complex while abating the mesenchymal marker vimentin. In conclusion, CILO protected gut integrity by reducing the epithelial-mesenchymal transition process, the MTX-induced oxidative, apoptotic, and inflammatory mediators, and turning off the CD44/AKT/GSK-3β/cyclin D1 trajectory and intensifying the expression of PCNA.
Collapse
Affiliation(s)
- Suzan M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 84518, Egypt.
| | - Omar Sabra
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, 84518, Egypt; Department of Pharmaceutics, School of Pharmacy, University College Cork, Cork, Ireland
| | - Fatma El-Komy
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University in Egypt, Cairo, 84518, Egypt; Department of Clinical Pharmacy, School of Pharmacy, University College Cork, Cork, Ireland
| | - Kawkab Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Hanan El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 84518, Egypt
| |
Collapse
|
5
|
Lv S, Zhao X, Ma C, Zhao D, Sun T, Fu W, Wei Y, Li W. Advancements in the study of acute lung injury resulting from intestinal ischemia/reperfusion. Front Med (Lausanne) 2024; 11:1399744. [PMID: 38933104 PMCID: PMC11199783 DOI: 10.3389/fmed.2024.1399744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Intestinal ischemia/reperfusion is a prevalent pathological process that can result in intestinal dysfunction, bacterial translocation, energy metabolism disturbances, and subsequent harm to distal tissues and organs via the circulatory system. Acute lung injury frequently arises as a complication of intestinal ischemia/reperfusion, exhibiting early onset and a grim prognosis. Without appropriate preventative measures and efficacious interventions, this condition may progress to acute respiratory distress syndrome and elevate mortality rates. Nonetheless, the precise mechanisms and efficacious treatments remain elusive. This paper synthesizes recent research models and pertinent injury evaluation criteria within the realm of acute lung injury induced by intestinal ischemia/reperfusion. The objective is to investigate the roles of pathophysiological mechanisms like oxidative stress, inflammatory response, apoptosis, ferroptosis, and pyroptosis; and to assess the strengths and limitations of current therapeutic approaches for acute lung injury stemming from intestinal ischemia/reperfusion. The goal is to elucidate potential targets for enhancing recovery rates, identify suitable treatment modalities, and offer insights for translating fundamental research into clinical applications.
Collapse
Affiliation(s)
- Shihua Lv
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Can Ma
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dengming Zhao
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tian Sun
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenchao Fu
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuting Wei
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenzhi Li
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Sohn M, Lim S. The Role of Cilostazol, a Phosphodiesterase-3 Inhibitor, in the Development of Atherosclerosis and Vascular Biology: A Review with Meta-Analysis. Int J Mol Sci 2024; 25:2593. [PMID: 38473840 DOI: 10.3390/ijms25052593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands as the leading global cause of mortality. Addressing this vital and pervasive condition requires a multifaceted approach, in which antiplatelet intervention plays a pivotal role, together with antihypertensive, antidiabetic, and lipid-lowering therapies. Among the antiplatelet agents available currently, cilostazol, a phosphodiesterase-3 inhibitor, offers a spectrum of pharmacological effects. These encompass vasodilation, the impediment of platelet activation and aggregation, thrombosis inhibition, limb blood flow augmentation, lipid profile enhancement through triglyceride reduction and high-density lipoprotein cholesterol elevation, and the suppression of vascular smooth muscle cell proliferation. However, the role of cilostazol has not been clearly documented in many guidelines for ASCVD. We comprehensively reviewed the cardiovascular effects of cilostazol within randomized clinical trials that compared it to control or active agents and involved individuals with previous coronary artery disease or stroke, as well as those with no previous history of such conditions. Our approach demonstrated that the administration of cilostazol effectively reduced adverse cardiovascular events, although there was less evidence regarding its impact on myocardial infarction. Most studies have consistently reported its favorable effects in reducing intermittent claudication and enhancing ambulatory capacity in patients with peripheral arterial disease. Furthermore, cilostazol has shown promise in mitigating restenosis following coronary stent implantation in patients with acute coronary syndrome. While research from more diverse regions is still needed, our findings shed light on the broader implications of cilostazol in the context of atherosclerosis and vascular biology, particularly for individuals at high risk of ASCVD.
Collapse
Affiliation(s)
- Minji Sohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| |
Collapse
|
7
|
Xu F, Tian Z, Wang Z. Cilostazol protects against degenerative cervical myelopathy injury and cell pyroptosis via TXNIP-NLRP3 pathway. Cell Div 2024; 19:2. [PMID: 38233884 DOI: 10.1186/s13008-024-00108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Degenerative cervical myelopathy (DCM) is one of the most common and serious neurological diseases. Cilostazol has protective effects of anterior horn motor neurons and prevented the cell apoptosis. However, there was no literatures of Cilostazol on DCM. In this study, we established the DCM rat model to detect the effects of Cilostazol. Meanwhile, the neurobehavioral assessments, histopathology changes, inflammatory cytokines, Thioredoxin-interacting protein (TXNIP), NOD‑like receptor pyrin domain containing 3 (NLRP3) and pro-caspase-1 expressions were detected by Basso, Beattie, and Bresnahan score assessment, Hematoxylin and Eosin Staining, Enzyme-linked immunosorbent assay, immunofluorescence and Western blotting, respectively. After treated with Cilostazol, the Basso, Beattie, and Bresnahan (BBB) score, inclined plane test and forelimb grip strength in DCM rats were significantly increased meanwhile the histopathology injury and inflammatory cytokines were decreased. Additionally, TXNIP, NLRP3 and pro-caspase-1 expressions levels were decreased in Cilostazol treated DCM rats. Interestingly, the using of siTXNIP significantly changed inflammatory cytokines, TXNIP, NLRP3 and pro-caspase-1 expressions, however there was no significance between siTXNIP and Cilostazol + siTXNIP group. These observations showed that Cilostazol rescues DCM injury and ameliorates neuronal destruction mediated by TXNIP/NLRP3/caspase-1 and pro-inflammatory cytokines. As a result of our study, these findings provide further evidence that Cilostazol may represent promising therapeutic candidates for DCM.
Collapse
Affiliation(s)
- Fei Xu
- Department of Neck-Shoulder and Lumbocrural Pain, Yantai hospital of traditional Chinese medicine, 39 Xingfu Road, Zhifu District, Yantai, 264000, Shandong, P.R. China
| | - Zhuo Tian
- Department of General Surgery, Yantai hospital of traditional Chinese medicine, Yantai, Shandong, China
| | - Zhengguang Wang
- Department of Neck-Shoulder and Lumbocrural Pain, Yantai hospital of traditional Chinese medicine, 39 Xingfu Road, Zhifu District, Yantai, 264000, Shandong, P.R. China.
| |
Collapse
|
8
|
Wani FA, Ibrahim MA, Ameen SH, Farage AE, Ali ZAE, Saleh K, Farag MM, Sayeed MU, Alruwaili MAY, Alruwaili AHF, Aljared AZA, Galhom RA. Platelet Rich Plasma and Adipose-Derived Mesenchymal Stem Cells Mitigate Methotrexate-Induced Nephrotoxicity in Rat via Nrf2/Pparγ/HO-1 and NF-Κb/Keap1/Caspase-3 Signaling Pathways: Oxidative Stress and Apoptosis Interplay. TOXICS 2023; 11:toxics11050398. [PMID: 37235213 DOI: 10.3390/toxics11050398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND the nephrotoxicity of methotrexate (MTX) is observed in high-dose therapy. Moreover, low-dose MTX therapy for rheumatic diseases is debatable and claimed to cause renal impairment. This study aimed at studying the effect of methotrexate in repeated low doses on rat kidneys and assessing the efficacy of adipose-derived mesenchymal stem cells (AD-MSCs) and platelet rich plasma (PRP) for attenuating this effect. METHODS Forty-two male Wistar rats were used, 10 rats were donors of AD-MSCs and PRP, 8 rats served as control, and the remaining rats were subjected to induction of nephrotoxicity by MTX intraperitoneal injection once weekly for successive 8 weeks and then assigned into 3 groups of 8 animals each: Group II: received MTX only. Group III: received MTX + PRP. Group IV: received MTX + AD-MSCs. After one month, rats were anaesthetized, serum-sampled, and renal tissue removed for biochemical, histological, and ultrastructural evaluation. RESULTS there was significant tubular degeneration, glomerulosclerosis, fibrosis, decreased renal index, along with increased levels of urea and creatinine in the MTX group compared to the control group. Immunohistochemical expression of caspase-3 and iNOS in the renal tissue was significantly increased in group II compared to groups III and IV. Biochemical results revealed higher tissue malondialdehyde (MDA) concentration in the MTX-injected group which decreased significantly in co-treatment with either AD-MSC or PRP + MTX. MSC promoted the activation of the Nrf2/PPARγ/HO-1 and NF-κB/Keap1/caspase-3 pathways, increased antioxidant enzyme activities, reduced lipid peroxidation levels, and alleviated oxidative damage and apoptosis. PRP showed therapeutic effects and molecular mechanisms similar to MSC. Furthermore, MSC and PRP treatment significantly reduced MTX-induced upregulation of the pro-inflammatory (NF-κB, interleukin-1ß, and TNF-α), oxidative stress (Nrf-2, hemoxygenase-1, glutathione, and malondialdehyde), and nitrosative stress (iNOS) markers in the kidney. CONCLUSION repeated administration of low-dose MTX resulted in massive renal tissue toxicity and deterioration of renal function in rats which proved to be attenuated by PRP and AD-MSCs through their anti-inflammatory, anti-apoptotic and anti-fibrotic properties.
Collapse
Affiliation(s)
- Farooq A Wani
- Pathology Department, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | - Mahrous A Ibrahim
- Forensic Medicine and Clinical Toxicology, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
| | - Shimaa H Ameen
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharqia 44519, Egypt
| | - Amira E Farage
- Department of Anatomy, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Zinab Abd-Elhady Ali
- Vice Deanship for Academic Affairs, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Khaldoon Saleh
- Vice Deanship for Academic Affairs, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Medhat M Farag
- Medical Biochemistry Department, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammed U Sayeed
- Pathology Department, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | | | | | | | - Rania A Galhom
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University (SCU), Ismailia 41522, Egypt
- Human Anatomy and Embryology Department, Faculty of Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
| |
Collapse
|
9
|
Combined carvacrol and cilostazol ameliorate ethanol-induced liver fibrosis in rats: Possible role of SIRT1/Nrf2/HO-1 pathway. Int Immunopharmacol 2023; 116:109750. [PMID: 36709594 DOI: 10.1016/j.intimp.2023.109750] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/28/2023]
Abstract
Carvacrol is a natural phenolic monoterpenoid, and cilostazol is a selective phosphodiesterase-3 inhibitor with antioxidant, anti-inflammatory and antiapoptotic effects. This experiment aimed to explore the hepatoprotective effects of carvacrol and cilostazol alone and in combination against alcoholic liver fibrosis (ALF), and the underlying mechanisms, using silymarin as a reference anti-fibrotic product. ALF was induced by oral administration of ethanol (1 ml/100 g/day) thrice per week. Silymarin (100 mg/kg), carvacrol (70 mg/kg), cilostazol (50 mg/kg), or carvacrol + cilostazol combination were administered daily and concurrently with ethanol for six weeks. Hepatic changes were evaluated by quantifying serum biomarkers of liver injury, hepatic MDA, GSH and NOx as oxidative stress markers, interleukin (IL)-10 as an anti-inflammatory cytokine, 4-hydroxyproline (4-HYP) as a collagen synthesis indicator, transforming growth factor (TGF)-β1 as a profibrogenic cytokine, α-smooth muscle actin (α-SMA) as a marker of hepatic stellate cells (HSCs) activation, histopathological (necroinflammation and fibrosis) scores and hepatic sirtuin-1 (SIRT1), nuclear factor-erythroid 2-related factor 2 (Nrf2), and hemeoxygenase-1 (HO-1) mRNA levels. Our results showed that carvacrol, cilostazol, and their combination significantly ameliorated ethanol-induced hepatic fibrosis manifested as improving hepatic functions and histopathological features, attenuating α-SMA immunostaining, reducing TGF-β1 and 4-HYP levels, suppressing oxidativeinjury and elevating IL-10 contents. Such effects were accompanied by upregulating SIRT1, Nrf2 and HO-1 genes. This work disclosed for the first time the hepatoprotective effect of carvacrol against ALF and, to a greater extent, with carvacrol + cilostazol combination that could be partially accredited to SIRT1/Nrf2/HO-1 pathway with consequent antioxidant, anti-inflammatory, and anti-fibrotic features.
Collapse
|
10
|
The Cardioprotective Effect of Corosolic Acid in the Diabetic Rats: A Possible Mechanism of the PPAR-γ Pathway. Molecules 2023; 28:molecules28030929. [PMID: 36770602 PMCID: PMC9919720 DOI: 10.3390/molecules28030929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The study was conducted to determine whether corosolic acid could protect the myocardium of diabetic rats from damage caused by isoproterenol (ISO) and, if so, how peroxisome proliferator-activated receptor gamma (PPAR-γ) activation might contribute into this protection. Diabetes in the rats was induced by streptozotocin (STZ), and it was divided into four groups: the diabetic control group, diabetic rats treated with corosolic acid, diabetic rats treated with GW9662, and diabetic rats treated with corosolic acid plus GW9662. The study was carried out for 28 days. The diabetic control and ISO control groups showed a decrease in mean arterial pressure (MAP) and diastolic arterial pressure (DAP) and an increase in systolic arterial pressure (SAP). The rat myocardium was activated by corosolic acid treatment, which elevated PPAR-γ expression. A histopathological analysis showed a significant reduction in myocardial damage by reducing myonecrosis and edema. It was found that myocardial levels of CK-MB and LDH levels were significantly increased after treatment with corosolic acid. By decreasing lipid peroxidation and increasing endogenous antioxidant levels, corosolic acid therapy showed a significant improvement over the ISO diabetic group. In conclusion, our results prove that corosolic acid can ameliorate ISO-induced acute myocardial injury in rats. Based on these results, corosolic acid seems to be a viable new target for the treatment of cardiovascular diseases and other diseases of a similar nature.
Collapse
|
11
|
Ahmad SS, Ahmad K, Shaikh S, You HJ, Lee EY, Ali S, Lee EJ, Choi I. Molecular Mechanisms and Current Treatment Options for Cancer Cachexia. Cancers (Basel) 2022; 14:cancers14092107. [PMID: 35565236 PMCID: PMC9105812 DOI: 10.3390/cancers14092107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The primary characteristics of cancer cachexia are weakness, weight loss, atrophy, fat reduction, and systemic inflammation. Cachexia is strongly associated with cancers involving the lungs, pancreas, esophagus, stomach, and liver, which account for half of all cancer deaths. TGF-β, MSTN, activin, IGF-1/PI3K/AKT, and JAK-STAT signaling pathways are known to underlie muscle atrophy and cachexia. Anamorelin (appetite stimulation), megestrol acetate, eicosapentaenoic acid, phytocannabinoids, targeting MSTN/activin, and molecules targeting proinflammatory cytokines, such as TNF-α and IL-6, are being tested as treatment options for cancer cachexia. Abstract Cancer cachexia is a condition marked by functional, metabolic, and immunological dysfunctions associated with skeletal muscle (SM) atrophy, adipose tissue loss, fat reduction, systemic inflammation, and anorexia. Generally, the condition is caused by a variety of mediators produced by cancer cells and cells in tumor microenvironments. Myostatin and activin signaling, IGF-1/PI3K/AKT signaling, and JAK-STAT signaling are known to play roles in cachexia, and thus, these pathways are considered potential therapeutic targets. This review discusses the current state of knowledge of the molecular mechanisms underlying cachexia and the available therapeutic options and was undertaken to increase understanding of the various factors/pathways/mediators involved and to identify potential treatment options.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (S.S.A.); (K.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (S.S.A.); (K.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (S.S.A.); (K.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
| | - Hye Jin You
- Tumor Microenvironment Branch, Division of Cancer Biology, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang 10408, Gyeonggi-do, Korea; (H.J.Y.); (E.-Y.L.)
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyaan 10408, Gyeonggi-do, Korea
| | - Eun-Young Lee
- Tumor Microenvironment Branch, Division of Cancer Biology, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang 10408, Gyeonggi-do, Korea; (H.J.Y.); (E.-Y.L.)
| | - Shahid Ali
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (S.S.A.); (K.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
- Correspondence: (E.J.L.); (I.C.)
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (S.S.A.); (K.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
- Correspondence: (E.J.L.); (I.C.)
| |
Collapse
|
12
|
Refaie MMM, El-Hussieny M, Shehata S. TLR4/NF-κB/TNFα and cAMP/SIRT1 signaling cascade involved in mediating the dose-dependent effect of cilostazol in ovarian ischemia reperfusion-induced injury. Immunopharmacol Immunotoxicol 2022; 44:338-346. [PMID: 35209787 DOI: 10.1080/08923973.2022.2043901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND One of the most dangerous gynecological emergencies is ovarian ischemia that commonly occurs during surgical manipulation or presence of ovarian masses. OBJECTIVES finding new therapies to prevent the associated harmful effects of ischemia/reperfusion-induced damage is still a critical need. For the first time, we aimed to evaluate the possible role of phosphodiesterase (PDE) 3 A inhibitor (PDEI), cilostazol (CLZ) in the treatment of ovarian ischemia reperfusion induced damage (OIR). METHODS Rats were divided into five groups; sham, OIR group; CLZ (5, 10, 20 mg/kg) was given orally with induced OIR. Different biochemical parameters were detected such as total anti-oxidant capacity (TAC), reduced glutathione (GSH), malondialdehyde (MDA), cyclic adenosine monophosphate (cAMP), sirtuin1 (SIRT1), toll like receptor 4 (TLR4), nuclear factor kappa b (NF-κB) and tumor necrosis factor alpha (TNFα). In addition, histopathological features, ovarian weight changes and casapse3 immunoexpression were detected. RESULTS Data revealed significant increase in ovarian weight changes, MDA, TLR4, TNFα, NF-κB and caspase 3 expressions in OIR induced group. Moreover, OIR group had histopathological features of ovarian damage with depletion of cAMP, SIRT1, TAC and GSH. CONCLUSION CLZ could ameliorate OIR-induced damage due to PDE inhibition, anti-oxidant, anti-inflammatory and anti-apoptotic properties with modulation of TLR4/NF-κB/TNFα and cAMP/SIRT1 signaling pathways.
Collapse
Affiliation(s)
- Marwa M M Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Maram El-Hussieny
- Department of Pathology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
13
|
Efficacy and safety of cilostazol for atherosclerosis. J Cardiovasc Pharmacol 2021; 79:390. [DOI: 10.1097/fjc.0000000000001195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022]
|
14
|
Osman AT, Sharkawi SMZ, Hassan MIA, Abo-Youssef AM, Hemeida RAM. Empagliflozin and neohesperidin protect against methotrexate-induced renal toxicity via suppression of oxidative stress and inflammation in male rats. Food Chem Toxicol 2021; 155:112406. [PMID: 34256053 DOI: 10.1016/j.fct.2021.112406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/29/2022]
Abstract
Kidney injury from chemotherapy is one of the worsening problems associated with methotrexate (MTX) use. This work aims to examine the nephroprotective effects of empagliflozin (EMPA) and neohesperidin dihydrochalcone (NHD) provoked by MTX. A rat model was implemented by a single administration of MTX (20 mg/kg, i.p.). EMPA and NHD were administered in two doses (10 and 30 mg/kg, p.o.) and (40 and 80 mg/kg, p.o.), respectively for 14 consecutive days, using N-acetylcysteine (150 mg/kg, p.o.) as a reference standard. Pretreatment with EMPA and NHD showed significant attenuation in the renal function biomarkers, histopathological abrasions, and renal oxidative parameters. Also, EMPA and NHD pretreatment produced marked reductions in the expression of IL-6 and TNF-α level as proinflammatory biomarkers. Furthermore, EMPA and NHD pretreatment revealed marked decreases in the expression level of NF-ĸB, Keap1, HSP70, and caspase-3 and notable increases in Nrf2, PPARγ and HO-1 expression levels. EMPA and NHD can constrain oxidative stress liberation, inflammatory mediators proliferation, and apoptotic reactions in the renal tissue, which may be promising for further clinical applications to protect against MTX-induced renal injury or at least to reduce its adverse effects.
Collapse
Affiliation(s)
- Adel T Osman
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Souty M Z Sharkawi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Mohamed I A Hassan
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minya, 61519, Egypt
| |
Collapse
|
15
|
Zhang Y, Zhang Y, Li Y, Zhang L, Yu S. Preclinical Investigation of Alpinetin in the Treatment of Cancer-Induced Cachexia via Activating PPARγ. Front Pharmacol 2021; 12:687491. [PMID: 34093209 PMCID: PMC8176100 DOI: 10.3389/fphar.2021.687491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 01/06/2023] Open
Abstract
The ongoing loss of skeletal muscle is a central event of cancer cachexia, and its consequences include adverse effects on patient’s quality of life and survival. Alpinetin (Alp), a natural plant-derived flavonoid obtained from Alpinia katsumadai Hayata, has been reported to possess potent anti-inflammatory and antitumor activities. This study aimed to explore the therapeutic effect and underlying mechanism of Alp in the prevention of cancer cachexia. We found that Alp (25–100 μM) dose-dependently attenuated Lewis lung carcinoma–conditioned medium-induced C2C12 myotube atrophy and reduced expression of the E3 ligases Atrogin-1 and MuRF1. Moreover, Alp administration markedly improved vital features of cancer cachexia in vivo with visible reduction of the loss of tumor-free body weight and wasting of multiple tissues, including skeletal muscle, epididymal fat, and decreased expression of Atrogin-1 and MuRF1 in cachectic muscle. Alp suppressed the elevated spleen weight and serum concentrations of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. Further, Alp treatment remained protective against cancer cachexia in the advanced stage of tumor growth. Molecular docking results suggested that Alp was docked into the active site of PPARγ with the docking score of –7.6 kcal/mol, forming a hydrogen bond interaction with PPARγ protein amino acid residue HIS449 with a bond length of 3.3 Å. Mechanism analysis revealed that Alp activated PPARγ, resulting in the downregulated phosphorylation of NF-κB and STAT3 in vitro and in vivo. PPARγ inhibition induced by GW9662 notably attenuated the improvement of Alp on the above cachexia phenomenon, indicating that PPARγ activation mediated the therapeutic effect of Alp. These findings suggested that Alp might be a potential therapeutic candidate against cancer cachexia.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Zhang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yichen Li
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yu
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Huang R, Zhang C, Wang X, Hu H. PPARγ in Ischemia-Reperfusion Injury: Overview of the Biology and Therapy. Front Pharmacol 2021; 12:600618. [PMID: 33995008 PMCID: PMC8117354 DOI: 10.3389/fphar.2021.600618] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a complex pathophysiological process that is often characterized as a blood circulation disorder caused due to various factors (such as traumatic shock, surgery, organ transplantation, burn, and thrombus). Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. Theoretically, IRI can occur in various tissues and organs, including the kidney, liver, myocardium, and brain, among others. The advances made in research regarding restoring tissue perfusion in ischemic areas have been inadequate with regard to decreasing the mortality and infarct size associated with IRI. Hence, the clinical treatment of patients with severe IRI remains a thorny issue. Peroxisome proliferator-activated receptor γ (PPARγ) is a member of a superfamily of nuclear transcription factors activated by agonists and is a promising therapeutic target for ameliorating IRI. Therefore, this review focuses on the role of PPARγ in IRI. The protective effects of PPARγ, such as attenuating oxidative stress, inhibiting inflammatory responses, and antagonizing apoptosis, are described, envisaging certain therapeutic perspectives.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xing Wang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Kherallah RY, Khawaja M, Olson M, Angiolillo D, Birnbaum Y. Cilostazol: a Review of Basic Mechanisms and Clinical Uses. Cardiovasc Drugs Ther 2021; 36:777-792. [PMID: 33860901 DOI: 10.1007/s10557-021-07187-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
Primarily used in the treatment of intermittent claudication, cilostazol is a 2-oxyquinolone derivative that works through the inhibition of phosphodiesterase III and related increases in cyclic adenosine monophosphate (cAMP) levels. However, cilostazol has been implicated in a number of other basic pathways including the inhibition of adenosine reuptake, the inhibition of multidrug resistance protein 4, among others. It has been observed to exhibit antiplatelet, antiproliferative, vasodilatory, and ischemic-reperfusion protective properties. As such, cilostazol has been investigated for clinical use in a variety of settings including intermittent claudication, as an adjunctive for reduction of restenosis after coronary and peripheral endovascular interventions, and in the prevention of secondary stroke, although its widespread implementation for indications other than intermittent claudication has been limited by relatively modest effect sizes and lack of studies in western populations. In this review, we highlight the pleiotropic effects of cilostazol and the evidence for its clinical use.
Collapse
Affiliation(s)
- Riyad Y Kherallah
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Muzamil Khawaja
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Michael Olson
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Dominick Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Yochai Birnbaum
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, 7200 Cambridge Street, Houston, TX, USA.
| |
Collapse
|