1
|
Mutinda ES, Zhang DJ, Muema FW, Mkala EM, Waswa EN, Odago WO, Onyango Ochieng C, Gichua MK, Muchuku JK, Kamande E, Hu GW. The genus Balanophora J. R. Forst. & G. Forst. - Its use in traditional medicine, phytochemistry, and pharmacology: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117276. [PMID: 37866464 DOI: 10.1016/j.jep.2023.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/25/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural products, particularly medicinal plants, have been utilized in traditional medicine for millennia to treat various diseases. The genus Balanophora (Balanophoraceae) consists of 23 accepted species. These species are the most controversial flowering plants, with highly reduced morphologies and are found parasitizing on the roots of their host. They have been used in traditional medicine as a remedy for stomach pain, detumescence, uterine prolapse, wounds, syphilis, gonorrhea, treating injuries from falls, and other conditions. However, there is no review of this genus on its traditional uses, phytochemistry, and pharmacology. AIM The present narrative review discusses the scientific data supporting the traditional uses of Balanophora species. The available information on its botanical properties, traditional uses, chemical contents, pharmacological activities, and toxicity was summarized to help comprehend current research and offer a foundation for future research. MATERIALS AND METHODS The materials used in combining data on the genus Balanophora comprises online sources such as Web of Science, Google Scholar, Science Direct, and Chinese National Knowledge Infrastructure (CNKI) for Chinese-related materials. World Flora online was used in validating the scientific names of this genus while ChemBio Draw Ultra Version 22.2 software was employed in drawing the phytochemical compounds. RESULTS Nine Balanophora species including B. harlandii, B. japonica, B. polyandra, B. fungosa, B. fungosa subsp. indica, B. laxiflora, B. abbreviata, B. tobiracola, and B. involucrata have been documented as vital sources of traditional medicines in different parts of Asia. A total of 159 secondary metabolites have been isolated and identified from the ten species of this genus comprising tannins, flavonoids, sterols, lignans, chalcones, terpenes, and phenylpropanoids. Among these compounds, tannins, lignans, terpenoids, chalcones and phenolic acids contribute to the pharmacological activities of the species in this genus with several biological activities both in vitro and in vivo such as anti-inflammatory, anti-oxidant, hypoglycemic activity, cytotoxicity, anti-microbial, melanin synthesis etc. CONCLUSION: This review summarizes the available literature on the traditional uses, pharmacological properties, and phytoconstituents of Balanophora species indicating that they contain fascinating chemical compounds with diverse biological activities. The traditional uses of the species in this genus have been confirmed by scientific data such as antimicrobial, hemostatic effect, gastroprotective activity and others. However, many species in this genus are yet unknown in terms of their botanical uses, chemical composition and biological activities. Thus, more research into the scientific connections between traditional medicinal uses and pharmacological activities, mode of action of the isolated bioactive constituents, and toxicity of other Balanophora species is needed to determine their efficacy and therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Dong-Juan Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Felix Wambua Muema
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wyclif Ochieng Odago
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Clintone Onyango Ochieng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Moses Kirega Gichua
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya
| | - John Kamau Muchuku
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya
| | - Elizabeth Kamande
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
2
|
Yan K, He Q, Lin D, Liang J, Chen J, Xie Z, Chen Z. Promotion of NAD + recycling by the hypoxia-induced shift in the lactate dehydrogenase isozyme profile reduces the senescence of human bone marrow-derived endothelial progenitor cells. Free Radic Biol Med 2023; 208:88-102. [PMID: 37536460 DOI: 10.1016/j.freeradbiomed.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Expansion of bone marrow-derived endothelial progenitor cells (EPCs) in vitro to obtain required cell numbers for therapeutic applications faces the challenge of growing cell senescence under the traditional normoxic culture condition. We previously found that 1% O2 hypoxic culture condition is favorable for reducing senescence of EPCs, but the mechanisms underlying the favorability are still unclear. Here, we found that, compared with normoxia, hypoxia induced a shift in lactate dehydrogenase (LDH) isozyme profile, which manifested as decreased LDH2 and LDH1 and increased LDH5, LDH4 and total LDHs. Moreover, under hypoxia, EPCs presented higher LDH activity, which could promote the conversion of pyruvate to lactate, as well as a higher level of NAD+, Bcl2 interacting protein 3 (BNIP3) expression and mitophagy. Additionally, under hypoxia, knock-down of the LDHA subunit increased the LDH2 and LDH1 levels and knock-down of the LDHB subunit increased the LDH5 level, while the simultaneous knock-down of LDHA and LDHB reduced total LDHs and NAD+ level. Inhibition of NAD+ recycling reduced BNIP3 expression and mitophagy and promoted cell senescence. Taken together, these data demonstrated that 1% O2 hypoxia induces a shift in the LDH isozyme profile, promotes NAD+ recycling, increases BNIP3 expression and mitophagy, and reduces EPC senescence. Our findings contribute to a better understanding of the connection between hypoxic culture conditions and the senescence of bone marrow-derived EPCs and provide a novel strategy to improve in vitro expansion of EPCs.
Collapse
Affiliation(s)
- Kaihao Yan
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qiwei He
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Dongni Lin
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jianli Liang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Junxiong Chen
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zijing Xie
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhenzhou Chen
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
3
|
Zhang AN, Li N, Chen ZC, Guo YL, Tian CJ, Cheng DJ, Tang XY, Zhang XY. Amygdalin alleviated TGF-β-induced epithelial-mesenchymal transition in bronchial epithelial cells. Chem Biol Interact 2023; 369:110235. [PMID: 36457260 DOI: 10.1016/j.cbi.2022.110235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Transforming growth factor-beta TGF-β-induced epithelial-mesenchymal transition (EMT) in bronchial epithelial cells contributes to airway wall remodeling in asthma. This study aims to explore the role of amygdalin, an active ingredient in bitter almonds, in TGF-β-induced EMT in bronchial epithelial cells and to elucidate the possible mechanisms underlying its biological effects. METHODS An asthmatic mouse model was established through ovalbumin induction. Primary mouse bronchial epithelial cells and a human bronchial epithelial cell line were incubated with transforming growth factor-beta (TGF-β) to induce EMT, whose phenotype of cells was evaluated by the expressions of EMT markers [alpha-smooth muscle actin (α-SMA), vimentin, and fibronectin] and cell migration capacity. A co-immunoprecipitation assay was performed to assess the ubiquitination of heparanase (HPSE). RESULTS In asthmatic model mice, amygdalin treatment relieved airway wall remodeling and decreased expressions of EMT markers (α-SMA and vimentin). In TGF-β-treated bronchial epithelial cells, amygdalin treatment decreased the mRNA and protein levels of EMT markers (α-SMA, vimentin, and fibronectin) without impairing cell viability. Through the Swiss Target Prediction database, HPSE was screened as a candidate downstream target for amygdalin. HPSE overexpression further promoted TGF-β-induced EMT while the HPSE inhibitor suppressed TGF-β-induced EMT in bronchial epithelial cells. In addition, HPSE overexpression reversed the inhibitory effect of amygdalin on TGF-β-induced EMT in bronchial epithelial cells. The following mechanism exploration revealed that amygdalin downregulated HPSE expression by enhancing ubiquitination. CONCLUSION Our study showed that amygdalin inhibited TGF-β-induced EMT in bronchial epithelial cells and found that the anti-EMT activity of amygdalin might be related to its regulatory effect on HPSE expression.
Collapse
Affiliation(s)
- An-Nan Zhang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's, Hospital, PR China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, PR China
| | - Nan Li
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's, Hospital, PR China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, PR China
| | - Zhuo-Chang Chen
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's, Hospital, PR China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, PR China
| | - Ya-Li Guo
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's, Hospital, PR China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, PR China
| | - Cui-Jie Tian
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's, Hospital, PR China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, PR China
| | - Dong-Jun Cheng
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's, Hospital, PR China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, PR China
| | - Xue-Yi Tang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's, Hospital, PR China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, PR China
| | - Xiao-Yu Zhang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's, Hospital, PR China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, PR China.
| |
Collapse
|
4
|
Hypoxia-inducible factor-1α nuclear accumulation via a MAPK/ERK-dependent manner partially explains the accelerated glycogen metabolism in yak longissimus dorsi postmortem under oxidative stress. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Wang W, Shi B, Cong R, Hao M, Peng Y, Yang H, Song J, Feng D, Zhang N, Li D. RING-finger E3 ligases regulatory network in PI3K/AKT-mediated glucose metabolism. Cell Death Discov 2022; 8:372. [PMID: 36002460 PMCID: PMC9402544 DOI: 10.1038/s41420-022-01162-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 12/21/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway plays an essential role in glucose metabolism, promoting glycolysis and resisting gluconeogenesis. PI3K/AKT signaling can directly alter glucose metabolism by phosphorylating several metabolic enzymes or regulators of nutrient transport. It can indirectly promote sustained aerobic glycolysis by increasing glucose transporters and glycolytic enzymes, which are mediated by downstream transcription factors. E3 ubiquitin ligase RING-finger proteins are mediators of protein post-translational modifications and include the cullin-RING ligase complexes, the tumor necrosis factor receptor-associated family, the tripartite motif family and etc. Some members of the RING family play critical roles in regulating cell signaling and are involved in the development and progression of various metabolic diseases, such as cancer, diabetes, and dyslipidemia. And with the progression of modern research, as a negative or active regulator, the RING-finger adaptor has been found to play an indispensable role in PI3K/AKT signaling. However, no reviews have comprehensively clarified the role of RING-finger E3 ligases in PI3K/AKT-mediated glucose metabolism. Therefore, in this review, we focus on the regulation and function of RING ligases in PI3K/AKT-mediated glucose metabolism to establish new insights into the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Wenke Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bei Shi
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Ruiting Cong
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingjun Hao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Peng
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongyue Yang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiahui Song
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Di Feng
- Education Center for Clinical Skill Practice, China Medical University, Shenyang, China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Xu X, Tao R, Li K, Wang W. An UHPLC/LC-MS illustrated the dynamic profiling of balanophorin B, gallic acid, and 4-hydroxycinnamic acid in rat as 3 molecular entities from Balanophora simaoensis. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1190:123103. [PMID: 35021136 DOI: 10.1016/j.jchromb.2022.123103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 01/07/2023]
Abstract
An UHPLC/LC-MS was founded to detect balanophorin B (B), gallic acid (GA), 4-hydroxycinnamic acid (HC), and their in vivo profiling in rats, after oral administration of the ethanol extract of Balanophora simaoensis S. Y. Chang et Tam. The in vivo dynamic existence of 3 molecular entities in rats and the multistep biotransformation of GA were elucidated by their sensitive mass spectrometry response after efficient UHPLC and/or HPLC separation, through analyzing the bio-samples of rat plasma, bile, liver, kidneys, and excreta. The method was validated with satisfactory calibration curves having correlation coefficients r from 0.996 to 0.999 for concentration scaled from 0.100 nM to 0.100 μM, internal standard normalized matrix factors ranged from 0.923 to 0.993, sextuplicate recoveries valued from 95.0% to 103.6%, as well as accuracy and precision varied from 95.6% to 103.7%. The content of B, GA, and HC in the whole herb was of 4.66, 63.5, and 10.4 μmol/kg in dry weight, respectively. The Cmax for B, GA, and HC in rat systemic circulation was of 76.0 nM, 2.30 μM, and 51.0 μM, with tmax at 3, 2, and 2 h, respectively. B and GA stayed in rat liver over 4 hs to present a material base for the pharmacology and pharmacodynamics of the whole herb. The biotransformation of GA indicated a complicated scheme in rats. As a final metabolite from GA with total biotransformation conversion over 20%, 4-hydroxybenzaldehyde resourced from two steps of dehydroxylation and one step of reduction of GA, but not concerned with HC.
Collapse
Affiliation(s)
- Xiangting Xu
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chenggong, Kunming, Yunnan 650500, PR China
| | - Rujun Tao
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chenggong, Kunming, Yunnan 650500, PR China; Department of Pharmacy, Xuanwei Second Municipal People's Hospital, Xuanwei, Yunnan 655400, PR China
| | - Kexian Li
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chenggong, Kunming, Yunnan 650500, PR China
| | - Wei Wang
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chenggong, Kunming, Yunnan 650500, PR China.
| |
Collapse
|
7
|
Liu J, Yang C, Huang XM, Lv PP, Yang YK, Zhao JN, Zhao SY, Sun WJ. Knockdown of FBI-1 Inhibits the Warburg Effect and Enhances the Sensitivity of Hepatocellular Carcinoma Cells to Molecular Targeted Agents via miR-3692/HIF-1α. Front Oncol 2021; 11:796839. [PMID: 34869045 PMCID: PMC8633402 DOI: 10.3389/fonc.2021.796839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 01/20/2023] Open
Abstract
The transcription suppressor factor FBI-1 (the factor that binds to inducer of short transcripts-1) is an important regulator of hepatocellular carcinoma (HCC). In this work, the results showed that FBI-1 promoted the Warburg effect and enhances the resistance of hepatocellular carcinoma cells to molecular targeted agents. Knockdown of FBI-1 via its small-interfering RNA (siRNA) inhibited the ATP level, lactate productions, glucose uptake or lactate dehydrogenase (LDH) activation of HCC cells. Transfection of siFBI-1 also decreased the expression of the Warburg-effect-related factors: hypoxia-inducible factor-1 alpha (HIF-1α), lactate dehydrogenase A (LDHA), or GLUT1, and the epithelial-mesenchymal transition-related factors, Vimentin or N-cadherin. The positive correlation between the expression of FBI-1 with HIF-1α, LDHA, or GLUT1 was confirmed in HCC tissues. Mechanistically, the miR-30c repressed the expression of HIF-1α by binding to the 3'-untranslated region (3'-UTR) of HIF-1α in a sequence-specific manner, and FBI-1 enhanced the expression of HIF-1α and HIF-1α pathway's activation by repressing the expression of miR. By modulating the miR-30c/HIF-1α, FBI-1 promoted the Warburg effect or the epithelial-mesenchymal transition of HCC cells and promoted the resistance of HCC cells to molecular targeted agents.
Collapse
Affiliation(s)
- Juan Liu
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chao Yang
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xiao-Mei Huang
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Pan-Pan Lv
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ya-Kun Yang
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Jin-Na Zhao
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Si-Yuan Zhao
- Department of Neurosurgery, Beijing Huicheng Medical Research Institute, Beijing, China
| | - Wan-Jun Sun
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
8
|
Ethanol extracts of Balanophora laxiflora Hemsl inhibit hepatocellular carcinoma with the involvement of HKII-mediated glycolysis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Circ_0084443 Inhibits Wound Healing Via Repressing Keratinocyte Migration Through Targeting the miR-17-3p/FOXO4 Axis. Biochem Genet 2021; 60:1236-1252. [PMID: 34837127 DOI: 10.1007/s10528-021-10157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Keratinocyte migration is a crucial process during skin wound healing, and circular RNAs are associated with keratinocyte migration. The purpose of our study was to clarify the role of circ_0084443 in wound healing. The levels of circ_0084443, microRNA (miR)-17-3p, and forkhead box protein O4 (FOXO4) were examined by quantitative reverse transcription-PCR. Cell migration was detected via wound scratch assay or transwell assay. The protein expression was measured using western blot. The binding analysis between miR-17-3p and circ_0084443 or FOXO4 was determined by dual-luciferase reporter assay and RNA Immunoprecipitation assay. TGF-β1 decreased the levels of circ_0084443 and FOXO4 while increased the miR-17-3p expression in keratinocytes by a concentration-dependent manner. Circ_0084443 acted as a miR-17-3p sponge and circ_0084443 overexpression alleviated TGF-β1-induced migration of keratinocytes by sponging miR-17-3p. FOXO4 was a target for miR-17-3p. The downregulation of miR-17-3p suppressed cell migration in TGF-β1-induced cells by increasing the FOXO4 level. Circ_0084443 positively regulated the FOXO4 expression by sponging miR-17-3p. Circ_0084443 suppressed the TGFβ signaling pathway by affecting the miR-17-3p/FOXO4 axis. These results exhibited that circ_0084443 suppressed the TGF-β1-induced keratinocyte migration by regulating the miR-17-3p/FOXO4 axis, suggesting the application potential of circ_0084443 in wound-healing-related diseases.
Collapse
|
10
|
Yun BD, Son SW, Choi SY, Kuh HJ, Oh TJ, Park JK. Anti-Cancer Activity of Phytochemicals Targeting Hypoxia-Inducible Factor-1 Alpha. Int J Mol Sci 2021; 22:ijms22189819. [PMID: 34575983 PMCID: PMC8467787 DOI: 10.3390/ijms22189819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is overexpressed in cancer, leading to a poor prognosis in patients. Diverse cellular factors are able to regulate HIF-1α expression in hypoxia and even in non-hypoxic conditions, affecting its progression and malignant characteristics by regulating the expression of the HIF-1α target genes that are involved in cell survival, angiogenesis, metabolism, therapeutic resistance, et cetera. Numerous studies have exhibited the anti-cancer effect of HIF-1α inhibition itself and the augmentation of anti-cancer treatment efficacy by interfering with HIF-1α-mediated signaling. The anti-cancer effect of plant-derived phytochemicals has been evaluated, and they have been found to possess significant therapeutic potentials against numerous cancer types. A better understanding of phytochemicals is indispensable for establishing advanced strategies for cancer therapy. This article reviews the anti-cancer effect of phytochemicals in connection with HIF-1α regulation.
Collapse
Affiliation(s)
- Ba Da Yun
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea;
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|