1
|
Barathan M, Ham KJ, Wong HY, Law JX. The Role of Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles in Modulating Dermal Fibroblast Activity: A Pathway to Enhanced Tissue Regeneration. BIOLOGY 2025; 14:150. [PMID: 40001918 PMCID: PMC11852171 DOI: 10.3390/biology14020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Extracellular vesicles (EVs) secreted by umbilical cord-derived mesenchymal stem cells (UC-MSCs) hold significant promise as therapeutic agents in regenerative medicine. This study investigates the effects of UC-MSC-derived EVs on dermal fibroblast function, and their potential in wound healing applications. EVs were characterized by nanoparticle tracking analysis and transmission electron microscopy, revealing a mean size of 118.6 nm, consistent with exosomal properties. Dermal fibroblasts were treated with varying concentrations of EVs (25-100 µg/mL), and their impacts on cellular metabolism, mitochondrial activity, reactive oxygen species (ROS) production, wound closure, inflammatory cytokine secretion, growth factor production, and extracellular matrix (ECM) gene expression were evaluated. At lower concentrations (25-50 µg/mL), EVs significantly enhanced fibroblast metabolic and mitochondrial activity. However, higher concentrations (≥75 µg/mL) increased ROS levels, suggesting potential hormetic effects. EVs also modulated inflammation by reducing pro-inflammatory cytokines (IL-6, TNF-α) while promoting pro-regenerative cytokines (IL-33, TGF-β). Treatment with 50 µg/mL of EVs optimally stimulated wound closure and growth factor secretion (VEGF, BDNF, KGF, IGF), and upregulated ECM-related gene expression (type I and III collagen, fibronectin). These findings demonstrate that UC-MSC-derived EVs exert multifaceted effects on dermal fibroblast function, including enhanced cellular energetics, stimulation of cell migration, regulation of inflammation, promotion of growth factor production, and increased ECM synthesis. This study highlights the potential of EVs as a novel therapeutic strategy for wound healing and tissue regeneration, emphasizing the importance of optimizing EV concentration for maximal therapeutic efficacy.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Kow Jack Ham
- Humanrace Sdn. Bhd., 8-5, Setia Avenue, Jalan Setia Prima (S) U13/S, Setia Alam, Seksyen 13, Shah Alam 40170, Selangor, Malaysia; (K.J.H.); (H.Y.W.)
- Nexus Scientific Sdn. Bhd., 8-5, Setia Avenue, Jalan Setia Prima (S) U13/S, Setia Alam, Seksyen 13, Shah Alam 40170, Selangor, Malaysia
| | - Hui Yin Wong
- Humanrace Sdn. Bhd., 8-5, Setia Avenue, Jalan Setia Prima (S) U13/S, Setia Alam, Seksyen 13, Shah Alam 40170, Selangor, Malaysia; (K.J.H.); (H.Y.W.)
- Nexus Scientific Sdn. Bhd., 8-5, Setia Avenue, Jalan Setia Prima (S) U13/S, Setia Alam, Seksyen 13, Shah Alam 40170, Selangor, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
2
|
Joshi JM, Muttigi MS, Upadhya R, Seetharam RN. An overview of the current advances in the treatment of inflammatory diseases using mesenchymal stromal cell secretome. Immunopharmacol Immunotoxicol 2023:1-11. [PMID: 36786742 DOI: 10.1080/08923973.2023.2180388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The growing interest in mesenchymal stromal cell (MSC) therapy has been leading to the utilization of its therapeutic properties in a variety of inflammatory diseases. The clinical translation of the related research from bench to bedside is cumbersome due to some obvious limitations of cell therapy. It is evident from the literature that the MSC secretome components mediate their wide range of functions. Cell-free therapy using MSC secretome is being considered as an emerging and promising area of biotherapeutics. The secretome mainly consists of bioactive factors, free nucleic acids, and extracellular vesicles. Constituents of the secretome are greatly influenced by the cell's microenvironment. The broad array of immunomodulatory properties of MSCs are now being employed to target inflammatory diseases. This review focuses on the emerging MSC secretome therapies for various inflammatory diseases. The mechanism of action of the various anti-inflammatory factors is discussed. The potential of MSC secretome as a viable anti-inflammatory therapy is deliberated.
Collapse
Affiliation(s)
- Jahnavy Madhukar Joshi
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manjunatha S Muttigi
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghavendra Upadhya
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Ahmadi M, Hassanpour M, Rezaie J. Engineered extracellular vesicles: A novel platform for cancer combination therapy and cancer immunotherapy. Life Sci 2022; 308:120935. [PMID: 36075472 DOI: 10.1016/j.lfs.2022.120935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs), phospholipid membrane-bound vesicles, produced by most cells, contribute to cell-cell communication. They transfer several proteins, lipids, and nucleic acids between cells both locally and systemically. Owing to the biocompatibility and immune activity of EVs, therapeutic approaches using these vesicles as drug delivery systems are being developed. Different methods are used to design more effective engineered EVs, which can serve as smart tools in cancer therapy and immunotherapy. Recent progress in the field of targeted-cancer therapy has led to the gradual use of engineered EVs in combinational therapy to combat heterogeneous tumor cells and multifaceted tumor microenvironments. The high plasticity, loading ability, and genetic manipulation capability of engineered EVs have made them the ideal platforms to realize numerous combinations of cancer therapy approaches. From the combination therapy view, engineered EVs can co-deliver chemotherapy with various therapeutic agents to target tumor cells effectively, further taking part in immunotherapy-related cancer combination therapy. However, a greater number of studies were done in pre-clinical platforms and the clinical translation of these studies needs further scrutiny because some challenges are associated with the application of engineered EVs. Given the many therapeutic potentials of engineered EVs, this review discusses their function in various cancer combination therapy and immunotherapy-related cancer combination therapy. In addition, this review describes the opportunities and challenges associated with the clinical application of engineered EVs.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassanpour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
4
|
Marques da Silva M, Olsson DC, Teixeira BL, Jeremias TDS, Trentin AG. Mesenchymal Stromal Cell Secretome for Therapeutic Application in Skin Wound Healing: A Systematic Review of Preclinical Studies. Cells Tissues Organs 2022; 212:567-582. [PMID: 35871510 DOI: 10.1159/000526093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/14/2022] [Indexed: 12/18/2023] Open
Abstract
Non-healing skin wounds remain a challenge in the healthcare system. In this sense, it is suggested that the secretome of mesenchymal stromal cells (MSCs) can be effective as a therapeutic strategy for regenerative medicine. Therefore, this systematic review aimed to determine the effects of treatment with a secretome derived from MSCs on the healing of skin wounds in a preclinical model of rodents (mice and rats). Studies were systematically retrieved from 6 databases and gray literature that provided 1,172 records, of which 25 met the inclusion criteria for qualitative analysis. Results revealed substantial heterogeneity among studies concerning experimental designs and methodologies, resulting in a high risk of bias. Together, the selected studies reported that treatment improved wound healing by (1) accelerating wound closure and improving skin repair quality; (2) reducing inflammation by decreasing the number of cells and inflammatory cytokines, accompanied by polarization of the M2 macrophage; (3) complete re-epithelialization and epidermal reorganization; (4) neovascularization promoted by proliferation of endothelial cells (CD34+) and increased levels of pro-angiogenic mediators; (5) better scar quality promoted by increased expression of collagen types I and III, as well as improved deposition and remodeling of collagen fibers. In conclusion, despite the need for alignment of methodological protocols and transparent reports in future studies, results show that the secretome of MSCs from different tissue sources corresponds to a promising tool of regenerative medicine for the treatment of skin wounds.
Collapse
Affiliation(s)
- Maiara Marques da Silva
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Débora Cristina Olsson
- Department of Veterinary Medicine, Federal Institute of Santa Catarina, Florianópolis, Brazil
| | - Bianca Luise Teixeira
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Talita da Silva Jeremias
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Andrea Gonçalves Trentin
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Liu X, Li X, Wu G, Qi P, Zhang Y, Liu Z, Li X, Yu Y, Ye X, Li Y, Yang D, Teng Y, Shi C, Jin X, Qi S, Liu Y, Wang S, Liu Y, Cao F, Kong Q, Wang Z, Zhang H. Umbilical Cord Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Deliver miR-21 to Promote Corneal Epithelial Wound Healing through PTEN/PI3K/Akt Pathway. Stem Cells Int 2022; 2022:1252557. [PMID: 35873535 PMCID: PMC9303509 DOI: 10.1155/2022/1252557] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/19/2022] [Accepted: 06/23/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Rapid restoration of corneal epithelium integrity after injury is particularly important for preserving corneal transparency and vision. Mesenchymal stem cells (MSCs) can be taken into account as the promising regenerative therapeutics for improvement of wound healing processes based on the variety of the effective components. The extracellular vesicles form MSCs, especially exosomes, have been considered as important paracrine mediators though transferring microRNAs into recipient cell. This study investigated the mechanism of human umbilical cord MSC-derived small extracellular vesicles (HUMSC-sEVs) on corneal epithelial wound healing. Methods HUMSC-sEVs were identified by transmission electron microscopy, nanoparticle tracking analysis, and Western blot. Corneal fluorescein staining and histological staining were evaluated in a corneal mechanical wound model. Changes in HCEC proliferation after HUMSC-sEVs or miR-21 mimic treatment were evaluated by CCK-8 and EdU assays, while migration was assessed by in vitro scratch wound assay. Full-length transcriptome sequencing was performed to identify the differentially expressed genes associated with HUMSC-sEVs treatment, followed by validation via real-time PCR and Western blot. Results The sEVs derived from HUMSCs can significantly promote corneal epithelial cell proliferation, migration in vitro, and corneal epithelial wound healing in vivo. Similar effects were obtained after miR-21 transfection, while the beneficial effects of HUMSC-sEVs were partially negated by miR-21 knockdown. Results also show that the benefits are associated with decreased PTEN level and activated the PI3K/Akt signaling pathway in HCECs. Conclusion HUMSC-sEVs could enhance the recovery of corneal epithelial wounds though restraining PTEN by transferring miR-21 and may represent a promising novel therapeutic agent for corneal wound repair.
Collapse
Affiliation(s)
- Xiaolong Liu
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xuran Li
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| | - Guangyuan Wu
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| | - Pengfei Qi
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| | - Yanyan Zhang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhiyu Liu
- Department of Laboratory Diagnostics, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xinyue Li
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu Yu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiangmei Ye
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| | - Yang Li
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| | - Dongguang Yang
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| | - Yueqiu Teng
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| | - Ce Shi
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| | - Xin Jin
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Sen Qi
- Department of Hematology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuting Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shudan Wang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Fenglin Cao
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| | - Qingran Kong
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhenkun Wang
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| | - Hong Zhang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Wu X, Jin S, Ding C, Wang Y, He D, Liu Y. Mesenchymal Stem Cell-Derived Exosome Therapy of Microbial Diseases: From Bench to Bed. Front Microbiol 2022; 12:804813. [PMID: 35046923 PMCID: PMC8761948 DOI: 10.3389/fmicb.2021.804813] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial diseases are a global health threat, leading to tremendous casualties and economic losses. The strategy to treat microbial diseases falls into two broad categories: pathogen-directed therapy (PDT) and host-directed therapy (HDT). As the typical PDT, antibiotics or antiviral drugs directly attack bacteria or viruses through discerning specific molecules. However, drug abuse could result in antimicrobial resistance and increase infectious disease morbidity. Recently, the exosome therapy, as a HDT, has attracted extensive attentions for its potential in limiting infectious complications and targeted drug delivery. Mesenchymal stem cell-derived exosomes (MSC-Exos) are the most broadly investigated. In this review, we mainly focus on the development and recent advances of the application of MSC-Exos on microbial diseases. The review starts with the difficulties and current strategies in antimicrobial treatments, followed by a comprehensive overview of exosomes in aspect of isolation, identification, contents, and applications. Then, the underlying mechanisms of the MSC-Exo therapy in microbial diseases are discussed in depth, mainly including immunomodulation, repression of excessive inflammation, and promotion of tissue regeneration. In addition, we highlight the latest progress in the clinical translation of the MSC-Exo therapy, by summarizing related clinical trials, routes of administration, and exosome modifications. This review will provide fundamental insights and future perspectives on MSC-Exo therapy in microbial diseases from bench to bedside.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
7
|
Xiao H, Wu D, Yang T, Fu W, Yang L, Hu C, Wan H, Hu X, Zhang C, Wu T. Extracellular vesicles derived from HBMSCs improved myocardial infarction through inhibiting zinc finger antisense 1 and activating Akt/Nrf2/HO-1 pathway. Bioengineered 2022; 13:905-916. [PMID: 34974805 PMCID: PMC8805844 DOI: 10.1080/21655979.2021.2014389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
Myocardial infarction (MI) is believed to be one of the most common cardiovascular diseases, and it is seriously threatening the health of people in the world. The extracellular vesicles (EVs) isolated from mesenchymal stem cells and zinc finger antisense 1 (ZFAS1) have been believed to be involved in the regulation of MI, but the mechanism has not been fully clarified. Left anterior descending artery ligation was used to establish MI animal model, hypoxia treatment was applied to establish MI cell model. CCK8, transwell, and wound healing methods were applied to measure cell proliferation, invasion, and migration. Overexpression of ZFAS1 was established via transfecting pcDNA-ZFAS1. Overexpression of ZFAS1 significantly reversed the influence of EVs on cell migration, invasion, and apoptosis. Similar effect of EVs and ZFAS1 on morphological changes of MI rat heart tissues were also observed. The activation of Akt/Nrf2/HO-1 pathway by EVs was remarkably suppressed by pcDNA-ZFAS1. Inhibitor of Akt/Nrf2/HO-1 pathway remarkably reversed the impact of EVs on the cell viability. EVs might improve MI through inhibiting ZFAS1 and promoting Akt/Nrf2/HO-1 pathway. This study might provide a new thought for the prevention and treatment of MI damage through regulating ZFAS1 or Akt/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Huiling Xiao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dan Wu
- Department of medical technology, Jiangxi Health Vocational College, Nanchang, Jiangxi, China
| | - Tao Yang
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Fu
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lu Yang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chenkai Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hongbing Wan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaomin Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chenjie Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tao Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Salamonsen LA. Menstrual Fluid Factors Mediate Endometrial Repair. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:779979. [PMID: 36304016 PMCID: PMC9580638 DOI: 10.3389/frph.2021.779979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Menstruation is a process whereby the outer functionalis layer of the endometrium is shed each month in response to falling progesterone and estrogen levels in a non-conception cycle. Simultaneously with the tissue breakdown, the surface is re-epithelialized, protecting the wound from infection. Once menstruation is complete and estrogen levels start to rise, regeneration progresses throughout the proliferative phase of the cycle, to fully restore endometrial thickness. Endometrial repair is unique compared to tissue repair elsewhere in the adult, in that it is rapid, scar-free and occurs around 400 times during each modern woman's reproductive life. The shedding tissue and that undergoing repair is bathed in menstrual fluid, which contains live cells, cellular debris, fragments of extracellular matrix, activated leukocytes and their products, soluble cellular components and extracellular vesicles. Proteomic and other analyses have revealed some detail of these components. Menstrual fluid, along with a number of individual proteins enhances epithelial cell migration to cover the wound. This is shown in endometrial epithelial and keratinocyte cell culture models, in an ex vivo decellularized skin model and in pig wounds in vivo. Thus, the microenvironment provided by menstrual fluid, is likely responsible for the unique rapid and scar-free repair of this remarkable tissue. Insight gained from analysis of this fluid is likely to be of value not only for treating endometrial bleeding problems but also in providing potential new therapies for poorly repairing wounds such as those seen in the aged and in diabetics.
Collapse
|
9
|
Morbidelli L, Genah S, Cialdai F. Effect of Microgravity on Endothelial Cell Function, Angiogenesis, and Vessel Remodeling During Wound Healing. Front Bioeng Biotechnol 2021; 9:720091. [PMID: 34631676 PMCID: PMC8493071 DOI: 10.3389/fbioe.2021.720091] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Wound healing is a complex phenomenon that involves different cell types with various functions, i.e., keratinocytes, fibroblasts, and endothelial cells, all influenced by the action of soluble mediators and rearrangement of the extracellular matrix (ECM). Physiological angiogenesis occurs in the granulation tissue during wound healing to allow oxygen and nutrient supply and waste product removal. Angiogenesis output comes from a balance between pro- and antiangiogenic factors, which is finely regulated in a spatial and time-dependent manner, in order to avoid insufficient or excessive nonreparative neovascularization. The understanding of the factors and mechanisms that control angiogenesis and their change following unloading conditions (in a real or simulated space environment) will allow to optimize the tissue response in case of traumatic injury or medical intervention. The potential countermeasures under development to optimize the reparative angiogenesis that contributes to tissue healing on Earth will be discussed in relation to their exploitability in space.
Collapse
Affiliation(s)
| | - Shirley Genah
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Francesca Cialdai
- ASA Campus Joint Laboratory, ASA Research Division & Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
10
|
Claridge B, Lozano J, Poh QH, Greening DW. Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities. Front Cell Dev Biol 2021; 9:734720. [PMID: 34616741 PMCID: PMC8488228 DOI: 10.3389/fcell.2021.734720] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) hold great promise as therapeutic modalities due to their endogenous characteristics, however, further bioengineering refinement is required to address clinical and commercial limitations. Clinical applications of EV-based therapeutics are being trialed in immunomodulation, tissue regeneration and recovery, and as delivery vectors for combination therapies. Native/biological EVs possess diverse endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype. Moreover, EVs are important components of paracrine signaling in stem/progenitor cell-based therapies, are employed as standalone therapies, and can be used as a drug delivery system. Despite remarkable utility of native/biological EVs, they can be improved using bio/engineering approaches to further therapeutic potential. EVs can be engineered to harbor specific pharmaceutical content, enhance their stability, and modify surface epitopes for improved tropism and targeting to cells and tissues in vivo. Limitations currently challenging the full realization of their therapeutic utility include scalability and standardization of generation, molecular characterization for design and regulation, therapeutic potency assessment, and targeted delivery. The fields' utilization of advanced technologies (imaging, quantitative analyses, multi-omics, labeling/live-cell reporters), and utility of biocompatible natural sources for producing EVs (plants, bacteria, milk) will play an important role in overcoming these limitations. Advancements in EV engineering methodologies and design will facilitate the development of EV-based therapeutics, revolutionizing the current pharmaceutical landscape.
Collapse
Affiliation(s)
- Bethany Claridge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jonathan Lozano
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|