1
|
Chen P, Miao L, Zhang L, Du J, Guo M, Shi D. Association between serum carotenoids and hyperuricemia: a cross-sectional study based on NHANES 2001-2006. Front Nutr 2024; 11:1476031. [PMID: 39574526 PMCID: PMC11580262 DOI: 10.3389/fnut.2024.1476031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/15/2024] [Indexed: 11/24/2024] Open
Abstract
Purpose This study aims to investigate the association between serum carotenoids and hyperuricemia. Methods Data were sourced from the National Health and Nutrition Examination Survey (NHANES) between 2001 and 2006. Hyperuricemia was defined as serum uric acid (UA) levels of ≥7 mg/dL for males and ≥ 6 mg/dL for females. Serum carotenoid levels were measured using high-performance liquid chromatography. Multivariate linear regression was used to analyze the correlation between serum carotenoids and UA levels. Multivariate logistic regression and restricted cubic spline (RCS) analyses were performed to explore the potential association between serum carotenoids and hyperuricemia. Additionally, subgroup and interaction analyses were conducted to determine variations across different population groups. Result This cross-sectional study included 13,561 participants. Multivariate linear regression analysis revealed that higher levels of serum carotenoids were correlated with lower UA levels. Specifically, the beta coefficients (β) and 95% confidence intervals (CIs) were as follows: α-carotene (-0.23 [-0.31, -0.15]), β-carotene (-0.30 [-0.38, -0.21]), β-cryptoxanthin (-0.17 [-0.25, -0.09]), lutein/zeaxanthin (-0.12 [-0.20, -0.04]), and total serum carotenoids (-0.25 [-0.33,-0.16]). However, lycopene showed no significant correlation with UA (-0.01 [-0.09, 0.08]). Multivariate logistic regression analysis indicates a significant inverse association between serum carotenoids and the risk of hyperuricemia. The odds ratios (ORs) and 95%CIs were as follows: α-carotene (0.61 [0.49, 0.77]), β-carotene (0.67 [0.51, 0.86]), β-cryptoxanthin (0.69 [0.51, 0.88]), lutein/zeaxanthin (0.72 [0.56, 0.97]), lycopene (0.82 [0.67, 1.00]) and total serum carotenoids (0.73 [0.57, 0.92]). RCS analysis indicated a potential nonlinear relationship between lycopene and hyperuricemia, with an inflection point at 33.45 μg/dL. Subgroup and interaction analyses demonstrated that the inverse association remained consistent across various demographic groups. Conclusion This study found that higher serum carotenoid levels are associated with lower UA levels and reduced risk of hyperuricemia. Notably, while lycopene was associated with reduced hyperuricemia risk, its effect showed some heterogeneity.
Collapse
Affiliation(s)
- Pengfei Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Miao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lixiao Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianpeng Du
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Moreno LG, César NR, Melo DS, Figueiró MTO, Dos Santos EC, Evangelista-Silva PH, de Sousa Santos C, Costa KB, Rocha-Vieira E, Dias-Peixoto MF, Castro Magalhães FD, Esteves EA. A MUFA/carotenoid-rich oil ameliorated insulin resistance by improving inflammation and oxidative stress in obese rats. Mol Cell Endocrinol 2024; 581:112110. [PMID: 37981187 DOI: 10.1016/j.mce.2023.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Obesity is associated with low-grade inflammation and oxidative stress, leading to insulin resistance and type II diabetes. Caryocar brasiliense pulp oil (pequi oil - PO) is rich in oleic acid and carotenoids and positively implicated in regulating inflammation and oxidative stress. This study investigated PO's antioxidant and anti-inflammatory effects in a diet-induced obesity model. Male Wistar rats were allocated into three experimental groups: Control (CD), Western Diet (WD), and Western Diet, with 27% of lard switched by PO (WDP). Metabolic, inflammatory, and oxidative stress biomarkers were evaluated after 12 weeks of diet protocols in liver and adipose tissue. WDP rats gained less body mass and epididymal fat, had less hepatic fat infiltration, and were more glucose-tolerant and insulin-sensitive than WD (p < 0.05). In the liver, the WDP group had the highest non-enzymatic antioxidant capacity, SOD and GPx activities, CAT, SOD II, and HSP72 expression compared to WD (p < 0.05). Adipose tissue IL-6 and TNF were reduced, and IL-10 was increased in WDP compared to WD (p < 0.05). Our data suggest that the partial replacement of lard by PO in a Western diet prevented visceral fat accumulation and contributed to reducing inflammation in adipose tissue and liver oxidative stress, improving obesity-related insulin resistance.
Collapse
Affiliation(s)
- Lauane Gomes Moreno
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Nayara Rayane César
- Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Dirceu Sousa Melo
- Instituto de Ciências Naturais, Departamento de Biologia, Universidade Federal de Lavras - UFLA, Aquenta Sol, Lavras, MG, 37200-900, Brazil.
| | - Maria Thereza Otoni Figueiró
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Edivânia Cordeiro Dos Santos
- Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | | | - Carina de Sousa Santos
- Faculdade de Ciências da Saúde, Curso de Nutrição, Universidade Federal de Grande Dourados - UFGD, Dourados, Brazil.
| | - Karine Beatriz Costa
- Programa de Pós-graduação Em Ciências Aplicadas à Saúde - PPgCAS, Universidade Federal de Juiz de Fora - UFJF, Governador Valadares, MG, 35010-180, Brazil.
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil; Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Marco Fabrício Dias-Peixoto
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil; Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Flávio de Castro Magalhães
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil; Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Elizabethe Adriana Esteves
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil; Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| |
Collapse
|
3
|
Zhang Y, Cai X, Hou Y, Chen W, Zhang J. Triphenyltin Influenced Carotenoid-Based Coloration in Coral Reef Fish, Amphiprion ocellaris, by Disrupting Carotenoid Metabolism. TOXICS 2023; 12:13. [PMID: 38250969 PMCID: PMC10820653 DOI: 10.3390/toxics12010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
Triphenyltin (TPT), a kind of persistent pollutant, is prevalent in the aquatic environment and could pose a threat to coral reef fish. However, little is known about the toxicity of TPT on coral reef fish, especially regarding the representative characteristics of body coloration. Therefore, this study chose the clownfish (Amphiprion ocellaris) in order to investigate the effects of TPT exposure on its carotenoid-based body coloration under the environmentally relevant concentrations (0, 1, 10 and 100 ng/L). After TPT exposure for 60 d, the carotenoid contents were decreased and histological damage in the liver was found, shown as nuclear pyknosis and shift, lipid deposition and fibrotic tissue hyperplasia. Liver transcriptomic analysis showed that TPT exposure interfered with oxidative phosphorylation and fatty acid metabolism pathways, which related to carotenoids uptake and metabolism. Furthermore, TPT exposure led to oxidative damage in the liver, which is responsible for the changes in the antioxidant capacity of enzymes, including GSH, MDA, POD, CAT and T-SOD. TPT exposure also affected the genes (Scarb1, CD36, Stard3 and Stard5) related to carotenoid absorption and transport, as well as the genes (GstP1 and Bco2) related to carotenoid deposition and decomposition. Taken together, our results demonstrate that TPT influenced carotenoid-based coloration in coral reef fish by disrupting carotenoid metabolism, which complements the ecotoxicological effects and toxic mechanisms of TPT and provides data for the body color biology of coral reef fishes.
Collapse
Affiliation(s)
- Yan Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Z.); (Y.H.); (W.C.)
| | - Xingwei Cai
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 570206, China;
| | - Yu Hou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Z.); (Y.H.); (W.C.)
| | - Wenming Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Z.); (Y.H.); (W.C.)
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Z.); (Y.H.); (W.C.)
- Hainan Provincial Key Laboratory of Ecological Civilization and Integrated Land-Sea Development, Haikou 571158, China
| |
Collapse
|
4
|
Song A, Mao Y, Wei H. GLUT5: structure, functions, diseases and potential applications. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1519-1538. [PMID: 37674366 PMCID: PMC10582729 DOI: 10.3724/abbs.2023158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/19/2023] [Indexed: 09/08/2023] Open
Abstract
Glucose transporter 5 (GLUT5) is a membrane transporter that specifically transports fructose and plays a key role in dietary fructose uptake and metabolism. In recent years, a high fructose diet has occupied an important position in the daily intake of human beings, resulting in a significant increase in the incidence of obesity and metabolic diseases worldwide. Over the past few decades, GLUT5 has been well understood to play a significant role in the pathogenesis of human digestive diseases. Recently, the role of GLUT5 in human cancer has received widespread attention, and a large number of studies have focused on exploring the effects of changes in GLUT5 expression levels on cancer cell survival, metabolism and metastasis. However, due to various difficulties and shortcomings, the molecular structure and mechanism of GLUT5 have not been fully elucidated, which to some extent prevents us from revealing the relationship between GLUT5 expression and cell carcinogenesis at the protein molecular level. In this review, we summarize the current understanding of the structure and function of mammalian GLUT5 and its relationship to intestinal diseases and cancer and suggest that GLUT5 may be an important target for cancer therapy.
Collapse
Affiliation(s)
- Aqian Song
- Department of GastroenterologyBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
| | - Yuanpeng Mao
- Department of GastroenterologyPeking University Ditan Teaching HospitalBeijing100015China
| | - Hongshan Wei
- Department of GastroenterologyBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
- Department of GastroenterologyPeking University Ditan Teaching HospitalBeijing100015China
| |
Collapse
|