1
|
Zhu L, Liang Y, Yang L, Yang Q, Yin J, Wang T, Xu X, Zhang Q. Helicobacter mastomyrinus infection induces autoimmune hepatitis in mice. J Transl Autoimmun 2025; 10:100275. [PMID: 39981114 PMCID: PMC11840492 DOI: 10.1016/j.jtauto.2025.100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025] Open
Abstract
Background Autoimmune hepatitis (AIH) is a chronic progressive liver disease caused by the immune system mistakenly attacking its own hepatocytes. The role of the gut microbiome in the pathogenesis and progression of AIH is of considerable significance. However, the dearth of suitable animal models has significantly constrained advancements in the pathogenesis and the development of therapeutic strategies for AIH. Helicobacter mastomyrinus (H. mastomyrinus, Hm) is a potentially zoonotic pathogenic microorganism capable of causing diseases of the enterohepatic system in rodent laboratory animals. Nevertheless, research on its role and mechanisms in causing liver disease is severely limited. Methods In this study, male BALB/c mice were infected with Hm isolate Hm-17, and were sacrificed at 4 w, 8 w, 14 w and 22 w after infection, respectively. The serum was collected for detecting a number of AIH indicators, including the aminotransferases level, IgG content and autoantibody level. Additionally, the liver tissue was examined for pathological analysis, fibrosis, bacterial content, and the distribution of immune cells. Results It was observed that the infection initially caused focal necrotizing hepatitis and subsequently progressed to interface hepatitis with lymphocyte/plasma cell infiltration, as well as hypergammaglobulinemia and autoantibody reactions, predominantly to Anti-nuclear and anti-smooth muscle antibodies. Furthermore, as the infection persisted, the mice exhibited a progressive increase in liver fibrosis and mild steatosis. Despite the maintenance of a low level of Hm colonization in the liver, there was a notable infiltrate of macrophages, T and B lymphocytes. In particular, the inflammatory foci in the Hm-infected liver were highly enriched for IL17+ cells. Conclusion The present study provides an animal model of immunological liver injury induced by Hm infection that exhibits main characteristics similar to those observed in AIH-1 patients. This model may serve as a novel animal model for the study of the pathogenesis and potential therapeutic strategies for human AIH.
Collapse
Affiliation(s)
- Liqi Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Yuanyuan Liang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Linghan Yang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Qihui Yang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Jun Yin
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Tao Wang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Xiangming Xu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Taizhou University, Taizhou, China
| | - Quan Zhang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Deng R, Wang M, Chung KF, Zhu Y. Lung proteomic and metabolomic changes induced by carbon black nanoparticles and high humidity in a mouse asthma model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125631. [PMID: 39755354 DOI: 10.1016/j.envpol.2025.125631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/30/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Allergic asthma is a significant international concern in respiratory health, which can be exacerbated by the increasing levels of non-allergenic pollutants. This rise in airborne pollutants is a primary driver behind the growing prevalence of asthma, posing a health emergency. Additionally, climatic risk factors can contribute to the onset and progression of asthma. Understanding the complex interplay between pollution, climate, and asthma induction is crucial to elucidate how environmental changes intensify asthma. In this study, we investigated the proteomic and metabolomic changes in the lungs of a mouse asthma model following co-exposure to carbon black nanoparticles and high humidity, which represent airborne and climatic factors, respectively. An asthma model was established using ovalbumin, and mice were intratracheally instilled with 15 or 30 μg/kg of carbon black and simultaneously exposed to either 70% or 90% relative humidity. Protein and metabolite profiles from the lung were used to analyze the most significantly changed clusters, and potential biomarkers and enriched pathways were identified to dissect the adverse effects of the two risk factors. The lung proteome and metabolome are significantly altered by the co-exposure, with the effects modulated by carbon black concentration and humidity level. This study proposes 10 proteins and 18 metabolites as candidate biomarkers. The significantly enriched KEGG pathways include one protein pathway (primary immunodeficiency) and six metabolic pathways (ABC transporters, nucleotide metabolism, Parkinson's disease, purine metabolism, choline metabolism in cancer, and biosynthesis of cofactors). A joint proteomic and metabolomic analysis identifies five common pathways across both omics, namely, ABC transporters, central carbon metabolism in cancer, EGFR tyrosine kinase inhibitor resistance, glioma, and NF-kappa B signaling pathway, disturbed by the co-exposure. We provide a multi-omic basis for the health risk assessment and management of co-exposures to environmental risk factors.
Collapse
Affiliation(s)
- Rui Deng
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, China.
| | - Mingpu Wang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, China
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College, London, SW3 6LY, United Kingdom
| | - Ya Zhu
- School of Medicine, Taizhou University, Taizhou, 318000, China
| |
Collapse
|
3
|
Alharbi KS. Noncoding RNAs in hepatitis: Unraveling the apoptotic pathways. Pathol Res Pract 2024; 255:155170. [PMID: 38324964 DOI: 10.1016/j.prp.2024.155170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Hepatitis is a worldwide health issue that causes inflammation of the liver and is frequently brought on by viral infections, specifically those caused by the hepatitis B and C viruses. Although the pathophysiological causes of hepatitis are complex, recent research indicates that noncoding RNAs (ncRNAs) play a crucial role in regulating apoptosis, an essential process for maintaining liver homeostasis and advancing the illness. Noncoding RNAs have been linked to several biological processes, including apoptosis. These RNAs include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Distinct expression patterns characterising different stages of the disease have been discovered, indicating dysregulation of these non-coding RNAs in liver tissues infected with hepatitis. The complex interplay that exists between these noncoding RNAs and apoptotic effectors, including caspases and members of the Bcl-2 family, plays a role in the precarious equilibrium that regulates cell survival and death during hepatitis. The purpose of this review is to provide an overview of ncRNA-mediated apoptosis in hepatitis, as well as insights into possible therapeutic targets and diagnostic indicators.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia.
| |
Collapse
|
4
|
Zhang Y, Zhang D, Chen L, Zhou J, Ren B, Chen H. The progress of autoimmune hepatitis research and future challenges. Open Med (Wars) 2023; 18:20230823. [PMID: 38025543 PMCID: PMC10655690 DOI: 10.1515/med-2023-0823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver inflammatory disease with various immune system manifestations, showing a global trend of increased prevalence. AIH is diagnosed through histological abnormalities, clinical manifestations, and biochemical indicators. The biochemical markers involve interfacial hepatitis, transaminase abnormalities, positive autoantibodies, etc. Although AIH pathogenesis is unclear, gene mutations and immunological factors could be the leading factors. AIH usually presents as a chronic liver disease and sometimes as acute hepatitis, making it challenging to distinguish it from drug-related hepatitis due to similar clinical symptoms. Normalizing transaminases and serum IgG levels is essential in assessing the remission status of AIH treatment. Glucocorticoids and azathioprine are the first-line AIH treatment, with lifelong maintenance therapy in some patients. The quality of life and survival can be improved after appropriate treatment. However, certain limitations jeopardize the quality of treatment, including long treatment cycles, side effects, poor patient compliance, and inability to inhibit liver fibrosis and cirrhosis. Accurate AIH animal models will help us understand the pathophysiology of the disease while providing fresh perspectives for avoiding and treating AIH. This review will help us understand AIH better, from the cellular and molecular causes to the clinical features, and will provide insight into new therapy techniques with fewer side effects.
Collapse
Affiliation(s)
- Yang Zhang
- Graduate Department of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dehe Zhang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ling Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jing Zhou
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Binbin Ren
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Haijun Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
5
|
Wei X, Cheng X, Luo Y, Li X. Umbilical Cord-Derived Mesenchymal Stem Cells Attenuate S100-Induced Autoimmune Hepatitis via Modulating Th1 and Th17 Cell Responses in Mice. Stem Cells Int 2023; 2023:9992207. [PMID: 37881518 PMCID: PMC10597736 DOI: 10.1155/2023/9992207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Currently, the first-line treatment for autoimmune hepatitis (AIH) is still the combination of glucocorticoids or immunosuppressants. However, hormone and immunosuppressive therapy can cause serious side effects, such as Cushing syndrome and bone marrow suppression. Previous studies reported on the applicability and safety of mesenchymal stem cells (MSCs) to ameliorate liver inflammation and fibrosis. However, the characteristics of MSCs sources directly contribute to the different conclusions on the mechanisms underlying MSC-mediated immunoregulation. Bone marrow-derived MSCs can exert an immunosuppression effect to ameliorate the S100-induced AIH model by inhibiting several proinflammatory cytokines and upregulating of PD-L1 in liver tissue. It is not clear whether human umbilical cord-derived MSCs (hUC-MSCs) could directly inhibit liver inflammation and ultimately alleviate the dysfunction of hepatocytes in the AIH model. First, hUC-MSCs were extracted from umbilical cord tissue, and the basic biological properties and multilineage differentiation potential were examined. Second, 1 × 106 hUC-MSCs were administered intravenously to AIH mice. At the peak of the disease, serum levels of alanine aminotransferase and aspartate aminotransferase and pathologic damage to liver tissue were measured to evaluate liver function and degree of inflammation. We also observed that the infiltration of CD4+ T cells in the liver was significantly reduced. Furthermore, the frequency of the splenic IFNγ- and IL-17A- producing CD4+ T cells were also significantly decreased, while we only observed an increasing trend in Treg cells in liver tissue. Third, an RNA sequencing analysis of liver tissue was performed, which showed that in the UC-MSC-treated group, the transcriptional profiles of inflammation-related signaling pathways were significantly negatively regulated compared to those of phosphate-buffered saline-treated mice. Collectively, these findings indicated the potential of hUC-MSC to suppress immune responses in immune anomaly mediated liver disease, thus offering a potential clinical option to improve AIH.
Collapse
Affiliation(s)
- Xiaofeng Wei
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine, The First Hospital of Lanzhou University, Lanzhou City, Gansu Province 730000, China
| | - Xinhong Cheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Yang Luo
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine, The First Hospital of Lanzhou University, Lanzhou City, Gansu Province 730000, China
| | - Xun Li
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine, The First Hospital of Lanzhou University, Lanzhou City, Gansu Province 730000, China
| |
Collapse
|
6
|
Chen TT, Li XQ, Li N, Xu YP, Wang YH, Wang ZY, Zhang SN, Qi M, Zhang SH, Wei W, Wang H, Sun WY. β-arrestin2 deficiency ameliorates S-100-induced autoimmune hepatitis in mice by inhibiting infiltration of monocyte-derived macrophage and attenuating hepatocyte apoptosis. Acta Pharmacol Sin 2023; 44:2048-2064. [PMID: 37225848 PMCID: PMC10545685 DOI: 10.1038/s41401-023-01103-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/01/2023] [Indexed: 05/26/2023]
Abstract
Autoimmune hepatitis (AIH) is a progressive hepatitis syndrome characterized by high transaminase levels, interface hepatitis, hypergammaglobulinemia, and the presence of autoantibodies. Misdiagnosis or delayed treatment of AIH can lead to cirrhosis or liver failure, which poses a major risk to human health. β-Arrestin2, a key scaffold protein for intracellular signaling pathways, has been found to be involved in many autoimmune diseases such as Sjogren's syndrome and rheumatoid arthritis. However, whether β-arrestin2 plays a role in AIH remains unknown. In the present study, S-100-induced AIH was established in both wild-type mice and β-arrestin2 knockout (Arrb2 KO) mice, and the experiments identified that liver β-arrestin2 expression was gradually increased, and positively correlated to serum ANA, ALT and AST levels during AIH progression. Furthermore, β-arrestin2 deficiency ameliorated hepatic pathological damage, decreased serum autoantibody and inflammatory cytokine levels. β-arrestin2 deficiency also inhibited hepatocyte apoptosis and prevented the infiltration of monocyte-derived macrophages into the damaged liver. In vitro experiments revealed that β-arrestin2 knockdown suppressed the migration and differentiation of THP-1 cells, whereas β-arrestin2 overexpression promoted the migration of THP-1 cells, which was regulated by the activation of the ERK and p38 MAPK pathways. In addition, β-arrestin2 deficiency attenuated TNF-α-induced primary hepatocyte apoptosis by activating the Akt/GSK-3β pathway. These results suggest that β-arrestin2 deficiency ameliorates AIH by inhibiting the migration and differentiation of monocytes, decreasing the infiltration of monocyte-derived macrophages into the liver, thereby reducing inflammatory cytokines-induced hepatocytes apoptosis. Therefore, β-arrestin2 may act as an effective therapeutic target for AIH.
Collapse
Affiliation(s)
- Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Xiu-Qin Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ya-Ping Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yu-Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Zi-Ying Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Sheng-Nan Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Meng Qi
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Shi-Hao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
7
|
Wang N, Li L, Zhang P, Mehmood MA, Lan C, Gan T, Li Z, Zhang Z, Xu K, Mo S, Xia G, Wu T, Zhu H. In-silico annotation of the chemical composition of Tibetan tea and its mechanism on antioxidant and lipid-lowering in mice. Nutr Res Pract 2023; 17:682-697. [PMID: 37529260 PMCID: PMC10375330 DOI: 10.4162/nrp.2023.17.4.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Tibetan tea is a kind of dark tea, due to the inherent complexity of natural products, the chemical composition and beneficial effects of Tibetan tea are not fully understood. The objective of this study was to unravel the composition of Tibetan tea using knowledge-guided multilayer network (KGMN) techniques and explore its potential antioxidant and hypolipidemic mechanisms in mice. MATERIALS/METHODS The C57BL/6J mice were continuously gavaged with Tibetan tea extract (T group), green tea extract (G group) and ddH2O (H group) for 15 days. The activity of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in mice was detected. Transcriptome sequencing technology was used to investigate the molecular mechanisms underlying the antioxidant and lipid-lowering effects of Tibetan tea in mice. Furthermore, the expression levels of liver antioxidant and lipid metabolism related genes in various groups were detected by the real-time quantitative polymerase chain reaction (qPCR) method. RESULTS The results showed that a total of 42 flavonoids are provisionally annotated in Tibetan tea using KGMN strategies. Tibetan tea significantly reduced body weight gain and increased T-AOC and SOD activities in mice compared with the H group. Based on the results of transcriptome and qPCR, it was confirmed that Tibetan tea could play a key role in antioxidant and lipid lowering by regulating oxidative stress and lipid metabolism related pathways such as insulin resistance, P53 signaling pathway, insulin signaling pathway, fatty acid elongation and fatty acid metabolism. CONCLUSIONS This study was the first to use computational tools to deeply explore the composition of Tibetan tea and revealed its potential antioxidant and hypolipidemic mechanisms, and it provides new insights into the composition and bioactivity of Tibetan tea.
Collapse
Affiliation(s)
- Ning Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Luzhou LaoJiao Group Co. Ltd., Luzhou 646000, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Linman Li
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Puyu Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Muhammad Aamer Mehmood
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Chaohua Lan
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Tian Gan
- Ya’an Youyi Tea Co., Ltd, Ya’an 625000, China
| | - Zaixin Li
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Zhi Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Kewei Xu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Shan Mo
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Gang Xia
- Comprehensive Agricultural Service Center of Dachuan, Lushan, Ya’an 625000, China
| | - Tao Wu
- School of Food and Biological Engineering, Xihua University, Chengdu 610039, China
| | - Hui Zhu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
8
|
Qi X, Lu X, Han Y, Xing Y, Zheng Y, Cui C. Ginseng polysaccharide reduces autoimmune hepatitis inflammatory response by inhibiting PI3K/AKT and TLRs/NF-κB signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154859. [PMID: 37209603 DOI: 10.1016/j.phymed.2023.154859] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Ginseng polysaccharides (GP) have been found to exhibit significant immune regulatory effects, making them a promising candidate for treating immune-related diseases. However, their mechanism of action in immune liver injury is not yet clear. The innovation of this study lies in exploring the mechanism of action of ginseng polysaccharides (GP) in immune liver injury. While GP has been previously identified for its immune regulatory effects, this study aims to provide a clearer understanding of its therapeutic potential for immune-related liver diseases. PURPOSE The purpose of this study is to characterize low molecular weight gingeng polysaccharides (LGP), investigate their effect on ConA-induced autoimmune hepatitis (AIH), and identify their potential molecular mechanisms. METHODS LGP was extracted and purified using water-alcohol precipitation, DEAE-52 cellulose column, and Sephadex G200. And its structure was analyzed. It was then evaluated for anti-inflammatory and hepatoprotective effects in ConA-induced cells and mice, assessing cellular viability and inflammation with Cell Counting Kit-8 (CCK-8), Reverse Transcription-polymerase Chain Reaction (RT-PCR), and Western Blot, and hepatic injury, inflammation, and apoptosis with various biochemical and staining methods. RESULTS LGP is a polysaccharide composed of glucose (Glu), galactose (Gal), and arabinose (Ara), with a molar ratio of 12.9:1.6:1.0. LGP has a low crystallinity amorphous powder structure and is free from impurities. LGP enhances cell viability and reduces inflammatory factors in ConA-induced RAW264.7 cells and inhibits inflammation and hepatocyte apoptosis in ConA-induced mice. LGP inhibits Phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Toll-like receptors/Nuclear factor kappa B (TLRs/NF-κB) signaling pathways in vitro and in vivo to treat AIH. CONCLUSIONS LGP was successfully extracted and purified, exhibiting potential as a treatment for ConA-induced autoimmune hepatitis due to its ability to inhibit the PI3K/AKT and TLRs/NF-κB signaling pathways and protect liver cells from damage.
Collapse
Affiliation(s)
- Xin Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, School of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xintong Lu
- Department of Food Processing and Safety, College of Agricultural, Yanbian University, Yanji 133002, Jilin, China
| | - Yudi Han
- Food Science and Engineering, Convergence College, Yanbian University, Yanji 133002, Jilin, China
| | - Yibin Xing
- Department of Food Processing and Safety, College of Agricultural, Yanbian University, Yanji 133002, Jilin, China
| | - Yan Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, School of Pharmacy, Yanbian University, Yanji 133002, Jilin, China.
| | - Chengbi Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, School of Pharmacy, Yanbian University, Yanji 133002, Jilin, China; Department of Food Processing and Safety, College of Agricultural, Yanbian University, Yanji 133002, Jilin, China; Food Science and Engineering, Convergence College, Yanbian University, Yanji 133002, Jilin, China.
| |
Collapse
|
9
|
Chen H, Li LL, Du Y. Krüppel-like factor 15 in liver diseases: Insights into metabolic reprogramming. Front Pharmacol 2023; 14:1115226. [PMID: 36937859 PMCID: PMC10017497 DOI: 10.3389/fphar.2023.1115226] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Liver diseases, characterized by metabolic disorder, have become a global public health problem with high morbidity and mortality. Krüppel-like factor 15 (KLF15) is a zinc-finger transcription factor mainly enriched in liver. Increasing evidence suggests that hepatic KLF15 is activated rapidly during fasting, and contributes to the regulation of gluconeogenesis, lipid, amino acid catabolism, bile acids, endobiotic and xenobiotic metabolism. This review summarizes the latest advances of KLF15 in metabolic reprogramming, and explore the function of KLF15 in acute liver injury, hepatitis B virus, and autoimmune hepatitis. which aims to evaluate the potential of KLF15 as a therapeutic target and prognostic biomarker for liver diseases.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Lan-Lan Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Yan Du
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
- *Correspondence: Yan Du,
| |
Collapse
|
10
|
Apoptosis of hepatocellular carcinoma HepG2 cells induced by seleno-ovalbumin (Se-OVA) via mitochondrial pathway. Int J Biol Macromol 2021; 192:82-89. [PMID: 34619275 DOI: 10.1016/j.ijbiomac.2021.09.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 02/07/2023]
Abstract
Seleno-ovalbumin (Se-OVA) was a selenium conjugating protein synthesized by the combination of ovalbumin (OVA) and inorganic selenium. In this paper, the structure of Se-OVA was characterized, and the anticancer effect of Se-OVA on hepatocellular carcinoma HepG2 cells was investigated. Through FT-IR, UV, endogenous fluorescence and XRD assays, it was found that the structural characterization of Se-OVA changed after seleno-modification. In addition, the cell assays showed that Se-OVA could induce apoptosis of HepG2 cells by arresting cell cycle in S phase, generating intracellular reactive oxygen species, reducing the mitochondrial transmembrane potential, and triggering the Bax- and Bcl-2-mediated mitochondria apoptosis pathway. These findings revealed that Se-OVA might serve as a novel anticancer drug for cancer adjuvant therapy.
Collapse
|