1
|
Saeki Y, Kato E, Tokudome Y. A Consideration on Infinite and Finite Dosing in Skin Permeation Using Reconstructed Models. Skin Pharmacol Physiol 2024; 37:109-115. [PMID: 39369715 PMCID: PMC11797928 DOI: 10.1159/000541325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION When vitamin derivatives penetrate the epidermis, they release active compound such as ascorbic acids (AsA) and tocopherols via enzymatic digestion of chemical modifiers. To determine the transdermal penetration of the derivatives, the total permeation of both the derivatives and their active compounds that released from the derivatives should be considered. In this study, we established a skin penetration test method using a cultured, reconstructed skin model with active epidermal enzymes. And we analyzed two vitamin derivatives with different chemical properties: magnesium ascorbyl phosphate (APM) and sodium tocopheryl phosphate (TPNa), both of which has been confirmed their skin permeation in the reconstructed models and the digestion to AsA and α-tocopherol by the epidermal enzymes, respectively. METHODS We prepared the 1% of water solution containing either APM or TPNa. Then, we tested the cumulative permeation of the derivatives at 2 application volumes, 25 μL/cm2 (finite dosing) and 85 μL/cm2 (infinite dosing), on cultured reconstructed skin and observed the permeation of the permeants every 2 h up to 24 h. RESULTS When the applied formula was used to assess the evaporation rate to determine an end point of the test system, all the water evaporated in 6 h in finite model and in 8 h in infinite model. Both models showed that the cumulative permeation of the active compounds increased and a constant flux until 8 h after application; however, the flux decreased thereafter, indicating that the decreased flux depended on an end point of the test system. This indicated that our test system can analyze the permeation of the vitamin derivatives within 8 h before reaching the end point. CONCLUSION Using an infinite model of this system, we assessed the cumulative permeation of vitamin derivatives within 8 h using a reconstructed skin model. INTRODUCTION When vitamin derivatives penetrate the epidermis, they release active compound such as ascorbic acids (AsA) and tocopherols via enzymatic digestion of chemical modifiers. To determine the transdermal penetration of the derivatives, the total permeation of both the derivatives and their active compounds that released from the derivatives should be considered. In this study, we established a skin penetration test method using a cultured, reconstructed skin model with active epidermal enzymes. And we analyzed two vitamin derivatives with different chemical properties: magnesium ascorbyl phosphate (APM) and sodium tocopheryl phosphate (TPNa), both of which has been confirmed their skin permeation in the reconstructed models and the digestion to AsA and α-tocopherol by the epidermal enzymes, respectively. METHODS We prepared the 1% of water solution containing either APM or TPNa. Then, we tested the cumulative permeation of the derivatives at 2 application volumes, 25 μL/cm2 (finite dosing) and 85 μL/cm2 (infinite dosing), on cultured reconstructed skin and observed the permeation of the permeants every 2 h up to 24 h. RESULTS When the applied formula was used to assess the evaporation rate to determine an end point of the test system, all the water evaporated in 6 h in finite model and in 8 h in infinite model. Both models showed that the cumulative permeation of the active compounds increased and a constant flux until 8 h after application; however, the flux decreased thereafter, indicating that the decreased flux depended on an end point of the test system. This indicated that our test system can analyze the permeation of the vitamin derivatives within 8 h before reaching the end point. CONCLUSION Using an infinite model of this system, we assessed the cumulative permeation of vitamin derivatives within 8 h using a reconstructed skin model.
Collapse
Affiliation(s)
- Yuko Saeki
- Active Chemical Group, Functional Co-Creation Chemistry Department, Institute for Polymer Technology, Resonac Co., Tokyo, Japan
| | - Eiko Kato
- Active Chemical Group, Functional Co-Creation Chemistry Department, Institute for Polymer Technology, Resonac Co., Tokyo, Japan
| | - Yoshihiro Tokudome
- Laboratory of Cosmetic Sciences, Graduate School of Science and Engineering/Advanced Health Sciences, Saga University, Saga, Japan
- Laboratory of Cosmetic Sciences, Institute of Ocean Energy, Saga University, Saga, Japan
| |
Collapse
|
2
|
Başar Kılıç Ş, Taheri S, Mehmetbeyoğlu Duman E, Öksüm Solak E, Yılmaz Şükranlı Z, Rassoulzadegan M, Borlu M. Psoriatic skin transcript phenotype: androgen/estrogen and cortisone/cortisol imbalance with increasing DNA damage response. Mol Biol Rep 2024; 51:933. [PMID: 39180588 DOI: 10.1007/s11033-024-09782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/04/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Patients prone to psoriasis suffer after a breakdown of the epidermal barrier and develop poorly healing lesions with abnormal proliferation of keratinocytes. Strong inflammatory reactions with genotoxicity (short telomeres) suggest impaired immune defenses with DNA damage repair response (DDR) in patients with psoriasis. Recent evidence indicates the existence of crosstalk mechanisms linking the DDR machinery and hormonal signaling pathways that cooperate to influence both progressions of many diseases and responses to treatment. The aim of this study was to clarify whether steroid biosynthesis and genomic stability markers are altered in parallel during the formation of psoriatic skin. Understanding the interaction of the steroid pathway and DNA damage response is crucial to addressing underlying fundamental issues and managing resulting epidermal barrier disruption in psoriasis. METHODS Skin (Lesional, non-lesional) and blood samples from twenty psoriasis patients and fifteen healthy volunteers were collected. Real-Time-PCR study was performed to assess levels of known transcripts such as: estrogen (ESR1, ESR2), androgen (AR), glucocorticoid/mineralocorticoid receptors (NR3C1, NR3C2), HSD11B1/HSD11B2, and DNA damage sensors (SMC1A, TREX1, TREX2, SSBP3, RAD1, RAD18, EXO1, POLH, HUS1). RESULTS We found that ESR1, ESR2, HSD11B1, NR3C1, NR3C2, POLH, and SMC1A transcripts were significantly decreased and AR, TREX1, RAD1, and SSBP3 transcripts were increased dramatically in the lesional skin compared to skin samples of controls. CONCLUSION We found that the regulation of the steroidogenic pathway was disrupted in the lesional tissue of psoriasis patients and that a sufficient glucocorticoid and mineralocorticoid response did not form and the estrogen/androgen balance was altered in favour of androgens. We suggest that an increased androgen response in the presence of DDR increases the risk of developing psoriasis. Although this situation may be the cause or the consequence of a disruption of the epidermal barrier, our data suggest developing new therapeutic strategies.
Collapse
Affiliation(s)
- Şeyma Başar Kılıç
- Dermatology and Venereology Department, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Serpil Taheri
- Medical Biology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Ecmel Mehmetbeyoğlu Duman
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Department of Cancer and Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| | - Eda Öksüm Solak
- Dermatology and Venereology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Minoo Rassoulzadegan
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Murat Borlu
- Dermatology and Venereology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
3
|
Cope H, Elsborg J, Demharter S, McDonald JT, Wernecke C, Parthasarathy H, Unadkat H, Chatrathi M, Claudio J, Reinsch S, Avci P, Zwart SR, Smith SM, Heer M, Muratani M, Meydan C, Overbey E, Kim J, Chin CR, Park J, Schisler JC, Mason CE, Szewczyk NJ, Willis CRG, Salam A, Beheshti A. Transcriptomics analysis reveals molecular alterations underpinning spaceflight dermatology. COMMUNICATIONS MEDICINE 2024; 4:106. [PMID: 38862781 PMCID: PMC11166967 DOI: 10.1038/s43856-024-00532-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Spaceflight poses a unique set of challenges to humans and the hostile spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood. METHODS To address this issue, we used a systems biology approach utilizing NASA's Open Science Data Repository (OSDR) on space flown murine transcriptomic datasets focused on the skin, biochemical profiles of 50 NASA astronauts and human transcriptomic datasets generated from blood and hair samples of JAXA astronauts, as well as blood samples obtained from the NASA Twins Study, and skin and blood samples from the first civilian commercial mission, Inspiration4. RESULTS Key biological changes related to skin health, DNA damage & repair, and mitochondrial dysregulation are identified as potential drivers for skin health risks during spaceflight. Additionally, a machine learning model is utilized to determine gene pairings associated with spaceflight response in the skin. While we identified spaceflight-induced dysregulation, such as alterations in genes associated with skin barrier function and collagen formation, our results also highlight the remarkable ability for organisms to re-adapt back to Earth via post-flight re-tuning of gene expression. CONCLUSION Our findings can guide future research on developing countermeasures for mitigating spaceflight-associated skin damage.
Collapse
Affiliation(s)
- Henry Cope
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Jonas Elsborg
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Abzu, Copenhagen, 2150, Denmark
| | | | - J Tyson McDonald
- Department of Radiation Medicine, School of Medicine, Georgetown University, Washington D.C., WA, 20057, USA
| | - Chiara Wernecke
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- Department of Aerospace and Geodesy, TUM School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - Hari Parthasarathy
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- College of Engineering and Haas School of Business, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Hriday Unadkat
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- School of Engineering and Applied Science, Princeton University, Princeton, NJ, 08540, USA
| | - Mira Chatrathi
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- College of Letters and Science, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jennifer Claudio
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett field, CA, USA
| | - Sigrid Reinsch
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett field, CA, USA
| | - Pinar Avci
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337, Munich, Germany
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | - Scott M Smith
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, 77058, USA
| | - Martina Heer
- IU International University of Applied Sciences, Erfurt and University of Bonn, Bonn, Germany
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Eliah Overbey
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jangkeun Kim
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Christopher R Chin
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, 10065, USA
| | - Jonathan C Schisler
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, 10065, USA
| | - Nathaniel J Szewczyk
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Craig R G Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Amr Salam
- St John's Institute of Dermatology, King's College London, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Tsukui K, Suzuki M, Amma M, Tokudome Y. Ionic composition of Shotokuseki extract alters cell differentiation and lipid metabolism in three-dimensional cultured human epidermis. Cytotechnology 2024; 76:279-290. [PMID: 38736726 PMCID: PMC11082095 DOI: 10.1007/s10616-024-00616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/06/2024] [Indexed: 05/14/2024] Open
Abstract
Corneocytes and intercellular lipids form the stratum corneum. The content and composition of intercellular lipids in the stratum corneum significantly affect skin barrier function. The purpose of this study was to demonstrate the effect of Shotokuseki extract (SE) on intercellular lipid production and metabolism in human three-dimensional cultured human epidermis. SE or ion mixtures containing five common ions were applied to three-dimensional cultured human epidermis for 2-8 days for each assay. The mRNA expression levels of epidermal differentiation markers and lipid metabolism genes were quantified by real-time PCR. After extraction of lipids from the epidermis, ceramide, sphingosine, free fatty acids, and cholesterol were quantified by LC-MS/MS, GC-MS, or HPLC. The results showed that the application of SE increased the gene expression levels of epidermal differentiation markers keratin10 and transglutaminase. Elongation of very long-chain fatty acids protein 3, serine palmitoyl transferase, ceramide synthase 3, and acid ceramidase mRNA expression levels increased and fatty acid synthase mRNA expression decreased. The content of each lipid, [EOS] ceramide decreased and total sphingosine content increased on day 4. On day 8 of application, ceramide [NDS], [NP], and [EODS] increased and total free fatty acid content decreased. These results show that SE alters the lipid composition of the epidermis, increasing ceramides and decreasing free fatty acids in the epidermis. The composition of the ions in the SE may be responsible for the changes in lipid composition. These behaviors were different from those observed when the ion mixture was applied. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00616-3.
Collapse
Affiliation(s)
- Kei Tsukui
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Graduate School of Advanced Health Sciences, Saga University, Saga, Japan
| | | | - Miyu Amma
- Zeria Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Yoshihiro Tokudome
- Graduate School of Advanced Health Sciences, Saga University, Saga, Japan
- Laboratory of Cosmetic Sciences, Regional Innovation Center, Saga University, 1 Honjo, Saga, 840-8502 Japan
| |
Collapse
|