1
|
Mao JX, Li JJ, Lu XY, Zhong HX, Zhao YY, Zhu LY, Fu H, Ding GS, Teng F, Chen M, Guo WY. Dichotomous roles of ADAR1 in liver hepatocellular carcinoma and kidney renal cell carcinoma: Unraveling the complex tumor microenvironment and prognostic significance. Int Immunopharmacol 2024; 136:112340. [PMID: 38820962 DOI: 10.1016/j.intimp.2024.112340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA-editing enzyme that significantly impacts cancer progression and various biological processes. The expression of ADAR1 mRNA has been examined in multiple cancer types using The Cancer Genome Atlas (TCGA) dataset, revealing distinct patterns in kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), and liver hepatocellular carcinoma (LIHC) compared to normal controls. However, the reasons for these differential expressions remain unclear. METHODS In this study, we performed RT-PCR and western blotting (WB) to validate ADAR1 expression patterns in clinical tissue samples. Survival analysis and immune microenvironment analysis (including immune score and stromal score) were conducted using TCGA data to determine the specific cell types associated with ADAR1, as well as the key genes in those cell types. The relationship between ADAR1 and specific cell types' key genes was verified by immunohistochemistry (IHC), using clinical liver and kidney cancer samples. RESULTS Our validation analysis revealed that ADAR1 expression was downregulated in KICH, KIRC, and KIRP, while upregulated in LIHC compared to normal tissues. Notably, a significant correlation was found between ADAR1 mRNA expression and patient prognosis, particularly in KIRC, KIRP, and LIHC. Interestingly, we observed a positive correlation between ADAR1 expression and stromal scores in KIRC, whereas a negative correlation was observed in LIHC. Cell type analysis highlighted distinct relationships between ADAR1 expression and the two stromal cell types, blood endothelial cells (BECs) and lymphatic endothelial cells (LECs), and further determined the signature gene claudin-5 (CLDN5), in KIRC and LIHC. Moreover, ADAR1 was inversely related with CLDN5 in KIRC (n = 26) and LIHC (n = 30) samples, verified via IHC. CONCLUSIONS ADAR1 plays contrasting roles in LIHC and KIRC, associated with the enrichment of BECs and LECs within tumors. This study sheds light on the significant roles of stromal cells within the complex tumor microenvironment (TME) and provides new insights for future research in tumor immunotherapy and precision medicine.
Collapse
MESH Headings
- Adenosine Deaminase/genetics
- Adenosine Deaminase/metabolism
- Humans
- Tumor Microenvironment
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/mortality
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/mortality
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Prognosis
- Gene Expression Regulation, Neoplastic
- Female
- Male
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Middle Aged
Collapse
Affiliation(s)
- Jia-Xi Mao
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jing-Jing Li
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xin-Yi Lu
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Han-Xiang Zhong
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yuan-Yu Zhao
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Li-Ye Zhu
- Department of Immunology and Medical Immunology State Key Laboratory, Naval Medical University, Shanghai 200433, China
| | - Hong Fu
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Guo-Shan Ding
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Fei Teng
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Ming Chen
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Wen-Yuan Guo
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
2
|
Piperi C, Markouli M, Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Deciphering glioma epitranscriptome: focus on RNA modifications. Oncogene 2023; 42:2197-2206. [PMID: 37322070 DOI: 10.1038/s41388-023-02746-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Gliomas are highly malignant tumors accounting for the majority of brain neoplasms. They are characterized by nuclear atypia, high mitotic rate and cellular polymorphism that often contributes to aggressiveness and resistance to standard therapy. They often associate with challenging treatment approaches and poor outcomes. New treatment strategies or regimens to improve the efficacy of glioma treatment require a deeper understanding of glioma occurrence and development as well as elucidation of their molecular biological characteristics. Recent studies have revealed RNA modifications as a key regulatory mechanism involved in tumorigenesis, tumor progression, immune regulation, and response to therapy. The present review discusses research advances on several RNA modifications involved in glioma progression and tumor microenvironment (TME) immunoregulation as well as in the development of adaptive drug resistance, summarizing current progress on major RNA modification targeting strategies.
Collapse
Affiliation(s)
- Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Gargalionis
- Department of Biopathology, 'Eginition' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
3
|
Romano G, Le P, Nigita G, Saviana M, Micalo L, Lovat F, Del Valle Morales D, Li H, Nana-Sinkam P, Acunzo M. A-to-I edited miR-411-5p targets MET and promotes TKI response in NSCLC-resistant cells. Oncogene 2023; 42:1597-1606. [PMID: 37002315 PMCID: PMC10336698 DOI: 10.1038/s41388-023-02673-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Non-small cell lung cancer (NSCLC) patients carrying an epidermal growth factor receptor (EGFR) mutation have an initial favorable clinical response to the tyrosine kinase inhibitors (TKIs). Unfortunately, rapid resistance occurs mainly because of genetic alterations, including amplification of the hepatocyte growth factor receptor (MET) and its abnormal activity. The RNA post-transcriptional modifications that contribute to aberrant expression of MET in cancer are largely under-investigated and among them is the adenosine-to-inosine (A-to-I) RNA editing of microRNAs. A reduction of A-to-I editing in position 5 of miR-411-5p has been identified in several cancers, including NSCLC. In this study, thanks to cancer-associated gene expression analysis, we assessed the effect of the edited miR-411-5p on NSCLC cell lines. We found that edited miR-411-5p directly targets MET and negatively affects the mitogen-activated protein kinases (MAPKs) pathway. Considering the predominant role of the MAPKs pathway on TKIs resistance, we generated NSCLC EGFR mutated cell lines resistant to TK inhibitors and evaluated the effect of edited miR-411-5p overexpression. We found that the edited miR-411-5p reduces proliferation and induces apoptosis, promoting EGFR TKIs response in NSCLC-resistant cells.
Collapse
Affiliation(s)
- Giulia Romano
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Patricia Le
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Michela Saviana
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Lavender Micalo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Francesca Lovat
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel Del Valle Morales
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Howard Li
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mario Acunzo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
4
|
Zeng J, Han L, Wang T, Huang L, Zheng Y, Zhang N, Li Z, Yang M. The Allelic Expression of RNA Editing Gene ADARB1 in Hepatocellular Carcinoma Treated with Transarterial Chemoembolization. Pharmgenomics Pers Med 2023; 16:229-238. [PMID: 36970122 PMCID: PMC10032144 DOI: 10.2147/pgpm.s402115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction Transarterial chemoembolization (TACE) is the commonly used therapy of unresectable hepatocellular carcinoma (HCC), though the prognosis of different TACE-treated HCC patients varies, which may be due to the heterogeneity of HCC tumors caused by genetic variants and epigenetic changes such as RNA editing. There is dysregulated RNA adenosine-to-inosine (A-to-I) editing in HCC and RNA-edited genes are involved in the epigenetic process. It remains unclear how genetic variants of RNA editing genes affect the prognosis of HCC cases treated by TACE. Methods In this study, we examined 28 potentially functional single-nucleotide polymorphisms (SNPs) of four RNA editing genes (ADARB1, ADAR, ADARB2 and AIMP2) in two independent TACE patient cohorts. Results We found that ADARB1 rs1051367 and rs2253763 polymorphisms were markedly associated with the prognosis of HCC cases who received TACE in both cohorts. In HCC cells, the rs2253763 C-to-T change in ADARB1 3'-untranslated region attenuated its binding with miR-542-3p and allele-specifically elevated ADARB1 levels. Consistent with this, patients carrying the rs2253763 C allele showed reduced ADARB1 expression in cancer tissues and notably shorter survival after TACE therapy in comparison with individuals with the T allele. Ectopic ADARB1 profoundly enhanced the efficacy of oxaliplatin, one of the common TACE chemotherapeutic drugs. Discussion Our findings highlighted the value of ADARB1 polymorphisms as prognostic markers in TACE therapy for HCC patients. Notably, our findings revealed that targeting the ADARB1 enzyme may be a promising therapeutic strategy in combination with TACE for HCC cases.
Collapse
Affiliation(s)
- Jiajia Zeng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Teng Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Linying Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Yanxiu Zheng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, People’s Republic of China
| | - Ziqiang Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China
- Ziqiang Li, Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, 250114, People’s Republic of China, Email
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- Correspondence: Ming Yang, Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, 250117, People’s Republic of China, Tel/Fax +86531-67626536, Email
| |
Collapse
|
5
|
Yan Y, Wei W, Long S, Ye S, Yang B, Jiang J, Li X, Chen J. The role of RNA modification in the generation of acquired drug resistance in glioma. Front Genet 2022; 13:1032286. [DOI: 10.3389/fgene.2022.1032286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Glioma is the most common malignant tumor in the central nervous system. The clinical treatment strategy is mainly surgery combined with concurrent temozolomide chemotherapy, but patients can develop drug resistance during treatment, which severely limits its therapeutic efficacy. Epigenetic regulation at the RNA level is plastic and adaptable, and it can induce a variety of tumor responses to drugs. The regulators of RNA modification include methyltransferases, demethylases, and methylation binding proteins; these are also considered to play an important role in the development, prognosis, and therapeutic response of gliomas, which provides a basis for finding new targets of epigenetic drugs and resetting the sensitivity of tumor cells to temozolomide. This review discusses the relationship between the development of adaptive drug resistance and RNA modification in glioma and summarizes the progress of several major RNA modification strategies in this field, especially RNA m6A modification, m5C modification, and adenosine-to-inosine editing.
Collapse
|
6
|
SNPs in 3'UTR miRNA Target Sequences Associated with Individual Drug Susceptibility. Int J Mol Sci 2022; 23:ijms232213725. [PMID: 36430200 PMCID: PMC9692299 DOI: 10.3390/ijms232213725] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
The complementary interaction of microRNAs (miRNAs) with their binding sites in the 3'untranslated regions (3'UTRs) of target gene mRNAs represses translation, playing a leading role in gene expression control. MiRNA recognition elements (MREs) in the 3'UTRs of genes often contain single nucleotide polymorphisms (SNPs), which can change the binding affinity for target miRNAs leading to dysregulated gene expression. Accumulated data suggest that these SNPs can be associated with various human pathologies (cancer, diabetes, neuropsychiatric disorders, and cardiovascular diseases) by disturbing the interaction of miRNAs with their MREs located in mRNA 3'UTRs. Numerous data show the role of SNPs in 3'UTR MREs in individual drug susceptibility and drug resistance mechanisms. In this review, we brief the data on such SNPs focusing on the most rigorously proven cases. Some SNPs belong to conventional genes from the drug-metabolizing system (in particular, the genes coding for cytochromes P450 (CYP 450), phase II enzymes (SULT1A1 and UGT1A), and ABCB3 transporter and their expression regulators (PXR and GATA4)). Other examples of SNPs are related to the genes involved in DNA repair, RNA editing, and specific drug metabolisms. We discuss the gene-by-gene studies and genome-wide approaches utilized or potentially utilizable to detect the MRE SNPs associated with individual response to drugs.
Collapse
|