1
|
Tang N, Wang Y, Miao J, Zhao Y, Cao Y, Sun W, Zhang J, Sui H, Li B. Potential pharmacological mechanisms of tanshinone IIA in the treatment of human neuroblastoma based on network pharmacological and molecular docking Technology. Front Pharmacol 2024; 15:1363415. [PMID: 38533261 PMCID: PMC10964018 DOI: 10.3389/fphar.2024.1363415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Tanshinone IIA (Tan-IIA) is the main bioactive component of Chinese herbal medicine salvia miltiorrhiza (Danshen). Sodium sulfonate of Tan-IIA is widely used in the treatment of cardiovascular and cerebrovascular diseases. Tan-IIA also has inhibitory effects on tumor cells such as gastric cancer, but its therapeutic effect and mechanism on human neuroblastoma have not been evaluated, so its pharmacological mechanism is systematically evaluated by the combined method of network pharmacology and molecular docking. PharmMapper and SwissTargetPrediction predicted 331 potential Tan-IIA-related targets, and 1,152 potential neuroblastoma-related targets were obtained from GeneCards, DisGeNET, DrugBank, OMIM and Therapeutic Target databases (TTD), 107 common targets for Tan-IIA and neuroblastoma. Through gene ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomesa (KEGG) pathway enrichment, protein-protein interaction (PPI) network and cytoHubba plug-in, 10 related signal pathways (Pathways in cancer, PI3K-Akt signaling pathway, Prostate cancer, etc.) and 10 hub genes were identified. The results of molecular docking showed that Tan-IIA could interact with 10 targets: GRB2, SRC, EGFR, PTPN1, ESR1, IGF1, MAPK1, PIK3R1, AKT1 and IGF1R. This study analyzed the related pathways and targets of Tan-IIA in the treatment of human neuroblastoma, as well as the potential anticancer and anti-tumor targets and related signaling pathways of Tan-IIA, which provides a reference for us to find and explore effective drugs for the treatment of human neuroblastoma.
Collapse
Affiliation(s)
- Ning Tang
- Department of Integrative Medicine, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Yan Wang
- Department of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jiarui Miao
- Department of Acupuncture and Massage, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Yang Zhao
- Department of Integrative Medicine, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Yue Cao
- Department of Integrative Medicine, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Wentao Sun
- Department of Acupuncture and Massage, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Jingke Zhang
- Department of Integrative Medicine, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Hua Sui
- Department of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Bing Li
- Department of Integrative Medicine, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| |
Collapse
|
2
|
Detarya M, Mahalapbutr P, Waenphimai O, Kidoikhammouan S, Janeklang S, Sawanyawisuth K, Vaeteewoottacharn K, Seubwai W, Saengboonmee C, Thothaisong T, Pabuprapap W, Suksamrarn A, Wongkham S. Induction of apoptotic cell death of cholangiocarcinoma cells by tiliacorinine from Tiliacora triandra: A mechanistic insight. Biochim Biophys Acta Gen Subj 2023; 1867:130486. [PMID: 37813201 DOI: 10.1016/j.bbagen.2023.130486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/06/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) exhibits poor response to the present chemotherapeutic agents and frequently develops drug resistance. Finding novel anticancer drugs might enhance patient outcomes. Tiliacorinine, a bisbenzylisoquinoline alkaloid from the Thai medicinal plant Tiliacora triandra, effectively induced apoptosis of human CCA cell lines and inhibited tumor growth in mice. Here, we elucidate further the molecular mechanisms underlining the cytotoxicity of tiliacorinine and its implication in overcoming gemcitabine-resistance of CCA cells. METHODS Cytotoxicity of tiliacorinine against CCA cell lines was assessed using MTT assay. The molecular signaling was determined using Western blot analysis. Molecular docking simulations were applied to predict the binding affinity and orientation of tiliacorinine to the possible binding site(s) of the target proteins. RESULTS Tiliacorinine induced apoptotic cell death of CCA cells in a dose- and time-dependent manner. Tiliacorinine significantly suppressed the expression of anti-apoptotic proteins, Bcl-xL and XIAP; activated apoptotic machinery proteins, caspase-3, caspase-9, and PARP; and decreased the levels of pAkt and pSTAT3. EGF/EGFR activation model and molecular docking simulations revealed EGFR, Akt, and STAT3 as potent targets of tiliacorinine. Molecular docking simulations indicated a strong binding affinity of tiliacorinine to the ATP-binding pockets of EGFR, PI3K, Akt, JAK2, and SH2 domain of STAT3. Tiliacorinine could synergize with gemcitabine and restore the cytotoxicity of gemcitabine against gemcitabine-resistant CCA cells. CONCLUSION Tiliacorinine effectively induced apoptosis via binding and blocking the actions of EGFR, Akt, and STAT3. GENERAL SIGNIFICANCE Tiliacorinine is a novel multi-kinase inhibitor and possibly a potent anti-cancer agent, in cancers with high activation of EGFR.
Collapse
Affiliation(s)
- Marutpong Detarya
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Panupong Mahalapbutr
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Orawan Waenphimai
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Somkid Janeklang
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kanlayanee Sawanyawisuth
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kulthida Vaeteewoottacharn
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wunchana Seubwai
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Forensic Medicine, Faculty of Medicine, and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Teerawut Thothaisong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Wachirachai Pabuprapap
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Sopit Wongkham
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
3
|
Zhang G, Zheng G, Zhang H, Qiu L. MUC1 induces the accumulation of Foxp3+ Treg cells in the tumor microenvironment to promote the growth and metastasis of cholangiocarcinoma through the EGFR/PI3K/Akt signaling pathway. Int Immunopharmacol 2023; 118:110091. [PMID: 37018979 DOI: 10.1016/j.intimp.2023.110091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
Tumor microenvironment (TME) plays an important role in the progression of cholangiocarcinoma. This study aims to explore whether Mucin 1 (MUC1) regulates Foxp3+ Treg cells in the TME of cholangiocarcinoma through the epidermal growth factor receptor (EGFR)/phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. High-throughput sequencing dataset in the GEO database combined with GeneCards and Phenolyzer databases was used to obtain key genes in cholangiocarcinoma, followed by downstream pathway prediction. The relationship among MUC1, EGFR, and PI3K/Akt signaling pathway was explored. CD4+ T cells extracted from peripheral blood were induced to differentiate into Treg cells, followed by co-culture with cholangiocarcinoma cells. A mouse model was constructed to detect the role of MUC1 in the accumulation of Foxp3+ Treg cells, malignant phenotypes of cholangiocarcinoma, and tumorigenesis in vivo. MUC1, highly expressed in cholangiocarcinoma, might be involved in cholangiocarcinoma development. MUC1 interacted with the EGFR to activate the EGFR/PI3K/Akt signaling pathway. MUC1 overexpression could activate the EGFR/PI3K/Akt signaling pathway, which promoted the accumulation of Foxp3+ Treg cells in the TME and the malignant phenotypes of cholangiocarcinoma cells both in vitro and in vivo and enhanced tumorigenesis in vivo. MUC1 may interact with EGFR to activate the EGFR/PI3K/Akt signaling pathway, which induces the accumulation of Foxp3+ Treg cells, enhancing the malignant phenotypes of cholangiocarcinoma cells and tumorigenesis in vivo and ultimately augmenting cholangiocarcinoma growth and metastasis.
Collapse
|
4
|
The Expanding Role of Cancer Stem Cell Marker ALDH1A3 in Cancer and Beyond. Cancers (Basel) 2023; 15:cancers15020492. [PMID: 36672441 PMCID: PMC9857290 DOI: 10.3390/cancers15020492] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Aldehyde dehydrogenase 1A3 (ALDH1A3) is one of 19 ALDH enzymes expressed in humans, and it is critical in the production of hormone receptor ligand retinoic acid (RA). We review the role of ALDH1A3 in normal physiology, its identification as a cancer stem cell marker, and its modes of action in cancer and other diseases. ALDH1A3 is often over-expressed in cancer and promotes tumor growth, metastasis, and chemoresistance by altering gene expression, cell signaling pathways, and glycometabolism. The increased levels of ALDH1A3 in cancer occur due to genetic amplification, epigenetic modifications, post-transcriptional regulation, and post-translational modification. Finally, we review the potential of targeting ALDH1A3, with both general ALDH inhibitors and small molecules specifically designed to inhibit ALDH1A3 activity.
Collapse
|
5
|
Thamrongwaranggoon U, Kuribayashi K, Araki H, Hino Y, Koga T, Seubwai W, Wongkham S, Nakao M, Hino S. Lactic acidosis induces metabolic and phenotypic reprogramming in cholangiocarcinoma cells via the upregulation of thrombospondin-1. Cancer Sci 2022; 114:1541-1555. [PMID: 36562400 PMCID: PMC10067391 DOI: 10.1111/cas.15699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The high glycolytic activity of cancer cells leads to lactic acidosis (LA) in the tumor microenvironment. LA is not merely a consequence of metabolic activities but also has functional roles in metabolic reprogramming and cancer progression. Cholangiocarcinoma (CCA) cells exhibit a high dependency on glycolysis for survival and growth, but the specific effects of LA on cellular characteristics remain unknown. Here, we demonstrate that long-term LA (LLA) reprograms the metabolic phenotype of CCA cells from glycolytic to oxidative and enhances their migratory activity. In CCA cell culture, short-term LA (24 h) showed a growth inhibitory effect, while extended LA exposure for more than 2 weeks (LLA) led to enhanced cell motility. Coincidentally, LLA enhanced the respiratory capacity with an increase in mitochondrial mass. Inhibition of mitochondrial function abolished LLA-induced cell motility, suggesting that metabolic remodeling affects the phenotypic outcomes. RNA-sequencing analysis revealed that LLA upregulated genes associated with cell migration and epithelial-mesenchymal transition (EMT), including thrombospondin-1 (THBS1), which encodes a pro-EMT-secreted protein. Inhibition of THBS1 resulted in the suppression of both LLA-induced cell motility and respiratory capacity. Moreover, high THBS1 expression was associated with poor survival in patients with CCA. Collectively, our study suggests that the increased expression of THBS1 by LLA promotes phenotypic alterations, leading to CCA progression.
Collapse
Affiliation(s)
- Ubonrat Thamrongwaranggoon
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kanji Kuribayashi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Hirotaka Araki
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Tomoaki Koga
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Wunchana Seubwai
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Forensic Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Hu X, Zhao S, Cai Y, Swain SS, Yao L, Liu W, Yan T. Network Pharmacology-Integrated Molecular Docking Reveals the Expected Anticancer Mechanism of Picrorhizae Rhizoma Extract. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3268773. [PMID: 36158891 PMCID: PMC9507705 DOI: 10.1155/2022/3268773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
This study sought to explore the anticancer mechanism of Picrorhizae Rhizoma (PR) extract based on network pharmacology and molecular docking. The potential chemicals of PR were screened through the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and relevant literatures. Corresponding targets of active ingredients were found with the help of the UniProtKB database, and therapeutic targets for cancer action were screened with the help of the GeneCards database. We used Cytoscape software to construct the compound-target-pathway network of PR extract. We utilized the STRING database to obtain the protein-protein interaction (PPI) network. We used DAVID database combining Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, molecular docking was employed for initial efficacy checking. We have identified 16 potential active components of PR through screening, involving 112 disease action targets. Utilizing the GeneCards database, 112 intersecting targets between PR extract and cancer were found, which mainly exerts anticancer effects by regulating tumor necrosis factor (TNF), recombinant caspase 3 (CASP3), c-Jun NH2-terminal kinase (JNK)/JUN, epidermal growth factor receptor (EGFR), and estrogen receptor-1 (ESR1) with some other target genes and pathways associated with cancer. The major anticancer species are prostate cancer, colorectal cancer, small cell lung cancer, etc. In the molecular docking study, herbactin had a strong affinity for TNF. Based on network pharmacology and molecular docking studies, PR and their compounds have demonstrated potential anticancer activities against several key targets. Our preliminary findings provide a strong foundation for further experiments with PR constituents.
Collapse
Affiliation(s)
- Xiaomeng Hu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Shengchao Zhao
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shasank S. Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023 Odisha, India
| | - Liangliang Yao
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|