1
|
A E F Cardinali C, Martins YA, C M Moraes R, Costa AP, Torrão AS. Benfotiamine Ameliorates Streptozotocin-Induced Alzheimer's Disease in Rats by Modulating Neuroinflammation, Oxidative Stress, and Microglia. Mol Neurobiol 2025:10.1007/s12035-025-04811-x. [PMID: 40038195 DOI: 10.1007/s12035-025-04811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia, characterized by progressive memory loss and cognitive decline. Recent evidence indicates that inflammation plays a central role in AD pathogenesis, with elevated inflammatory markers and risk genes linked to innate immune functions. Glial cell dysfunction, particularly in astrocytes and microglia, is crucial to the neuroinflammatory process, contributing to oxidative stress, synaptic dysfunction, neuronal death, and impaired neurogenesis. This study aimed to investigate the therapeutic effects of benfotiamine (BFT), a vitamin B1 analogue, on microglial morphology, inflammation, and oxidative stress parameters in a sporadic Alzheimer-like disease model induced by intracerebroventricular injection of streptozotocin (STZ). Supplementation with 150 mg/kg of BFT for 7 days significantly reduced inflammation in the hippocampus and provided protection against oxidative damage in the entorhinal cortex by activating the Nrf-2 pathway and enhancing the expression of antioxidant enzymes such as SOD1 and CAT. These findings suggest that BFT exerts neuroprotective effects in AD, particularly impacting glial cell function and redox homeostasis.
Collapse
Affiliation(s)
- Camila A E F Cardinali
- Departamento de Fisiologia E Biofisica, Universidade de Sao Paulo, Av Professor Lineu Prestes 2415, Sao Paulo, 05508-000, Brazil.
| | - Yandara A Martins
- Departamento de Fisiologia E Biofisica, Universidade de Sao Paulo, Av Professor Lineu Prestes 2415, Sao Paulo, 05508-000, Brazil
| | - Ruan C M Moraes
- Departamento de Fisiologia E Biofisica, Universidade de Sao Paulo, Av Professor Lineu Prestes 2415, Sao Paulo, 05508-000, Brazil
- Department of Psychiatry & Behavioral Neurobiology, The University of Alabama at Birmingham, Alabama, USA
| | - Andressa P Costa
- Departamento de Fisiologia E Biofisica, Universidade de Sao Paulo, Av Professor Lineu Prestes 2415, Sao Paulo, 05508-000, Brazil
| | - Andréa S Torrão
- Departamento de Fisiologia E Biofisica, Universidade de Sao Paulo, Av Professor Lineu Prestes 2415, Sao Paulo, 05508-000, Brazil
| |
Collapse
|
2
|
Bai H, Feng XF. Searching for new drugs to treat Alzheimer’s disease dementia through multiple pathways. World J Clin Cases 2025; 13:100833. [DOI: 10.12998/wjcc.v13.i1.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
Dementia is a group of diseases, including Alzheimer's disease (AD), vascular dementia, Lewy body dementia, frontotemporal dementia, Parkinson's disease dementia, metabolic dementia and toxic dementia. The treatment of dementia mainly includes symptomatic treatment by controlling the primary disease and accompanying symptoms, nutritional support therapy for repairing nerve cells, psychological auxiliary treatment, and treatment that improves cognitive function through drugs. Among them, drug therapy to improve cognitive function is important. This review focuses on introducing and commenting on some recent progress in exploring drugs to improve cognitive function, especially the new progress in drug treatment for AD. We mainly discuss the opportunities and challenges in finding and developing new therapeutic drugs from the aspects of acetylcholinesterase, N-methyl-D-aspartate glutamate receptor, amyloid protein, tau protein and chronic immune inflammation.
Collapse
Affiliation(s)
- Hua Bai
- Department of Neurology, The Third Affiliated Hospital of Guizhou Medical University, Duyun 558099, Guizhou Province, China
- Department of Neurology, Wulong Branch of the People's Hospital Affiliated to Chongqing University, Wulong 408500, Chongqing, China
| | - Xiao-Feng Feng
- Department of Neurology, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| |
Collapse
|
3
|
Cardinali CAEF, Martins YA, Moraes RCM, Costa AP, Alencar MB, Silber AM, Torrão AS. Exploring the Therapeutic Potential of Benfotiamine in a Sporadic Alzheimer's-Like Disease Rat Model: Insights into Insulin Signaling and Cognitive function. ACS Chem Neurosci 2024; 15:2982-2994. [PMID: 39007352 PMCID: PMC11342302 DOI: 10.1021/acschemneuro.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative process, also considered a metabolic condition due to alterations in glucose metabolism and insulin signaling pathways in the brain, which share similarities with diabetes. This study aimed to investigate the therapeutic effects of benfotiamine (BFT), a vitamin B1 analog, in the early stages of the neurodegenerative process in a sporadic model of Alzheimer's-like disease induced by intracerebroventricular injection of streptozotocin (STZ). Supplementation with 150 mg/kg of BFT for 7 days reversed the cognitive impairment in short- and long-term memories caused by STZ in rodents. We attribute these effects to BFT's ability to modulate glucose transporters type 1 and 3 (GLUT1 and GLUT3) in the hippocampus, inhibit GSK3 activity in the hippocampus, and modulate the insulin signaling in the hippocampus and entorhinal cortex, as well as reduce the activation of apoptotic pathways (BAX) in the hippocampus. Therefore, BFT emerges as a promising and accessible intervention in the initial treatment of conditions similar to AD.
Collapse
Affiliation(s)
- Camila A. E. F. Cardinali
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Yandara A. Martins
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Ruan C. M. Moraes
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
- Department
of Psychiatry & Behavioral Neurosciences, The University of Alabama at Birmingham, Birmingham Alabama 35294, United States
| | - Andressa P. Costa
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mayke B. Alencar
- Laboratory
of Biochemistry of Tryps−LaBTryps, Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de
Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Ariel M. Silber
- Laboratory
of Biochemistry of Tryps−LaBTryps, Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de
Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Andrea S. Torrão
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
4
|
Homolak J, Varvaras K, Sciacca V, Babic Perhoc A, Virag D, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. Insights into Gastrointestinal Redox Dysregulation in a Rat Model of Alzheimer's Disease and the Assessment of the Protective Potential of D-Galactose. ACS OMEGA 2024; 9:11288-11304. [PMID: 38496956 PMCID: PMC10938400 DOI: 10.1021/acsomega.3c07152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 03/19/2024]
Abstract
Recent evidence suggests that the gut plays a vital role in the development and progression of Alzheimer's disease (AD) by triggering systemic inflammation and oxidative stress. The well-established rat model of AD, induced by intracerebroventricular administration of streptozotocin (STZ-icv), provides valuable insights into the GI implications of neurodegeneration. Notably, this model leads to pathophysiological changes in the gut, including redox dyshomeostasis, resulting from central neuropathology. Our study aimed to investigate the mechanisms underlying gut redox dyshomeostasis and assess the effects of D-galactose, which is known to benefit gut redox homeostasis and alleviate cognitive deficits in this model. Duodenal rings isolated from STZ-icv animals and control groups were subjected to a prooxidative environment using 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) or H2O2 with or without D-galactose in oxygenated Krebs buffer ex vivo. Redox homeostasis was analyzed through protein microarrays and functional biochemical assays alongside cell survival assessment. Structural equation modeling and univariate and multivariate models were employed to evaluate the differential response of STZ-icv and control samples to the controlled prooxidative challenge. STZ-icv samples showed suppressed expression of catalase and glutathione peroxidase 4 (GPX4) and increased baseline activity of enzymes involved in H2O2 and superoxide homeostasis. The altered redox homeostasis status was associated with an inability to respond to oxidative challenges and D-galactose. Conversely, the presence of D-galactose increased the antioxidant capacity, enhanced catalase and peroxidase activity, and upregulated superoxide dismutases in the control samples. STZ-icv-induced gut dysfunction is characterized by a diminished ability of the redox regulatory system to maintain long-term protection through the transcription of antioxidant response genes as well as compromised activation of enzymes responsible for immediate antioxidant defense. D-galactose can exert beneficial effects on gut redox homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Jan Homolak
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Interfaculty
Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72074 Tübingen, Germany
| | - Konstantinos Varvaras
- Department
of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vittorio Sciacca
- Faculty
of Medicine, University of Catania, 95131 Catania, Italy
| | - Ana Babic Perhoc
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Davor Virag
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ana Knezovic
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Bozic I, Lavrnja I. Thiamine and benfotiamine: Focus on their therapeutic potential. Heliyon 2023; 9:e21839. [PMID: 38034619 PMCID: PMC10682628 DOI: 10.1016/j.heliyon.2023.e21839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Thiamine, also known as vitamin B1, is an essential nutrient that plays a crucial role in energy metabolism and overall health. It is a water-soluble vitamin that plays an important role in the conversion of carbohydrates into energy in the body. Thiamine is essential for the proper functioning of the nervous system, heart and muscles. Thiamine deficiency is a life-threatening disease that leads to various disorders and lesions in the nerves and brain, at least in vertebrates. Several thiamine precursors with higher bioavailability have been developed to compensate for thiamine deficiency, including benfotiamine. Benfotiamine is more bioavailable and has higher tissue penetration than thiamine. Studies have shown its antioxidant and anti-inflammatory potential in activated immune and glial cells. It also improves complications observed in type 2 diabetes and has beneficial effects in mouse models of neurodegenerative disease. Benfotiamine represents an off-the-shelf agent used to support nerve health, promote healthy aging and support glucose metabolism. Accordingly, the present review aimed to provide an overview of the neuroprotective effects of thiamine/benfotiamine in the context of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Iva Bozic
- Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Homolak J, De Busscher J, Zambrano-Lucio M, Joja M, Virag D, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. Altered Secretion, Constitution, and Functional Properties of the Gastrointestinal Mucus in a Rat Model of Sporadic Alzheimer's Disease. ACS Chem Neurosci 2023; 14:2667-2682. [PMID: 37477640 PMCID: PMC10401635 DOI: 10.1021/acschemneuro.3c00223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
The gastrointestinal (GI) system is affected in Alzheimer's disease (AD); however, it is currently unknown whether GI alterations arise as a consequence of central nervous system (CNS) pathology or play a causal role in the pathogenesis. GI mucus is a possible mediator of GI dyshomeostasis in neurological disorders as the CNS controls mucus production and secretion via the efferent arm of the brain-gut axis. The aim was to use a brain-first model of sporadic AD induced by intracerebroventricular streptozotocin (STZ-icv; 3 mg/kg) to dissect the efferent (i.e., brain-to-gut) effects of isolated central neuropathology on the GI mucus. Morphometric analysis of goblet cell mucigen granules revealed altered GI mucus secretion in the AD model, possibly mediated by the insensitivity of AD goblet cells to neurally evoked mucosal secretion confirmed by ex vivo cholinergic stimulation of isolated duodenal rings. The dysfunctional efferent control of the GI mucus secretion results in altered biochemical composition of the mucus associated with reduced mucin glycoprotein content, aggregation, and binding capacity in vitro. Finally, functional consequences of the reduced barrier-forming capacity of the mucin-deficient AD mucus are demonstrated using the in vitro two-compartment caffeine diffusion interference model. Isolated central AD-like neuropathology results in the loss of efferent control of GI homeostasis via the brain-gut axis and is characterized by the insensitivity to neurally evoked mucosal secretion, altered mucus constitution with reduced mucin content, and reduced barrier-forming capacity, potentially increasing the susceptibility of the STZ-icv rat model of AD to GI and systemic inflammation induced by intraluminal toxins, microorganisms, and drugs.
Collapse
Affiliation(s)
- Jan Homolak
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | | | - Miguel Zambrano-Lucio
- School
of Medicine, Autonomous University of Nuevo
Leon, Monterrey, Nuevo Leon 66455, Mexico
| | - Mihovil Joja
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Department
of Infection and Immunity, Luxembourg Institute
of Health, L-4354 Esch-sur-Alzette, Luxembourg
- Faculty
of
Science, Technology and Medicine, University
of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Davor Virag
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Ana Babic Perhoc
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Ana Knezovic
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| |
Collapse
|
7
|
Singh L, Singh S. Neuroprotective potential of Honokiol in ICV-STZ induced neuroinflammation, Aβ (1-42) and NF-kB expression in experimental model of rats. Neurosci Lett 2023; 799:137090. [PMID: 36690059 DOI: 10.1016/j.neulet.2023.137090] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is a most common and prevalent age related insidious neurological condition characterised by formation of Aβ (1-42) plaques and NFT in the hippocampus. Major symptoms of AD include memory and cognitive loss caused by neuroinflammation, Aβ (1-42) plaques, and NFT accumulation in the brain. Intracerebroventricular administration of STZ up-regulates the level of Aβ (1-42) plaques, and NFT by activating NF-kB pathway. All animals were trained for behaviour analysis before infusion of ICV-STZ bilaterally, at a dose of 3 mg/kg; icv. The stereotaxic surgery was performed in target region with coordinates -2 mm [AP], 1.6 mm [MR], and1.5 mm [DV]. On day 1 and day 3 after surgery HS (hamilton syringe) was used to infuse STZ at the target region of brain. Morris Water Maze (MWM), and Elevated Plus Maze (EPM) tests were performed to check spatial and learning memory in all groups. ICV-STZ infusion produced memory impairment by increasing the activity of AchE, oxidative markers (LPO, GSH, and nitrite), neurotransmitters levels (AchE, GABA, and glutamate), and release of neuroinflammatory markers (NF-kB, IL-6, and IL-1β). The treatment with Honokiol (Bioactive polyphenolic compound) significantly ameliorated the behavioural changes at a dose of 5, and 10 mg/kg; i.p on day 7, 14, and 21. After behavioural analysis rats were sacrificed on day 22, and the hippocampus tissue was collected to investigate the biochemical, neuroinflammatory, neurotransmitters, histopathological, and immunohistopathological changes. Here, we have found Honokiol significantly down regulates the Aβ plaques via NF-kB inhibition and also reduced neuroinflammation in the brain of rats. Further inhibits the NF-kB expression confirmed for immunohistochemistry analysis. It was observed that Honokiol (5, and 10 mg/kg; i.p) dose-dependently ameliorated AchE level restored neurotransmitters concentrations in hippocampal region, and prevented neuronal loss confirmed from histopathology studies. We concluded that Honokiol drastically produced protective effect in AD model via antioxidant, reducing inflammation, AchE level, restoration of neurofibrillary tangles and preventing NF-kB as well as histopathological changes.
Collapse
Affiliation(s)
- Lovekesh Singh
- Neuropharmacology division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shamsher Singh
- Neuropharmacology division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India.
| |
Collapse
|
8
|
Revisiting the Role of Vitamins and Minerals in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:antiox12020415. [PMID: 36829974 PMCID: PMC9952129 DOI: 10.3390/antiox12020415] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia that affects millions of individuals worldwide. It is an irreversible neurodegenerative disorder that is characterized by memory loss, impaired learning and thinking, and difficulty in performing regular daily activities. Despite nearly two decades of collective efforts to develop novel medications that can prevent or halt the disease progression, we remain faced with only a few options with limited effectiveness. There has been a recent growth of interest in the role of nutrition in brain health as we begin to gain a better understanding of what and how nutrients affect hormonal and neural actions that not only can lead to typical cardiovascular or metabolic diseases but also an array of neurological and psychiatric disorders. Vitamins and minerals, also known as micronutrients, are elements that are indispensable for functions including nutrient metabolism, immune surveillance, cell development, neurotransmission, and antioxidant and anti-inflammatory properties. In this review, we provide an overview on some of the most common vitamins and minerals and discuss what current studies have revealed on the link between these essential micronutrients and cognitive performance or AD.
Collapse
|