1
|
Cui M, Liu Z, Wang S, Bae S, Guo H, Zhou J, Liu R, Wang L. CRISPR-based dissection of microRNA-23a ~ 27a ~ 24-2 cluster functionality in hepatocellular carcinoma. Oncogene 2024; 43:2708-2721. [PMID: 39112518 PMCID: PMC11364504 DOI: 10.1038/s41388-024-03115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
The miR-23a ~ 27a ~ 24-2 cluster, commonly upregulated in diverse cancers, including hepatocellular carcinoma (HCC), raises questions about the specific functions of its three mature miRNAs and their integrated function. Utilizing CRISPR knockout (KO), CRISPR interference (CRISPRi), and CRISPR activation (CRISPRa) technologies, we established controlled endogenous miR-23a ~ 27 ~ a24-2 cell models to unravel their roles and signaling pathways in HCC. Both miR-23a KO and miR-27a KO displayed reduced cell growth in vitro and in vivo, revealing an integrated oncogenic function. Functional analysis indicated cell cycle arrest, particularly at the G2/M phase, through the downregulation of CDK1/cyclin B activation. High-throughput RNA-seq, combined with miRNA target prediction, unveiled the miR-23a/miR-27a-regulated gene network, validated through diverse technologies. While miR-23a and miR-27a exhibited opposing roles in cell migration and mesenchymal-epithelial transition, an integrated CRISPRi/a analysis suggested an oncogenic role of the miR-23a ~ 27a ~ 24-2 cluster in cell migration. This involvement potentially encompasses two signaling axes: miR-23a-BMPR2 and miR-27a-TMEM170B in HCC cells. In conclusion, our CRISPRi/a study provides a valuable tool for comprehending the integrated roles and underlying mechanisms of endogenous miRNA clusters, paving the way for promising directions in miRNA-targeted therapy interventions.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhichao Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shuaibin Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sejong Bae
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hua Guo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Sweef O, Zaabout E, Bakheet A, Halawa M, Gad I, Akela M, Tousson E, Abdelghany A, Furuta S. Unraveling Therapeutic Opportunities and the Diagnostic Potential of microRNAs for Human Lung Cancer. Pharmaceutics 2023; 15:2061. [PMID: 37631277 PMCID: PMC10459057 DOI: 10.3390/pharmaceutics15082061] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Lung cancer is a major public health problem and a leading cause of cancer-related deaths worldwide. Despite advances in treatment options, the five-year survival rate for lung cancer patients remains low, emphasizing the urgent need for innovative diagnostic and therapeutic strategies. MicroRNAs (miRNAs) have emerged as potential biomarkers and therapeutic targets for lung cancer due to their crucial roles in regulating cell proliferation, differentiation, and apoptosis. For example, miR-34a and miR-150, once delivered to lung cancer via liposomes or nanoparticles, can inhibit tumor growth by downregulating critical cancer promoting genes. Conversely, miR-21 and miR-155, frequently overexpressed in lung cancer, are associated with increased cell proliferation, invasion, and chemotherapy resistance. In this review, we summarize the current knowledge of the roles of miRNAs in lung carcinogenesis, especially those induced by exposure to environmental pollutants, namely, arsenic and benzopyrene, which account for up to 1/10 of lung cancer cases. We then discuss the recent advances in miRNA-based cancer therapeutics and diagnostics. Such information will provide new insights into lung cancer pathogenesis and innovative diagnostic and therapeutic modalities based on miRNAs.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Elsayed Zaabout
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ahmed Bakheet
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | - Mohamed Halawa
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ibrahim Gad
- Department of Statistics and Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Akela
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ashraf Abdelghany
- Biomedical Research Center of University of Granada, Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| |
Collapse
|
3
|
Sun Y, Jiang P, Yang H, Zhang Z, Zhou Y, Li P, Zeng Q, Zhang X. Network Pharmacology-Based Analysis of the Potential Biological Mechanisms of Coix Seed against Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9261768. [PMID: 36248436 PMCID: PMC9560812 DOI: 10.1155/2022/9261768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022]
Abstract
Objective The aim of this study was to explore the potential biological mechanisms of coix seed in the treatment of colorectal cancer (CRC) based on network pharmacology analysis. Methods The active components of coix seed and their potential action targets were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The disease targets related to CRC were obtained from the DisGeNET database. The intersection targets of the drug targets and disease targets were selected, and a component-target-disease network was built using Cytoscape 3.8.0 tool. A global network of the core target protein interactions was constructed using String database. Biological function analysis and pathway enrichment analysis of core targets were conducted to explore the potential. Results A total of nine active components were obtained from the TCMSP database corresponding to 37 targets. Further analysis showed that 18 overlapping targets were associated with CRC. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was conducted based on the 18 targets and 11 significantly enriched signaling pathways implicated in CRC were identified. Conclusion The multicomponent and multitarget characteristics of coix seed are preliminarily verified, and the potential biological mechanisms of coix seed in the treatment of CRC are predicted, which provides a theoretical basis for the experimental research.
Collapse
Affiliation(s)
- Yi Sun
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Peishi Jiang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Hongjie Yang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Zhichun Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Yuanda Zhou
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Peng Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Qingsheng Zeng
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| |
Collapse
|