1
|
Vieira TDS, Freitas FV, Silva Neto LCB, Borçoi AR, Mendes SO, Olinda AS, Moreno IAA, Quaioto BR, de Souza MLM, Barbosa WM, Arpini JK, Sorroche BP, de Assis Pinheiro J, Archanjo AB, dos Santos JG, Arantes LMRB, de Oliveira DR, da Silva AMA. An industrialized diet as a determinant of methylation in the 1F region of the NR3C1 gene promoter. Front Nutr 2024; 11:1168715. [PMID: 38633601 PMCID: PMC11021719 DOI: 10.3389/fnut.2024.1168715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/25/2024] [Indexed: 04/19/2024] Open
Abstract
Background Dietary composition can modify gene expression, favoring the development of chronic diseases via epigenetic mechanisms. Objective Our study aimed to investigate the relationship between dietary patterns and NR3C1 gene methylation in users of the Brazilian Public Unified Health System (SUS). Methods We recruited 250 adult volunteers and evaluated their socioeconomic status, psychosocial characteristics, lifestyle, and anthropometrics. Peripheral blood was collected and evaluated for cortisol levels, glycemia, lipid profile, and insulin resistance; methylation of CpGs 40-47 of the 1F region of the NR3C1 gene was also measured. Factors associated with degree of methylation were evaluated using generalized linear models (p < 0.05). Lifestyle variables and health variables were included as confounding factors. Results The findings of our cross-sectional study indicated an association between NR3C1 DNA methylation and intake of processed foods. We also observed relevant associations of average NR3C1 DNA across the segment analyzed, methylation in component 1 (40-43), and methylation in component 2 (44-47) with a pattern of consumption of industrialized products in relation to BMI, serum cortisol levels, and lipid profile. These results may indicate a relationship between methylation and metabolic changes related to the stress response. Conclusion These findings suggest an association of methylation and metabolic alterations with stress response. In addition, the present study highlights the significant role of diet quality as a stress-inducing factor that influences NR3C1 methylation. This relationship is further linked to changes in psychosocial factors, lifestyle choices, and cardiometabolic variables, including glucose levels, insulin resistance, and hyperlipidemia.
Collapse
Affiliation(s)
- Tamires dos Santos Vieira
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | - Aline Ribeiro Borçoi
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Amanda Sgrancio Olinda
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | - Ivana Alece Arantes Moreno
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | - Bárbara Risse Quaioto
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Wagner Miranda Barbosa
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre, Brazil
| | | | | | - Julia de Assis Pinheiro
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | - Anderson Barros Archanjo
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | | | - Adriana Madeira Alvares da Silva
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
- Department of Morphology, Federal University of Espirito Santo, Vitória, Brazil
| |
Collapse
|
2
|
He G, Yang SB, Wang YZ. An integrated chemical characterization based on FT-NIR, and GC-MS for the comparative metabolite profiling of 3 species of the genus Amomum. Anal Chim Acta 2023; 1280:341869. [PMID: 37858569 DOI: 10.1016/j.aca.2023.341869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The fruits and seeds of genus Amomum are well-known as medicinal plants and edible spices, and are used in countries such as China, India and Vietnam to treat malaria, gastrointestinal disorders and indigestion. The morphological differences between different species are relatively small, and technical characterization and identification techniques are needed. RESULTS Fourier transform near infrared spectroscopy (FT-NIR) and gas chromatography-mass spectrometry (GC-MS), combined with principal component analysis and two-dimensional correlation analysis were used to characterize the chemical differences of Amomum tsao-ko, Amomum koenigii, and Amomum paratsaoko. The targets and pathways for the treatment of diabetes mellitus in three species were predicted using network pharmacology and screened for the corresponding pharmacodynamic components as potential quality markers. The results of "component-target-pathway" network showed that (+)-Nerolidol, 2-Nonanol, α-Terpineol, α-Pinene, 2-Nonanone had high degree values and may be the main active components. Partial least squares-discriminant analysis (PLS-DA) was further used to select for differential metabolites and was identified as a potential quality marker, 11 in total. PLS-DA and residual network (ResNet) classification models were developed for the identification of 3 species of the genus Amomum, ResNet model is more suitable for the identification study of large volume samples. SIGNIFICANCE This study characterizes the differences between the three species in a visual way and also provides a reliable technique for their identification, while demonstrating the ability of FT-NIR spectroscopy for fast, easy and accurate species identification. The results of this study lay the foundation for quality evaluation studies of genus Amomum and provide new ideas for the development of new drugs for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Gang He
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Shao-Bing Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| |
Collapse
|
3
|
Kolb KL, Mira ALS, Auer ED, Bucco ID, de Lima e Silva CE, dos Santos PI, Hoch VBB, Oliveira LC, Hauser AB, Hundt JE, Shuldiner AR, Lopes FL, Boysen TJ, Franke A, Pinto LFR, Soares-Lima SC, Kretzschmar GC, Boldt ABW. Glucocorticoid Receptor Gene ( NR3C1) Polymorphisms and Metabolic Syndrome: Insights from the Mennonite Population. Genes (Basel) 2023; 14:1805. [PMID: 37761945 PMCID: PMC10530687 DOI: 10.3390/genes14091805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The regulation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with polymorphisms and the methylation degree of the glucocorticoid receptor gene (NR3C1) and is potentially involved in the development of metabolic syndrome (MetS). In order to evaluate the association between MetS with the polymorphisms, methylation, and gene expression of the NR3C1 in the genetically isolated Brazilian Mennonite population, we genotyped 20 NR3C1 polymorphisms in 74 affected (MetS) and 138 unaffected individuals without affected first-degree relatives (Co), using exome sequencing, as well as five variants from non-exonic regions, in 70 MetS and 166 Co, using mass spectrometry. The methylation levels of 11 1F CpG sites were quantified using pyrosequencing (66 MetS and 141 Co), and the NR3C1 expression was evaluated via RT-qPCR (14 MetS and 25 Co). Age, physical activity, and family environment during childhood were associated with MetS. Susceptibility to MetS, independent of these factors, was associated with homozygosity for rs10482605*C (OR = 4.74, pcorr = 0.024) and the haplotype containing TTCGTTGATT (rs3806855*T_ rs3806854*T_rs10482605*C_rs10482614*G_rs6188*T_rs258813*T_rs33944801*G_rs34176759*A_rs17209258*T_rs6196*T, OR = 4.74, pcorr = 0.048), as well as for the CCT haplotype (rs41423247*C_ rs6877893*C_rs258763*T), OR = 6.02, pcorr = 0.030), but not to the differences in methylation or gene expression. Thus, NR3C1 polymorphisms seem to modulate the susceptibility to MetS in Mennonites, independently of lifestyle and early childhood events, and their role seems to be unrelated to DNA methylation and gene expression.
Collapse
Affiliation(s)
- Kathleen Liedtke Kolb
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Ana Luiza Sprotte Mira
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Eduardo Delabio Auer
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Isabela Dall’Oglio Bucco
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
| | - Carla Eduarda de Lima e Silva
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
| | - Priscila Ianzen dos Santos
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Internal Medicine, Medical Clinic Department, UFPR, Rua General Carneiro, 181, 11th Floor, Alto da Glória, Curitiba 80210-170, PR, Brazil
| | - Valéria Bumiller-Bini Hoch
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
| | - Luana Caroline Oliveira
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
| | - Aline Borsato Hauser
- Laboratory School of Clinical Analysis, Department of Pharmacy, Federal University of Paraná (UFPR), Av. Pref. Lothário Meissner, 632, Jardim Botânico, Curitiba 80210-170, PR, Brazil;
| | - Jennifer Elisabeth Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee, 160, Haus 32, 23562 Lübeck, Germany;
| | - Alan R. Shuldiner
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA;
| | - Fabiana Leão Lopes
- Human Genetics Branch, National Institute of Mental Health, 35 Convent Drive, Bethesda, MD 20892, USA;
- Institute of Psychiatry, Federal University Rio de Janeiro, Av. Venceslau Brás, 71, Rio de Janeiro 22290-140, RJ, Brazil
| | - Teide-Jens Boysen
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (T.-J.B.); (A.F.)
| | - Andre Franke
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (T.-J.B.); (A.F.)
| | - Luis Felipe Ribeiro Pinto
- Brazilian National Cancer Institute, Rua André Cavalcanti, 37, Rio de Janeiro 20231-050, RJ, Brazil; (L.F.R.P.); (S.C.S.-L.)
| | - Sheila Coelho Soares-Lima
- Brazilian National Cancer Institute, Rua André Cavalcanti, 37, Rio de Janeiro 20231-050, RJ, Brazil; (L.F.R.P.); (S.C.S.-L.)
| | - Gabriela Canalli Kretzschmar
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333, Curitiba 80230-020, PR, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba 80250-060, PR, Brazil
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| |
Collapse
|