1
|
Amin SA, Sessa L, Tarafdar R, Gayen S, Piotto S. A semiempirical and machine learning approach for fragment-based structural analysis of non-hydroxamate HDAC3 inhibitors. Biophys Chem 2025; 320-321:107409. [PMID: 39978120 DOI: 10.1016/j.bpc.2025.107409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Interest in HDAC3 inhibitors (HDAC3i) for pharmacological applications outside of cancer is growing. However, concerns regarding the possible mutagenicity of the commonly used hydroxamates (zinc-binding groups, ZBGs) are also increasing. Considering these concerns, non-hydroxamate ZBGs offer a promising alternative for the development of non-mutagenic HDAC3 inhibitors. Unfortunately, the quantum chemical space of non-hydroxamates has not been studied in detail. This study has three primary goals: (i) to perform semiempirical quantum chemical calculations, examining AM-1 model parameters relevant to zinc binding, (ii) to develop supervised mathematical learning models to train a diverse set of non-hydroxamate-based HDAC3i, and (iii) to apply fragment-based approaches to identify sub-structural fragments (fingerprints) that promote or hinder HDAC3 inhibitory activity through classification-based QSARs. In addition, flexible molecular docking analysis, 200 ns MD simulation, and free energy landscape (FEL) analysis further established the importance of identified fingerprints in the modulation of HDAC3 inhibitory activity. This comprehensive analysis of structural variations among non-hydroxamate HDAC3i provides valuable insights, contributing to the design of potential non-mutagenic HDAC3i.
Collapse
Affiliation(s)
- Sk Abdul Amin
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal 700109, India.
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Rajdip Tarafdar
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal 700109, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
2
|
Amin SA, Sessa L, Gayen S, Piotto S. PPARγ modulator predictor (PGMP_v1): chemical space exploration and computational insights for enhanced type 2 diabetes mellitus management. Mol Divers 2025:10.1007/s11030-025-11118-5. [PMID: 39891837 DOI: 10.1007/s11030-025-11118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) plays a critical role in adipocyte differentiation and enhances insulin sensitivity. In contemporary drug discovery, in silico design strategies offer significant advantages by revealing essential structural insights for lead optimization. The study is guided by two main objectives: (i) a ligand-based approach to explore the chemical space of PPARγ modulators followed by molecular docking ensembles (MDEs) to investigate ligand-binding interactions, (ii) the development of a supervised ML model for a large dataset of compounds targeting PPARγ. Additionally, the combination of chemical space networks with ML models enables the rapid screening and prediction of PPARγ modulators. These modeling analyses will assist medicinal chemists in designing more potent PPARγ modulators. To further enhance accessibility for the scientific community, we developed an online tool, "PGMP_v1," aimed at prospective screening for PPARγ modulators. The tool "PGMP_v1" is available at the provided link https://github.com/Amincheminfom/PGMP_v1 . The integration of these computational methods has uncovered crucial structural motifs that are essential for PPARγ activity, advancing the development of more effective modulators in the future.
Collapse
Affiliation(s)
- Sk Abdul Amin
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Shovanlal Gayen
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
3
|
Pagire HS, Pagire SH, Jeong BK, Choi WI, Oh CJ, Lim CW, Kim M, Yoon J, Kim SS, Bae MA, Jeon JH, Song S, Lee HJ, Lee EY, Goughnour PC, Kim D, Lee IK, Loomba R, Kim H, Ahn JH. Discovery of a peripheral 5HT 2A antagonist as a clinical candidate for metabolic dysfunction-associated steatohepatitis. Nat Commun 2024; 15:645. [PMID: 38245505 PMCID: PMC10799935 DOI: 10.1038/s41467-024-44874-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is currently the leading cause of chronic liver disease worldwide. Metabolic Dysfunction-Associated Steatohepatitis (MASH), an advanced form of MASLD, can progress to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Based on recent findings by our team that liver 5HT2A knockout male mice suppressed steatosis and reduced fibrosis-related gene expression, we developed a peripheral 5HT2A antagonist, compound 11c for MASH. It shows good in vitro activity, stability, and in vivo pharmacokinetics (PK) in rats and dogs. Compound 11c also shows good in vivo efficacy in a diet-induced obesity (DIO) male mice model and in a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) male mice model, effectively improving histologic features of MASH and fibrosis. According to the tissue distribution study using [14C]-labeled 11c, the compound was determined to be a peripheral 5HT2A antagonist. Collectively, first-in-class compound 11c shows promise as a therapeutic agent for the treatment of MASLD and MASH.
Collapse
Affiliation(s)
- Haushabhau S Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Suvarna H Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Byung-Kwan Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Won-Il Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chang Joo Oh
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, 41404, Republic of Korea
| | - Chae Won Lim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 41404, Republic of Korea
| | - Minhee Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jihyeon Yoon
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, 41404, Republic of Korea
| | - Sungmin Song
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Hee Jong Lee
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Eun Young Lee
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Peter C Goughnour
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Dooseop Kim
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea.
| |
Collapse
|