1
|
Liu YQ, Yang Q, He GW. Post-translational acylation of proteins in cardiac hypertrophy. Nat Rev Cardiol 2025:10.1038/s41569-025-01150-1. [PMID: 40229510 DOI: 10.1038/s41569-025-01150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2025] [Indexed: 04/16/2025]
Abstract
Acylations are post-translational modifications in which functional groups are attached to amino acids on proteins. Most acylations (acetylation, butyrylation, crotonylation, lactylation, malonylation, propionylation and succinylation) involve lysine but cysteine (palmitoylation) and glycine (myristoylation) residues can also be altered. Acylations have important roles in physiological and pathophysiological processes, including cardiac hypertrophy and related cardiovascular diseases. These post-translational modifications influence chromatin architecture, transcriptional regulation and metabolic pathways, thereby affecting cardiomyocyte function and pathology. The dynamic interaction between these acylations and their regulatory enzymes, such as histone acetyltransferases, histone deacetylases and sirtuins, underscores the complexity of cellular homeostasis and pathological processes. Emerging evidence highlights the therapeutic potential of targeting acylations to modulate enzyme activity and metabolite levels, offering promising avenues for novel treatments. In this Review, we explore the diverse mechanisms through which acylations contribute to cardiac hypertrophy, highlighting the complexity and potential therapeutic targets in this regulatory network.
Collapse
Affiliation(s)
- Ying-Qi Liu
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Qin Yang
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China.
- Division of Cardiothoracic Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Song H, Guo Z, Xie K, Liu X, Yang X, Shen R, Wang D. Crotonylation of MCM6 enhances chemotherapeutics sensitivity of breast cancer via inducing DNA replication stress. Cell Prolif 2025; 58:e13759. [PMID: 39477811 PMCID: PMC11839194 DOI: 10.1111/cpr.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 02/21/2025] Open
Abstract
Breast cancer is associated with high morbidity and mortality, which are closely influenced by protein post-translational modifications (PTMs). Lysine crotonylation (Kcr) serves as a newly identified PTM type that plays a role in various biological processes; however, its involvement in breast cancer progression remains unclear. Minichromosome maintenance 6 (MCM6) is a critical component of DNA replication and has been previous confirmed to exhibit a significant role in tumorigenesis. Despite this, a comprehensive analysis of MCM6, particularly regarding its modifications in breast cancer is lacking. In this study, we found MCM6 is upregulated in breast invasive carcinoma (BRCA) and is associated with poorer overall survival by regulating the DNA damage repair mechanisms. Furthermore, MCM6-knockdown resulted in decreased cell proliferation and inhibited the DNA replication, leading to DNA replication stress and sustained DNA damage, thereby enhancing the chemotherapeutic sensitivity of breast cancer. Additionally, SIRT7-mediated crotonylation of MCM6 at K599 (MCM6-K599cr) was significantly upregulated in response to DNA replication stress, primarily due to the disassemebly of the MCM2-7 complex and regulated by RNF8-mediated ubiquitination. Concurrently, kaempferol, which acts as a regulator of SIRT7, was found to enhance the Kcr level of MCM6, reducing tumour weight, particular when combined with paclitaxel, highlighting its potential chemotherapeutic target for BRCA therapy.
Collapse
Affiliation(s)
- Haoyun Song
- School of Basic Medical SciencesLanzhou UniversityGansuChina
| | - Zhao Guo
- School of Basic Medical SciencesLanzhou UniversityGansuChina
| | - Kun Xie
- School of Basic Medical SciencesLanzhou UniversityGansuChina
| | - Xiangwen Liu
- School of Basic Medical SciencesLanzhou UniversityGansuChina
| | - Xuguang Yang
- School of Basic Medical SciencesLanzhou UniversityGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityGansuChina
| | - Degui Wang
- School of Basic Medical SciencesLanzhou UniversityGansuChina
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumorLanzhouGansu ProvinceChina
| |
Collapse
|
3
|
Guo H, Han Y, Yao S, Chen B, Zhao H, Jia J, Chen S, Liu Y, Gao S, Guan H, Lu J, Zhou PK. Decrotonylation of cGAS K254 prompts homologous recombination repair by blocking its DNA binding and releasing PARP1. J Biol Chem 2024; 300:107554. [PMID: 39002667 PMCID: PMC11345394 DOI: 10.1016/j.jbc.2024.107554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor, also exhibits nuclear genomic localization and is involved in DNA damage signaling. In this study, we investigated the impact of cGAS crotonylation on the regulation of the DNA damage response, particularly homologous recombination repair, following exposure to ionizing radiation (IR). Lysine 254 of cGAS is constitutively crotonylated by the CREB-binding protein; however, IR-induced DNA damage triggers sirtuin 3 (SIRT3)-mediated decrotonylation. Lysine 254 decrotonylation decreased the DNA-binding affinity of cGAS and inhibited its interaction with PARP1, promoting homologous recombination repair. Moreover, SIRT3 suppression led to homologous recombination repair inhibition and markedly sensitized cancer cells to IR and DNA-damaging chemicals, highlighting SIRT3 as a potential target for cancer therapy. Overall, this study revealed the crucial role of cGAS crotonylation in the DNA damage response. Furthermore, we propose that modulating cGAS and SIRT3 activities could be potential strategies for cancer therapy.
Collapse
Affiliation(s)
- Hejiang Guo
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yang Han
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shibo Yao
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bijia Chen
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongling Zhao
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jin Jia
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Shi Chen
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Yuhao Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shanshan Gao
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Jun Lu
- Department of Medical Oncology, Beijing YouAn Hospital, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China.
| |
Collapse
|
4
|
Saadi S, Nacer NE, Saari N, Mohammed AS, Anwar F. The underlying mechanism of nuclear and mitochondrial DNA damages in triggering cancer incidences: Insights into proteomic and genomic sciences. J Biotechnol 2024; 383:1-12. [PMID: 38309588 DOI: 10.1016/j.jbiotec.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The attempt of this review article is to determine the impact of nuclear and mitochondrial damages on the propagation of cancer incidences. This review has advanced our understanding to altered genes and their relevant cancerous proteins. The progressive raising effects of free reactive oxygen species ROS and toxicogenic compounds contributed to significant mutation in nuclear and mitochondrial DNA where the incidence of gastric cancer is found to be linked with down regulation of some relevant genes and mutation in some important cellular proteins such as AMP-18 and CA-11. Thereby, the resulting changes in gene mutations induced the apparition of newly polymorphisms eventually leading to unusual cellular expression to mutant proteins. Reduction of these apoptotic growth factors and nuclear damages is increasingly accepted by cell reactivation effect, enhanced cellular signaling and DNA repairs. Acetylation, glycation, pegylation and phosphorylation are among the molecular techniques used in DNA repair for rectifying mutation incidences. In addition, the molecular labeling based fluorescent materials are currently used along with the bioconjugating of signal molecules in targeting disease translocation site, particularly cancers and tumors. These strategies would help in determining relevant compounds capable in overcoming problems of down regulating genes responsible for repair mechanisms. These issues of course need interplay of both proteomic and genomic studies often in combination of molecular engineering to cible the exact expressed gene relevant to these cancerous proteins.
Collapse
Affiliation(s)
- Sami Saadi
- Institute de la Nutrition, de l'Alimentation et des Technologies Agroalimetaires INATAA, Université des Frères Mentouri Constantine 1, Route de Ain El Bey, Constantine 25000, Algeria; Laboratoire de Génie Agro-Alimentaire (GeniAAl), INATAA, Université Frères Mentouri Constantine 1 UFC1, Route de Ain El Bey, Constantine 25000, Algeria.
| | - Nor Elhouda Nacer
- Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, Batna 05000, Algeria
| | - Nazamid Saari
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia
| | | | - Farooq Anwar
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia; Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; Honorary Research Fellow: Metharath University, 99 Moo 10, Bangtoey, Samkhok, Pathum Thani 12160, Thailand
| |
Collapse
|