Liu W, Li N, Tang D, Qin L, Zhu Z. Multimodal Neuroimaging of Obesity: From Structural-Functional Mechanisms to Precision Interventions.
Brain Sci 2025;
15:446. [PMID:
40426616 PMCID:
PMC12109827 DOI:
10.3390/brainsci15050446]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
PURPOSE
Obesity's metabolic consequences are well documented; however, its neurobiological underpinnings remain elusive. This systematic review addresses a critical gap by synthesizing evidence on obesity-induced neuroplasticity across structural, functional, and molecular domains through advanced neuroimaging.
METHODS
According to PRISMA guidelines, we systematically searched (2015-2024) across PubMed/Web of Science, employing MeSH terms: ("Obesity" [Majr]) AND ("Neuroimaging" [Mesh] OR "Magnetic Resonance Imaging" [Mesh]). A total of 104 studies met the inclusion criteria. The inclusion criteria required the following: (1) multimodal imaging protocols (structural MRI/diffusion tensor imaging/resting-state functional magnetic resonance imaging (fMRI)/positron emission tomography (PET)); (2) pre-/post-intervention longitudinal design. Risk of bias was assessed via the Newcastle-Ottawa Scale.
KEY FINDINGS
1. Structural alterations: 7.2% mean gray matter reduction in prefrontal cortex (Cohen's d = 0.81). White matter integrity decline (FA reduction β = -0.33, p < 0.001) across 12 major tracts. 2. Functional connectivity: Resting-state hyperactivity in mesolimbic pathways (fALFF + 23%, p-FDR < 0.05). Impaired fronto-striatal connectivity (r = -0.58 with BMI, 95% CI [-0.67, -0.49]). 3. Interventional reversibility: Bariatric surgery restored prefrontal activation (Δ = +18% vs. controls, p = 0.002). Neurostimulation (transcranial direct current stimulation (tDCS) enhanced cognitive control (post-treatment β = 0.42, p = 0.009).
CONCLUSION
1. Obesity induces multidomain neural reorganization beyond traditional reward circuits. 2. Neuroimaging biomarkers (e.g., striatal PET-dopamine binding potential) predict intervention outcomes (AUC = 0.79). 3. Precision neuromodulation requires tripartite integration of structural guidance, functional monitoring, and molecular profiling. Findings highlight neuroimaging's pivotal role in developing stage-specific therapeutic strategies.
Collapse