1
|
Nagai M, Rommel KP, Po SS, Dasari TW. Autonomic neuromodulation for cardiomyopathy associated with metabolic syndrome - Prevention of precursors for heart failure with preserved ejection fraction. Hypertens Res 2024; 47:3318-3329. [PMID: 39261699 DOI: 10.1038/s41440-024-01886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Metabolic syndrome (MetS) induces a systemic inflammatory state which can lead to cardiomyopathy, manifesting clinically as heart failure (HF) with preserved ejection fraction (HFpEF). MetS components are intricately linked to the pathophysiologic processes of myocardial remodeling. Increased sympathetic nervous system activity, which is noted as an upstream factor of MetS, has been linked to adverse myocardial structural changes. Since renal denervation and vagus nerve stimulation have a sympathoinhibitory effect, attention has been paid to the cardioprotective effects of autonomic neuromodulation. In this review, the pathophysiology underlying the relationship between MetS and HF is elucidated, and the evidence regarding autonomic neuromodulation in HFpEF is summarized.
Collapse
Affiliation(s)
- Michiaki Nagai
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA.
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan.
| | - Karl-Philipp Rommel
- Department of Cardiology, University Medical Center Mainz and German Center for Cardiovascular Research, Mainz, Germany
| | - Sunny S Po
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA
| | - Tarun W Dasari
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA.
| |
Collapse
|
2
|
Chakraborty P, Niewiadomska M, Farhat K, Morris L, Whyte S, Humphries KM, Stavrakis S. Effect of Low-Level Tragus Stimulation on Cardiac Metabolism in Heart Failure with Preserved Ejection Fraction: A Transcriptomics-Based Analysis. Int J Mol Sci 2024; 25:4312. [PMID: 38673896 PMCID: PMC11050145 DOI: 10.3390/ijms25084312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Abnormal cardiac metabolism precedes and contributes to structural changes in heart failure. Low-level tragus stimulation (LLTS) can attenuate structural remodeling in heart failure with preserved ejection fraction (HFpEF). The role of LLTS on cardiac metabolism is not known. Dahl salt-sensitive rats of 7 weeks of age were randomized into three groups: low salt (0.3% NaCl) diet (control group; n = 6), high salt diet (8% NaCl) with either LLTS (active group; n = 8), or sham stimulation (sham group; n = 5). Both active and sham groups received the high salt diet for 10 weeks with active LLTS or sham stimulation (20 Hz, 2 mA, 0.2 ms) for 30 min daily for the last 4 weeks. At the endpoint, left ventricular tissue was used for RNA sequencing and transcriptomic analysis. The Ingenuity Pathway Analysis tool (IPA) was used to identify canonical metabolic pathways and upstream regulators. Principal component analysis demonstrated overlapping expression of important metabolic genes between the LLTS, and control groups compared to the sham group. Canonical metabolic pathway analysis showed downregulation of the oxidative phosphorylation (Z-score: -4.707, control vs. sham) in HFpEF and LLTS improved the oxidative phosphorylation (Z-score = -2.309, active vs. sham). HFpEF was associated with the abnormalities of metabolic upstream regulators, including PPARGC1α, insulin receptor signaling, PPARα, PPARδ, PPARGC1β, the fatty acid transporter SLC27A2, and lysine-specific demethylase 5A (KDM5A). LLTS attenuated abnormal insulin receptor and KDM5A signaling. HFpEF is associated with abnormal cardiac metabolism. LLTS, by modulating the functioning of crucial upstream regulators, improves cardiac metabolism and mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Praloy Chakraborty
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Suite 5400, Oklahoma City, OK 73104, USA; (P.C.); (K.F.); (L.M.); (S.W.)
- Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Monika Niewiadomska
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Suite 5400, Oklahoma City, OK 73104, USA; (P.C.); (K.F.); (L.M.); (S.W.)
| | - Kassem Farhat
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Suite 5400, Oklahoma City, OK 73104, USA; (P.C.); (K.F.); (L.M.); (S.W.)
| | - Lynsie Morris
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Suite 5400, Oklahoma City, OK 73104, USA; (P.C.); (K.F.); (L.M.); (S.W.)
| | - Seabrook Whyte
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Suite 5400, Oklahoma City, OK 73104, USA; (P.C.); (K.F.); (L.M.); (S.W.)
| | - Kenneth M. Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Suite 5400, Oklahoma City, OK 73104, USA; (P.C.); (K.F.); (L.M.); (S.W.)
| |
Collapse
|
3
|
Chakraborty P, Chen PS, Gollob MH, Olshansky B, Po SS. Potential consequences of cardioneuroablation for vasovagal syncope: A call for appropriately designed, sham-controlled clinical trials. Heart Rhythm 2024; 21:464-470. [PMID: 38104955 DOI: 10.1016/j.hrthm.2023.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Cardioneuroablation (CNA) is being increasingly used to treat patients with vasovagal syncope (VVS). Bradycardia, in the cardioinhibitory subtype of VVS, results from transient parasympathetic overactivity leading to sinus bradycardia and/or atrioventricular block. By mitigating parasympathetic overactivity, CNA has been shown to improve VVS symptoms in clinical studies with relatively small sample sizes and short follow-up periods (<5 years) at selected centers. However, CNA may potentially tip the autonomic balance to a state of sympathovagal imbalance with attenuation of cardiac parasympathetic activity. A higher heart rate is associated with adverse cardiovascular events and increased mortality in healthy populations without cardiovascular diseases. Chronic sympathovagal imbalance may also affect the pathophysiology of spectra of cardiovascular disorders including atrial and ventricular arrhythmias. This review addresses potential long-term pathophysiological consequences of CNA for VVS.
Collapse
Affiliation(s)
- Praloy Chakraborty
- Heart Rhythm Institute, Section of Cardiovascular Diseases, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Peter Munk Cardiac Centre, Toronto General Hospital and University Health Network, Toronto, Ontario, Canada
| | - Peng-Sheng Chen
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michael H Gollob
- Peter Munk Cardiac Centre, Toronto General Hospital and University Health Network, Toronto, Ontario, Canada
| | - Brian Olshansky
- Department of Internal Medicine - Cardiovascular Medicine, University of Iowa, Iowa City, Iowa
| | - Sunny S Po
- Heart Rhythm Institute, Section of Cardiovascular Diseases, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|