1
|
Wu IT, Chang YT, Su CH, Lan YH, Hung CC. Novel dihydrochalcone from Fissistigma latifolium targets STAT3 and survivin to overcome multidrug resistance cancers in vitro and in vivo. Biomed Pharmacother 2025; 187:118125. [PMID: 40327991 DOI: 10.1016/j.biopha.2025.118125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Multidrug resistance (MDR) remains a significant challenge in cancer chemotherapy, with no FDA-approved drugs currently available for its treatment. Natural chalcones, known for their diverse bioactivities, have emerged as potential therapeutic candidates. PURPOSE This study aimed to investigate the potential of 4,6-dimethoxy-2,5-quinodihydrochalcone (DODHC), a compound derived from Fissistigma latifolium, in overcoming MDR in cancer and to elucidate its underlying molecular mechanisms. METHODS The reversal effects of DODHC on MDR were evaluated using cytotoxicity assays. The molecular mechanisms were explored through apoptosis- and cell cycle-related assays, STAT3 ELISA, western blotting, docking simulations, and a zebrafish model. The impact of DODHC on P-glycoprotein (P-gp) activity was assessed using the Calcein-AM uptake assay. RESULTS DODHC promoted apoptosis in MDR cancer cells by suppressing survivin expression and activating the extrinsic apoptotic pathway. It also induced G2/M phase cell cycle arrest by downregulating cell division control protein 2 (CDC2) and cyclin B1 (CCNB1), thereby inhibiting cell proliferation. Additionally, DODHC reduced both total and phosphorylated STAT3 levels in MDR cancer cells without affecting P-gp activity. In vivo, DODHC significantly inhibited tumor growth in MDR cancer models, both as a monotherapy and in combination with paclitaxel. CONCLUSION This study highlights DODHC as a dual inhibitor of STAT3 and survivin, demonstrating its potential as a promising candidate for the treatment of MDR cancers.
Collapse
Affiliation(s)
- I-Ting Wu
- Department of Pharmacy, China Medical University, No. 100, Section 1, Jingmao Rd., Beitun Dist., Taichung 406040, Taiwan
| | - Ying-Tzu Chang
- Department of Pharmacy, China Medical University, No. 100, Section 1, Jingmao Rd., Beitun Dist., Taichung 406040, Taiwan
| | - Ching-Hui Su
- Department of Pharmacy, China Medical University, No. 100, Section 1, Jingmao Rd., Beitun Dist., Taichung 406040, Taiwan
| | - Yu-Hsuan Lan
- Department of Pharmacy, China Medical University, No. 100, Section 1, Jingmao Rd., Beitun Dist., Taichung 406040, Taiwan.
| | - Chin-Chuan Hung
- Department of Pharmacy, China Medical University, No. 100, Section 1, Jingmao Rd., Beitun Dist., Taichung 406040, Taiwan; Department of Pharmacy, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung 404332, Taiwan; Department of Healthcare Administration, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan.
| |
Collapse
|
2
|
Kuttikrishnan S, Ansari AW, Suleman M, Ahmad F, Prabhu KS, El‐Elimat T, Alali FQ, Al Shabeeb Akil AS, Bhat AA, Merhi M, Dermime S, Steinhoff M, Uddin S. The apoptotic and anti-proliferative effects of Neosetophomone B in T-cell acute lymphoblastic leukaemia via PI3K/AKT/mTOR pathway inhibition. Cell Prolif 2025; 58:e13773. [PMID: 39542458 PMCID: PMC11882758 DOI: 10.1111/cpr.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
The phosphatidylinositol 3-kinase/Protein Kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signalling pathway is pivotal in various cancers, including T-cell acute lymphoblastic leukaemia (T-ALL), a particularly aggressive type of leukaemia. This study investigates the effects of Neosetophomone B (NSP-B), a meroterpenoid fungal metabolite, on T-ALL cell lines, focusing on its anti-cancer mechanisms and therapeutic potential. NSP-B significantly inhibited the proliferation of T-ALL cells by inducing G0/G1 cell cycle arrest and promoting caspase-dependent apoptosis. Additionally, NSP-B led to the dephosphorylation and subsequent inactivation of the PI3K/AKT/mTOR signalling pathway, a critical pathway in cell survival and growth. Molecular docking studies revealed a strong binding affinity of NSP-B to the active site of AKT, primarily involving key residues crucial for its activity. Interestingly, NSP-B treatment also induced apoptosis and significantly reduced proliferation in phytohemagglutinin-activated primary human CD3+ T cells, accompanied by a G0/G1 cell cycle arrest. Importantly, NSP-B did not affect normal primary T cells, indicating a degree of selectivity in its action, targeting only T-ALL cells and activated T cells. In conclusion, our findings highlight the potential of NSP-B as a novel therapeutic agent for T-ALL, specifically targeting the aberrantly activated PI3K/AKT/mTOR pathway and being selective in action. These results provide a strong basis for further investigation into NSP-B's anti-cancer properties and potential application in T-ALL clinical therapies.
Collapse
Affiliation(s)
- Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- College of Pharmacy, QU HealthQatar UniversityDohaQatar
| | - Abdul W. Ansari
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
| | | | - Fareed Ahmad
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
| | - Tamam El‐Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of PharmacyJordan University of Science and TechnologyIrbidQatar
| | | | - Ammira S. Al Shabeeb Akil
- Department of Human Genetics‐Precision Medicine in Diabetes, Obesity and Cancer ProgramSidra MedicineDohaQatar
| | - Ajaz A. Bhat
- Department of Human Genetics‐Precision Medicine in Diabetes, Obesity and Cancer ProgramSidra MedicineDohaQatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and ResearchHamad Medical CorporationDohaQatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and ResearchHamad Medical CorporationDohaQatar
- College of Health SciencesQatar UniversityDohaQatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology & VenereologyHamad Medical CorporationDohaQatar
- Department of MedicineWeill Cornell Medicine‐QatarDohaQatar
- College of MedicineQatar UniversityDohaQatar
- College of Health and Life SciencesHamad Bin Khalifa UniversityDohaQatar
- Department of MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - Shahab Uddin
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Laboratory of Animal Research CenterQatar UniversityDohaQatar
| |
Collapse
|
3
|
Zhuo Y, Song Y. Prognostic and immunological implications of paraptosis-related genes in lung adenocarcinoma: Comprehensive analysis and functional verification of hub gene. ENVIRONMENTAL TOXICOLOGY 2025; 40:396-411. [PMID: 38445368 DOI: 10.1002/tox.24185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/20/2024] [Accepted: 02/10/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) poses significant clinical challenges due to its inherent heterogeneity and variable response to treatment. Recent research has specifically focused on elucidating the role of Paraptosis-related genes (PRGs) in the progression of cancer and the prognosis of patients. METHODS We conducted a comprehensive analysis of the differential expression of PRGs in LUAD. Additionally, univariate Cox regression analysis was utilized to determine the prognostic significance of these genes. Furthermore, consensus clustering was employed to differentiate molecular subtypes within LUAD, while immune heterogeneity was assessed. To evaluate treatment outcomes, the expression of immune checkpoint inhibitors was examined, and the sensitivity of LUAD patients to chemotherapy drugs was assessed. Moreover, machine learning algorithms were employed to construct a Paraptosis-related risk score with prognostic and immunological indicators. Finally, to validate the findings, in vitro experiments were performed to verify the regulatory effect of key PRGs on Paraptosis. RESULTS Our analysis identified 24 PRGs that exhibited differential expression, with CDKN3, TP53, and PHB emerging as the most prominently upregulated genes in tumor tissues. Among these genes, seven were identified as prognostic markers, with HSPB8 being the sole protective factor. Notably, our analysis also revealed the existence of two distinct molecular subtypes within LUAD, each characterized by unique prognoses and immune responses. Specifically, Subtype B displayed a poorer prognosis but demonstrated increased sensitivity to both chemotherapy and immunotherapy. In addition, our development of a Paraptosis-Associated Risk Score yielded a significant prognostic value in predicting patient outcomes. Furthermore, we found regulatory effect of CDKN3 on Paraptosis in two cell lines. CONCLUSIONS Our study highlights the importance of PRGs in LUAD, particularly in prognosis and treatment response. The identified molecular subtypes and Paraptosis-Associated Risk Score offer valuable insights for personalized treatment strategies.
Collapse
Affiliation(s)
- Ying Zhuo
- Pulmonary Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yan Song
- Pulmonary Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Li C, Ling Y, Kuang H. Research progress on FSH-FSHR signaling in the pathogenesis of non-reproductive diseases. Front Cell Dev Biol 2024; 12:1506450. [PMID: 39633710 PMCID: PMC11615068 DOI: 10.3389/fcell.2024.1506450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Follicle-stimulating hormone (FSH), a glycoprotein hormone synthesized and secreted by the anterior pituitary gland, plays a critical role in reproductive development and regulation by binding to FSH receptor (FSHR). Beyond reproductive tissue, FSHRs have been identified in various non-reproductive tissues, indicating broader functions. FSH levels chronically rise during menopause and remain elevated in postmenopausal life. This increase in FSH level has been indicated to be associated with heightened risk of several non-reproductive diseases, including osteoporosis, hypercholesterolemia, type 2 diabetes mellitus, obesity, cardiovascular disease, Alzheimer's disease, and certain cancers. In this review, we will examine the role of FSH-FSHR signaling in the pathogenesis of these non-reproductive diseases and explore therapeutic strategies targeting FSH-FSHR signaling pathways.
Collapse
Affiliation(s)
- Chenhe Li
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, Jiangxi, China
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yan Ling
- Department of Obstetrics and Gynecology, Jiangxi provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Wadhwa R, Wang J, Shefrin S, Zhang H, Sundar D, Kaul SC. Molecular Insights into the Anticancer Activity of Withaferin-A: The Inhibition of Survivin Signaling. Cancers (Basel) 2024; 16:3090. [PMID: 39272948 PMCID: PMC11394585 DOI: 10.3390/cancers16173090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Survivin, a member of the IAP family, functions as a homodimer and inhibits caspases, the key enzymes involved in apoptosis. Several Survivin inhibitors, including YM-155, Debio1143, EM1421, LQZ-7I, and TL32711, have emerged as potential anticancer drugs awaiting validation in clinical trials. Due to the high cost and adverse side effects of synthetic drugs, natural compounds with similar activity have also been in demand. In this study, we conducted molecular docking assays to evaluate the ability of Wi-A and Wi-N to block Survivin dimerization. We found that Wi-A, but not Wi-N, can bind to and prevent the homodimerization of Survivin, similar to YM-155. Therefore, we prepared a Wi-A-rich extract from Ashwagandha leaves (Wi-AREAL). Experimental analyses of human cervical carcinoma cells (HeLa and ME-180) treated with Wi-AREAL (0.05-0.1%) included assessments of viability, apoptosis, cell cycle, migration, invasion, and the expression levels (mRNA and protein) of molecular markers associated with these phenotypes. We found that Wi-AREAL led to growth arrest mediated by the upregulation of p21WAF1 and the downregulation of several proteins (CDK1, Cyclin B, pRb) involved in cell cycle progression. Furthermore, Wi-AREAL treatment activated apoptosis signaling, as evidenced by reduced PARP-1 and Bcl-2 levels, increased procaspase-3, and elevated Cytochrome C. Additionally, treating cells with a nontoxic low concentration (0.01%) of Wi-AREAL inhibited migration and invasion, as well as EMT (epithelial-mesenchymal transition) signaling. By combining computational and experimental approaches, we demonstrate the potential of Wi-A and Wi-AREAL as natural inhibitors of Survivin, which may be helpful in cancer treatment.
Collapse
Affiliation(s)
- Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan
| | - Jia Wang
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan
| | - Seyad Shefrin
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110-016, India
| | - Huayue Zhang
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan
| | - Durai Sundar
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110-016, India
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru 560-100, India
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan
| |
Collapse
|
6
|
Wang CL, Yang BW, Wang XY, Chen X, Li WD, Zhai HY, Wu Y, Cui MY, Wu JH, Meng QH, Zhang N. Targeting colorectal cancer with Herba Patriniae and Coix seed: Network pharmacology, molecular docking, and in vitro validation. World J Gastrointest Oncol 2024; 16:3539-3558. [PMID: 39171161 PMCID: PMC11334031 DOI: 10.4251/wjgo.v16.i8.3539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Herba Patriniae and Coix seed (HC) constitute a widely utilized drug combination in the clinical management of colorectal cancer (CRC) that is known for its diuretic, anti-inflammatory, and swelling-reducing properties. Although its efficacy has been demonstrated in a clinical setting, the active compounds and their mechanisms of action in CRC treatment remain to be fully elucidated. AIM To identify the active, CRC-targeting components of HC and to elucidate the mechanisms of action involved. METHODS Active HC components were identified and screened using databases. Targets for each component were predicted. CRC-related targets were obtained from human gene databases. Interaction targets between HC and CRC were identified. A "drug-ingredient-target" network was created to identify the core components and targets involved. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to elucidate the key pathways involved. Molecular docking between core targets and key components was executed. In vitro experiments validated core monomers. RESULTS Nineteen active components of HC were identified, with acacetin as the primary active compound. The predictive analysis identified 454 targets of the active compounds in HC. Intersection mapping with 2685 CRC-related targets yielded 171 intervention targets, including 30 core targets. GO and KEGG analyses indicated that HC may influence the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Molecular docking showed that acacetin exhibited an optimal interaction with AKT1, identifying PI3K, AKT, and P53 as key genes likely targeted by HC during CRC treatment. Acacetin inhibited HT-29 cell proliferation and migration, as well as promoted apoptosis, in vitro. Western blotting analysis revealed increased p53 and cleaved caspase-3 expression and decreased levels of p-PI3K, p-Akt, and survivin, which likely contributed to CRC apoptosis. CONCLUSION Acacetin, the principal active compound in the HC pair, inhibited the proliferation and migration of HT-29 cells and promoted apoptosis through the PI3K/Akt/p53 signaling pathway.
Collapse
Affiliation(s)
- Cheng-Lei Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Bing-Wei Yang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xin-Yan Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xue Chen
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wei-Dong Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Department of Scientific Research Management, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hao-Yu Zhai
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ying Wu
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Mu-Yao Cui
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jia-He Wu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing-Hui Meng
- School of Clinical Medicine Qinghai University, Xining 810000, Qinghai Province, China
| | - Nan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
7
|
Haase A, Alefeld E, Yalinci F, Meenen DV, Busch MA, Dünker N. Gastric Inhibitory Polypeptide Receptor (GIPR) Overexpression Reduces the Tumorigenic Potential of Retinoblastoma Cells. Cancers (Basel) 2024; 16:1656. [PMID: 38730608 PMCID: PMC11083251 DOI: 10.3390/cancers16091656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Retinoblastoma (RB) is the most common malignant intraocular tumor in early childhood. Gene expression profiling revealed that the gastric inhibitory polypeptide receptor (GIPR) is upregulated following trefoil factor family peptide 1 (TFF1) overexpression in RB cells. In the study presented, we found this G protein-coupled transmembrane receptor to be co-expressed with TFF1, a new diagnostic and prognostic RB biomarker for advanced subtype 2 RBs. Functional analyses in two RB cell lines revealed a significant reduction in cell viability and growth and a concomitant increase in apoptosis following stable, lentiviral GIPR overexpression, matching the effects seen after TFF1 overexpression. In chicken chorioallantoic membrane (CAM) assays, GIPR-overexpressing RB cells developed significantly smaller CAM tumors. The effect of GIPR overexpression in RB cells was reversed by the GIPR inhibitor MK0893. The administration of recombinant TFF1 did not augment GIPR overexpression effects, suggesting that GIPR does not serve as a TFF1 receptor. Investigations of potential GIPR up- and downstream mediators suggest the involvement of miR-542-5p and p53 in GIPR signaling. Our results indicate a tumor suppressor role of GIPR in RB, suggesting its pathway as a new potential target for future retinoblastoma therapy.
Collapse
|
8
|
Chen R, Zhu S, Zhao R, Liu W, Jin L, Ren X, He H. Targeting ferroptosis as a potential strategy to overcome the resistance of cisplatin in oral squamous cell carcinoma. Front Pharmacol 2024; 15:1402514. [PMID: 38711989 PMCID: PMC11071065 DOI: 10.3389/fphar.2024.1402514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a crucial public health problem, accounting for approximately 2% of all cancers globally and 90% of oral malignancies over the world. Unfortunately, despite the achievements in surgery, radiotherapy, and chemotherapy techniques over the past decades, OSCC patients still low 5-year survival rate. Cisplatin, a platinum-containing drug, serves as one of the first-line chemotherapeutic agents of OSCC. However, the resistance to cisplatin significantly limits the clinical practice and is a crucial factor in tumor recurrence and metastasis after conventional treatments. Ferroptosis is an iron-based form of cell death, which is initiated by the intracellular accumulation of lipid peroxidation and reactive oxygen species (ROS). Interestingly, cisplatin-resistant OSCC cells exhibit lower level of ROS and lipid peroxidation compared to sensitive cells. The reduced ferroptosis in cisplatin resistance cells indicates the potential relationship between cisplatin resistance and ferroptosis, which is proved by recent studies showing that in colorectal cancer cells. However, the modulation pathway of ferroptosis reversing cisplatin resistance in OSCC cells still remains unclear. This article aims to concisely summarize the molecular mechanisms and evaluate the relationship between ferroptosis and cisplatin resistance OSCC cells, thereby providing novel strategies for overcoming cisplatin resistance and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Rongkun Chen
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Shuyu Zhu
- Department of Oral Implantology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Ruoyu Zhao
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Wang Liu
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Luxin Jin
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Xiaobin Ren
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Hongbing He
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| |
Collapse
|
9
|
Yunchu Y, Miyanaga A, Matsuda K, Kamio K, Seike M. Exploring effective biomarkers and potential immune related gene in small cell lung cancer. Sci Rep 2024; 14:7604. [PMID: 38556560 PMCID: PMC10982305 DOI: 10.1038/s41598-024-58454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/29/2024] [Indexed: 04/02/2024] Open
Abstract
Small cell lung cancer (SCLC) is well known as a highly malignant neuroendocrine tumor. Immunotherapy combined with chemotherapy has become a standard treatment for extensive SCLC. However, since most patients quickly develop resistance and relapse, finding new therapeutic targets for SCLC is important. We obtained four microarray datasets from the Gene Expression Omnibus database and screened differentially expressed genes by two methods: batch correction and "RobustRankAggregation". After the establishment of a protein-protein interaction network through Cytoscape, seven hub genes (AURKB, BIRC5, TOP2A, TYMS, PCNA, UBE2C, and AURKA) with high expression in SCLC samples were obtained by eight CytoHubba algorithms. The Least Absolute Shrinkage and Selection Operator regression and the Wilcoxon test were used to analyze the differences in the immune cells' infiltration between normal and SCLC samples. The contents of seven kinds of immune cells were considered to differ significantly between SCLC samples and normal samples. A negative association was found between BIRC5 and monocytes in the correlation analysis between immune cells and the seven hub genes. The subsequent in vitro validation of experimental results showed that downregulating the expression of BIRC5 by siRNA can promote apoptotic activity of SCLC cells and inhibit their vitality, migration, and invasion. The use of BIRC5 inhibitor inhibited the vitality of SCLC cells and increased their apoptotic activity. BIRC5 may be a novel therapeutic target option for SCLC.
Collapse
Affiliation(s)
- Yang Yunchu
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Koichiro Kamio
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|