1
|
Kwon SH, Lee JH, Kim HW, Kim DY, Kil DY. Effect of increasing supplementation of dietary glycine on growth performance, meat quality, liver characteristics, and intestinal health in broiler chickens raised under heat stress conditions. Poult Sci 2024; 103:104352. [PMID: 39383666 PMCID: PMC11490916 DOI: 10.1016/j.psj.2024.104352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024] Open
Abstract
The current study aimed to investigate the effect of increasing supplementation of dietary glycine (Gly) on growth performance, meat quality, liver characteristics, and intestinal health in broiler chickens raised under heat stress (HS) conditions. A total of one thousand six hundred 25-d-old broiler chickens were randomly allotted to 1 of 5 dietary treatments with 8 replicates. Each replicate comprised 20 male and 20 female birds. A negative control (NC) diet was prepared to meet or exceed energy and nutrient requirement estimates, whereas a positive control (PC) diet was formulated to contain increasing concentrations of AMEn by 50 kcal/kg as well as those of digestible amino acids, total Ca, and available P by 10% compared with the respective concentrations in the NC diet. Three additional diets were prepared by supplementing the NC diet with 0.4, 0.8, or 1.6% Gly. All chickens were raised under cyclic HS conditions at 29°C ± 0.89°C for 10 h/d and 23°C ± 1.45°C for the remaining time over an 18-d feeding trial. Results indicated that broiler chickens fed the NC diet had a greater (P < 0.05) FCR than those fed the PC diet under HS conditions. Increasing supplementation of up to 1.6% Gly in diets decreased (linear, P < 0.001) FCR in broiler chickens. Increasing supplementation of dietary Gly tended to increase (linear, P = 0.070) water holding capacity in the breast meat. Increasing supplementation of dietary Gly decreased (linear, P < 0.05) serum aspartate aminotransferase concentrations and tended to decrease blood heterophil:lymphocyte (linear, P = 0.083) and liver malondialdehyde concentrations (quadratic, P = 0.084). A tendency for increased villus height (linear, P = 0.086) and a significant increase in villus height:crypt depth ratio and goblet cell numbers (linear, P < 0.05) were identified following increasing Gly supplementation. In conclusion, increasing supplementation of dietary Gly improved feed efficiency, meat quality, liver health, and intestinal morphology possibly by mitigating oxidative stress and stress response in broiler chickens raised under HS conditions.
Collapse
Affiliation(s)
- Sung Hoon Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Ji Hye Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Deok Yun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
2
|
Awad WA, Ruhnau D, Gavrău A, Dublecz K, Hess M. Comparing effects of natural betaine and betaine hydrochloride on gut physiology in broiler chickens. Poult Sci 2022; 101:102173. [PMID: 36228528 PMCID: PMC9573929 DOI: 10.1016/j.psj.2022.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Betaine is a well-known component of poultry diets with various effects on nutritional physiology. For example, increased water retention due to the osmolytic effect of betaine increases the volume of the cell, thereby accelerating the anabolic activity, integrity of cell membrane, and overall performance of the bird. Betaine is a multifunctional component (trimethyl derivative) acting as the most efficient methyl group donor and as an organic osmolyte, which can directly influence the gastrointestinal tract integrity, functionality, and health. So far, nothing is known about the effect of betaine on the intestinal barrier in chickens. In addition, little is known about comparing natural betaine with its synthetic form. Therefore, an animal study was conducted to ascertain the effects of betaine supplementation (natural and synthetic) on performance and intestinal physiological responses of broilers. One hundred and five 1-day-old broiler chicks were randomly assigned into 3 groups with 35 birds each: control, natural betaine (1 kg active natural (n)-betaine/ton of feed) and synthetic (syn)-betaine‐HCL (1 kg active betaine /ton of feed). Histological assessment showed lower jejunal crypt depth and villi height/crypt depth ratio in syn-betaine-HCL group compared with natural n-betaine fed birds. Furthermore, it was found that syn-betaine-HCL negatively affects the integrity of the intestine by increasing the intestinal paracellular permeability in both jejunum and cecum as evidenced by a higher mannitol flux. Additionally, syn-betaine-HCl significantly upregulated the IFN-γ mRNA expression at certain time points, which could promote intestinal permeability, as it plays an important role in intestinal barrier dysfunction. Body weight (BW) and body weight gain (BWG) did not differ (P > 0.05) between the control birds and birds supplemented with syn-betaine‐HCL. However, the BW and BWG were significantly (P < 0.05) improved by the dietary inclusion of n-betaine compared with other treatments. Altogether, the dietary inclusion of n-betaine had a positive effect on performance and did not negatively affect gut paracellular permeability. Furthermore, our results show that syn-betaine-HCl induces changes in the intestine, indicating an alteration of the intestinal histology and permeability. Thus, natural or synthetic betaine has different effects, which needs to be considered when using them as a feed supplement.
Collapse
Affiliation(s)
- Wageha A Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| | - Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Ana Gavrău
- Agrana Sales & Marketing GmbH, Vienna, Austria
| | - Károly Dublecz
- Institute of Physiology and Nutrition, Georgikon Campus, Hungarian University of Agriculture and Life Science, Keszthely, Hungary
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
3
|
Chuang WY, Liu CL, Tsai CF, Lin WC, Chang SC, Shih HD, Shy YM, Lee TT. Evaluation of Waste Mushroom Compost as a Feed Supplement and Its Effects on the Fat Metabolism and Antioxidant Capacity of Broilers. Animals (Basel) 2020; 10:ani10030445. [PMID: 32155947 PMCID: PMC7143042 DOI: 10.3390/ani10030445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Mushroom waste compost is the main byproduct when cultivating mushrooms. Due to its high mycelium content, mushroom waste compost may improve animal health by increasing antioxidant capacity. Furthermore, increasing evidence suggests that supplementing animal diets with fiber could improve body composition and health. The results showed that supplementation with mushroom waste compost accelerates adipolysis and enhances the antioxidant capacity of broilers. Among all treatment groups, broilers given dietary supplementation with 0.5% mushroom waste compost showed improved feed conversion rate and the highest adipose metabolism. Abstract Pennisetum purpureum Schum No. 2 waste mushroom compost (PWMC) is the main byproduct when cultivating Pleurotus eryngii. Due to the high mycelium levels in PWMC, it may have potential as a feed supplement for broilers. This study investigated the effects of PWMC supplementation on antioxidant capacity and adipose metabolism in broilers. In the study, 240 broilers were randomly allocated to one of four treatment groups: basal diet (control), 0.5%, 1%, or 2% PWMC supplementation. Each treatment group had 60 broilers, divided into three replicates. The results showed that supplementation with 0.5% PWMC decreased the feed conversion rate (FCR) from 1.36 to 1.28, compared to the control. Supplementation with 0.5% or 2% PWMC decreased glucose and triglyceride levels, compared to the control (p < 0.0001), the concentrations of adiponectin and oxytocin increased from 5948 to 5709, 11820, and 7938 ng/ mL; and 259 to 447, 873, and 963 pg/ mL, respectively. Toll-like receptor 4 was slightly increased in the 0.5% and 1% PWMC groups. Both interferon-γ (IFN-γ) and interleukin-1ß (IL-1ß) were significantly decreased, by about three to five times for IFN-γ (p < 0.0001) and 1.1 to 1.6 times for IL-1ß (p = 0.0002). All antioxidant-related mRNA, including nuclear factor erythroid 2–related factor 2 (Nrf-2) and superoxidase dismutase-1 (SOD-1), increased significantly following PWMC supplementation. Both claudin-1 and zonula occludens 1 increased, especially in the 2% PWMC group. Excitatory amino acid transporter 3 (EAAT3) significantly increased by about 5, 12, and 11 times in the 0.5%, 1%, and 2% PWMC groups. All adipolysis-related mRNA were induced in the PWMC treatment groups, further enhancing adipolysis. Overall, 0.5% PWMC supplementation was recommended due to its improving FCR, similar antioxidant capacity, and upregulated adipolysis.
Collapse
Affiliation(s)
- Wen Yang Chuang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (C.L.L.); (C.F.T.); (W.C.L.)
| | - Chu Ling Liu
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (C.L.L.); (C.F.T.); (W.C.L.)
| | - Chia Fen Tsai
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (C.L.L.); (C.F.T.); (W.C.L.)
| | - Wei Chih Lin
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (C.L.L.); (C.F.T.); (W.C.L.)
| | - Shen Chang Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Tainan 71246, Taiwan;
| | - Hsin Der Shih
- Taiwan Agricultural Research Institute Council of Agriculture, Executive Yuan, Taichung City 41362, Taiwan;
| | - Yi Ming Shy
- Hsinchu Branch, Taiwan Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan 71246, Taiwan;
| | - Tzu-Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (C.L.L.); (C.F.T.); (W.C.L.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-22840366; Fax: +886-4-22860265
| |
Collapse
|
4
|
Attia YA, El-Naggar AS, Abou-Shehema BM, Abdella AA. Effect of Supplementation with Trimethylglycine (Betaine) and/or Vitamins on Semen Quality, Fertility, Antioxidant Status, DNA Repair and Welfare of Roosters Exposed to Chronic Heat Stress. Animals (Basel) 2019; 9:ani9080547. [PMID: 31408981 PMCID: PMC6719041 DOI: 10.3390/ani9080547] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 01/06/2023] Open
Abstract
In this study, we investigated the influence of betaine (Bet, 1000 mg/kg), with or without vitamin C (VC, 200 mg/kg ascorbic acid) and/or vitamin E (VE, 150 mg/kg α-tocopherol acetate) on semen quality, seminal and blood plasma constituents, antioxidants' status, DNA repair, and the welfare of chronic heat stress (CHS)-exposed roosters. A total of 54 roosters were divided into six groups of nine replicates. One group was kept under thermoneutral conditions, whereas the other five were kept under CHS. One of the five groups served as an unsupplemented CHS group, and was fed with a basal diet. The other four CHS groups were supplemented with Bet, Bet + VC, Bet + VE, and Bet + VC + VE, respectively. Our data indicate that supplementation with Bet, Bet + VC, Bet + VE, and Bet + VC + VE, resulted in complete recovery of the CHS effect on sperm concentration and livability, semen pH, and fertility compared to the thermoneutral group. Seminal plasma total antioxidant capacity (TAC) was significantly (p < 0.05) increased with Bet, with or without vitamins, compared to the thermoneutral and CHS groups. Urea and blood plasma malondialdehyde (MDA) were totally recovered with Bet, with or without vitamin treatments. Both the jejunum and ileum DNA were partially recovered following Bet, with or without vitamin supplementation. In conclusion, Bet, at 1000 mg/kg feed, may be a useful agent for increasing semen quality, fertility, welfare, and to improve the breeding strategy of breeder males in hot climates.
Collapse
Affiliation(s)
- Youssef A Attia
- Arid Land Agriculture Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour 22713, Egypt.
| | - Asmaa Sh El-Naggar
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour 22713, Egypt
| | - Bahaa M Abou-Shehema
- Department of Poultry Nutrition, Animal production Research Institute, Agriculture Research Center, Ministry of Agriculture and Land Reclamation, Alexandria 21917, Egypt
| | - Ahmed A Abdella
- Department of Poultry Nutrition, Animal production Research Institute, Agriculture Research Center, Ministry of Agriculture and Land Reclamation, Alexandria 21917, Egypt
| |
Collapse
|