1
|
Du H, Liu Z, Lu SY, Jiang L, Zhou L, Liu JF. Genomic evidence for human-mediated introgressive hybridization and selection in the developed breed. BMC Genomics 2024; 25:331. [PMID: 38565992 PMCID: PMC10986048 DOI: 10.1186/s12864-024-10259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The pig (Sus Scrofa) is one of the oldest domesticated livestock species that has undergone extensive improvement through modern breeding. European breeds have advantages in lean meat development and highly-productive body type, whereas Asian breeds possess extraordinary fat deposition and reproductive performance. Consequently, Eurasian breeds have been extensively used to develop modern commercial breeds for fast-growing and high prolificacy. However, limited by the sequencing technology, the genome architecture of some nascent developed breeds and the human-mediated impact on their genomes are still unknown. RESULTS Through whole-genome analysis of 178 individuals from an Asian locally developed pig breed, Beijing Black pig, and its two ancestors from two different continents, we found the pervasive inconsistent gene trees and species trees across the genome of Beijing Black pig, which suggests its introgressive hybrid origin. Interestingly, we discovered that this developed breed has more genetic relationships with European pigs and an unexpected introgression from Asian pigs to this breed, which indicated that human-mediated introgression could form the porcine genome architecture in a completely different type compared to native introgression. We identified 554 genomic regions occupied 63.30 Mb with signals of introgression from the Asian ancestry to Beijing Black pig, and the genes in these regions enriched in pathways associated with meat quality, fertility, and disease-resistant. Additionally, a proportion of 7.77% of genomic regions were recognized as regions that have been under selection. Moreover, combined with the results of a genome-wide association study for meat quality traits in the 1537 Beijing Black pig population, two important candidate genes related to meat quality traits were identified. DNAJC6 is related to intramuscular fat content and fat deposition, and RUFY4 is related to meat pH and tenderness. CONCLUSIONS Our research provides insight for analyzing the origins of nascent developed breeds and genome-wide selection remaining in the developed breeds mediated by humans during modern breeding.
Collapse
Affiliation(s)
- Heng Du
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Zhen Liu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Shi-Yu Lu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Li Jiang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Lei Zhou
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China.
| | - Jian-Feng Liu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University (West District), No.2 Yuanmingyuan West Road, 100193, Beijing, China.
| |
Collapse
|
2
|
Strillacci MG, Punturiero C, Milanesi R, Bernini F, Mason T, Bagnato A. Antibiotic treatments and somatic cell count as phenotype to map QTL for mastitis susceptibility in Holstein cattle breed. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2175498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
| | - Chiara Punturiero
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Raffaella Milanesi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Francesca Bernini
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Tiziano Mason
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
3
|
Poklukar K, Mestre C, Škrlep M, Čandek-Potokar M, Ovilo C, Fontanesi L, Riquet J, Bovo S, Schiavo G, Ribani A, Muñoz M, Gallo M, Bozzi R, Charneca R, Quintanilla R, Kušec G, Mercat MJ, Zimmer C, Razmaite V, Araujo JP, Radović Č, Savić R, Karolyi D, Servin B. A meta-analysis of genetic and phenotypic diversity of European local pig breeds reveals genomic regions associated with breed differentiation for production traits. Genet Sel Evol 2023; 55:88. [PMID: 38062367 PMCID: PMC10704730 DOI: 10.1186/s12711-023-00858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Intense selection of modern pig breeds has resulted in genetic improvement of production traits while the performance of local pig breeds has remained lower. As local pig breeds have been bred in extensive systems, they have adapted to specific environmental conditions, resulting in a rich genotypic and phenotypic diversity. This study is based on European local pig breeds that have been genetically characterized using DNA-pool sequencing data and phenotypically characterized using breed level phenotypes related to stature, fatness, growth, and reproductive performance traits. These data were analyzed using a dedicated approach to detect signatures of selection linked to phenotypic traits in order to uncover potential candidate genes that may underlie adaptation to specific environments. RESULTS Analysis of the genetic data of European pig breeds revealed four main axes of genetic variation represented by the Iberian and three modern breeds (i.e. Large White, Landrace, and Duroc). In addition, breeds clustered according to their geographical origin, for example French Gascon and Basque breeds, Italian Apulo Calabrese and Casertana breeds, Spanish Iberian, and Portuguese Alentejano breeds. Principal component analysis of the phenotypic data distinguished the larger and leaner breeds with better growth potential and reproductive performance from the smaller and fatter breeds with low growth and reproductive efficiency. Linking the signatures of selection with phenotype identified 16 significant genomic regions associated with stature, 24 with fatness, 2 with growth, and 192 with reproduction. Among them, several regions contained candidate genes with possible biological effects on stature, fatness, growth, and reproductive performance traits. For example, strong associations were found for stature in two regions containing, respectively, the ANXA4 and ANTXR1 genes, for fatness in a region containing the DNMT3A and POMC genes and for reproductive performance in a region containing the HSD17B7 gene. CONCLUSIONS In this study on European local pig breeds, we used a dedicated approach for detecting signatures of selection that were supported by phenotypic data at the breed level to identify potential candidate genes that may have adapted to different living environments and production systems.
Collapse
Affiliation(s)
- Klavdija Poklukar
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000, Ljubljana, Slovenia
| | - Camille Mestre
- GenPhySE, Université de Toulouse, INRAE, INP, ENVT, 31320, Castanet-Tolosan, France
| | - Martin Škrlep
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000, Ljubljana, Slovenia
| | | | - Cristina Ovilo
- Departamento Mejora Genética Animal, INIA-CSIC, Crta. de la Coruña Km. 7,5, 28040, Madrid, Spain
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Juliette Riquet
- GenPhySE, Université de Toulouse, INRAE, INP, ENVT, 31320, Castanet-Tolosan, France
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Maria Muñoz
- Departamento Mejora Genética Animal, INIA-CSIC, Crta. de la Coruña Km. 7,5, 28040, Madrid, Spain
| | - Maurizio Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, 00198, Rome, Italy
| | - Ricardo Bozzi
- DAGRI-Animal Science Section, Università Di Firenze, Via Delle Cascine 5, 50144, Florence, Italy
| | - Rui Charneca
- MED- Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Apartado 94, 7006-554, Évora, Portugal
| | - Raquel Quintanilla
- Programa de Genética y Mejora Animal, IRTA, Torre Marimon, Caldes de Montbui, 08140, Barcelona, Spain
| | - Goran Kušec
- Faculty of Agrobiotechnical Sciences, University of Osijek, Vladimira Preloga 1, 31000, Osijek, Croatia
| | - Marie-José Mercat
- IFIP Institut du Porc, La Motte au Vicomte, BP 35104, 35651, Le Rheu Cedex, France
| | - Christoph Zimmer
- Bauerliche Erzeugergemeinschaft Schwäbisch Hall, Haller Str. 20, 74549, Wolpertshausen, Germany
| | - Violeta Razmaite
- Animal Science Institute, Lithuanian University of Health Sciences, 82317, Baisogala, Lithuania
| | - Jose P Araujo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Viana do Castelo, Escola Superior Agrária, Refóios do Lima, 4990-706, Ponte de Lima, Portugal
| | - Čedomir Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, 11080, Belgrade-Zemun, Serbia
| | - Radomir Savić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade-Zemun, Serbia
| | - Danijel Karolyi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000, Zagreb, Croatia
| | - Bertrand Servin
- GenPhySE, Université de Toulouse, INRAE, INP, ENVT, 31320, Castanet-Tolosan, France.
| |
Collapse
|
4
|
Genetic diversity and population structure of six autochthonous pig breeds from Croatia, Serbia, and Slovenia. Genet Sel Evol 2022; 54:30. [PMID: 35484510 PMCID: PMC9052598 DOI: 10.1186/s12711-022-00718-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The importance of local breeds as genetic reservoirs of valuable genetic variation is well established. Pig breeding in Central and South-Eastern Europe has a long tradition that led to the formation of several local pig breeds. In the present study, genetic diversity parameters were analysed in six autochthonous pig breeds from Slovenia, Croatia and Serbia (Banija spotted, Black Slavonian, Turopolje pig, Swallow-bellied Mangalitsa, Moravka and Krskopolje pig). Animals from each of these breeds were genotyped using microsatellites and single nucleotide polymorphisms (SNPs). The results obtained with these two marker systems and those based on pedigree data were compared. In addition, we estimated inbreeding levels based on the distribution of runs of homozygosity (ROH) and identified genomic regions under selection pressure using ROH islands and the integrated haplotype score (iHS). RESULTS The lowest heterozygosity values calculated from microsatellite and SNP data were observed in the Turopolje pig. The observed heterozygosity was higher than the expected heterozygosity in the Black Slavonian, Moravka and Turopolje pig. Both types of markers allowed us to distinguish clusters of individuals belonging to each breed. The analysis of admixture between breeds revealed potential gene flow between the Mangalitsa and Moravka, and between the Mangalitsa and Black Slavonian, but no introgression events were detected in the Banija spotted and Turopolje pig. The distribution of ROH across the genome was not uniform. Analysis of the ROH islands identified genomic regions with an extremely high frequency of shared ROH within the Swallow-bellied Mangalitsa, which harboured genes associated with cholesterol biosynthesis, fatty acid metabolism and daily weight gain. The iHS approach to detect signatures of selection revealed candidate regions containing genes with potential roles in reproduction traits and disease resistance. CONCLUSIONS Based on the estimation of population parameters obtained from three data sets, we showed the existence of relationships among the six pig breeds analysed here. Analysis of the distribution of ROH allowed us to estimate the level of inbreeding and the extent of homozygous regions in these breeds. The iHS analysis revealed genomic regions potentially associated with phenotypic traits and allowed the detection of genomic regions under selection pressure.
Collapse
|
6
|
Ahmadi N. Genetic Bases of Complex Traits: From Quantitative Trait Loci to Prediction. Methods Mol Biol 2022; 2467:1-44. [PMID: 35451771 DOI: 10.1007/978-1-0716-2205-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conceived as a general introduction to the book, this chapter is a reminder of the core concepts of genetic mapping and molecular marker-based prediction. It provides an overview of the principles and the evolution of methods for mapping the variation of complex traits, and methods for QTL-based prediction of human disease risk and animal and plant breeding value. The principles of linkage-based and linkage disequilibrium-based QTL mapping methods are described in the context of the simplest, single-marker, methods. Methodological evolutions are analysed in relation with their ability to account for the complexity of the genotype-phenotype relations. Main characteristics of the genetic architecture of complex traits, drawn from QTL mapping works using large populations of unrelated individuals, are presented. Methods combining marker-QTL association data into polygenic risk score that captures part of an individual's susceptibility to complex diseases are reviewed. Principles of best linear mixed model-based prediction of breeding value in animal- and plant-breeding programs using phenotypic and pedigree data, are summarized and methods for moving from BLUP to marker-QTL BLUP are presented. Factors influencing the additional genetic progress achieved by using molecular data and rules for their optimization are discussed.
Collapse
Affiliation(s)
- Nourollah Ahmadi
- CIRAD, UMR AGAP Institut, Montpellier, France.
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
7
|
Genomic Tools for the Conservation and Genetic Improvement of a Highly Fragmented Breed-The Ramo Grande Cattle from the Azores. Animals (Basel) 2020; 10:ani10061089. [PMID: 32599723 PMCID: PMC7341246 DOI: 10.3390/ani10061089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Inbreeding control is a key concern in managing local endangered breeds, which often have developed unique adaptation features. Ramo Grande is a local cattle breed raised in the Azores archipelago under very harsh conditions, with a census of about 1300 cows dispersed by various islands. This fragmentation is a challenge when the goal is to keep inbreeding under control. Currently, panels of genetic markers are available which enable the assessment of inbreeding and the occurrence of previous bottlenecks in a population. These panels also allow the identification of genes associated with specific production traits, if reliable phenotypic information is available. We used a panel of genetic markers and estimated that the degree of inbreeding was approaching a level of concern, while some exotic gene inflow may have occurred in the past. We were able to identify genetic markers significantly associated with longevity, which reflects the ability of these cattle to remain productive under severe environmental conditions. Genetic markers were also identified as significantly associated with age at first calving and calf growth rate. The results indicate that genomic information can be used to control inbreeding and to implement genomic selection in Ramo Grande cattle to enhance adaptation and production traits. Abstract Ramo Grande is a local cattle breed raised in the archipelago of Azores, with a small and dispersed census, where inbreeding control is of utmost importance. A single nucleotide polymorphism (SNP) Beadchip array was used to assess inbreeding, by analysis of genomic regions harboring contiguous homozygous genotypes named runs of homozygosity (ROH), and to estimate past effective population size by analysis of linkage disequilibrium (LD). Genetic markers associated with production traits were also investigated, exploiting the unique genetic and adaptation features of this breed. A total of 639 ROH with length >4 Mb were identified, with mean length of 14.96 Mb. The mean genomic inbreeding was 0.09, and long segments of ROH were common, indicating recent inbred matings. The LD pattern indicates a large effective population size, suggesting the inflow of exotic germplasm in the past. The genome-wide association study identified novel markers significantly affecting longevity, age at first calving and direct genetic effects on calf weight. These results provide the first evidence of the association of longevity with genes related with DNA recognition and repair, and the association of age at first calving with aquaporin proteins, which are known to have a crucial role in reproduction.
Collapse
|