1
|
Wang S, Nie Z, Zhu L, Wu Y, Wen Y, Deng F, Zhao L. Probiotic Characteristics and the Anti-Inflammatory Effects of Lactiplantibacillus plantarum Z22 Isolated from Naturally Fermented Vegetables. Microorganisms 2024; 12:2159. [PMID: 39597548 PMCID: PMC11596721 DOI: 10.3390/microorganisms12112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Currently, there is increasing interest in the commercial utilization of probiotics isolated from traditional fermented food products. Therefore, this study aimed to investigate the probiotic potential of Lactiplantibacillus plantarum (L. plantarum) Z22 isolated from naturally fermented mustard. The results suggest that L. plantarum Z22 exhibits good adhesion ability, antibacterial activity, safety, and tolerance to acidic conditions and bile salts. We further determined the anti-inflammatory mechanism and properties of L. plantarum Z22 and found that L. plantarum Z22 could significantly reduce the secretion of pro-inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and the expression of the pro-inflammatory mediator cyclooxygenase-2 (COX-2) protein in LPS-induced RAW 264.7 cells. In addition, L. plantarum Z22 also effectively inhibited the signaling pathways of nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPKs). This effect can be attributed to a decrease in the levels of reactive oxygen species (ROS) and increased heme oxygenase-1 (HO-1) expression. Moreover, whole-genome sequencing revealed that L. plantarum Z22 contains gene-encoding proteins with anti-inflammatory functions, such as beta-glucosidase (BGL) and pyruvate kinase (PK), as well as antioxidant functions, including thioredoxin reductase (TrxR), tyrosine-protein phosphatase, and ATP-dependent intracellular proteases ClpP. In summary, these results indicated that L. plantarum Z22 can serve as a potential candidate probiotic for use in fermented foods such as yogurt (starter cultures), providing a promising strategy for the development of functional foods to prevent chronic diseases.
Collapse
Affiliation(s)
- Shiyu Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.W.); (L.Z.); (Y.W.); (Y.W.)
| | - Ziyu Nie
- College of Animal Science and Technology, Hunan Biological Electromechanical Vocational College, Changsha 410128, China;
| | - Li Zhu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.W.); (L.Z.); (Y.W.); (Y.W.)
| | - Yanyang Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.W.); (L.Z.); (Y.W.); (Y.W.)
| | - Yashi Wen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.W.); (L.Z.); (Y.W.); (Y.W.)
| | - Fangming Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.W.); (L.Z.); (Y.W.); (Y.W.)
| | - Lingyan Zhao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.W.); (L.Z.); (Y.W.); (Y.W.)
| |
Collapse
|
2
|
König E, Heponiemi P, Kivinen S, Räkköläinen J, Beasley S, Borman T, Collado MC, Hukkinen V, Junnila J, Lahti L, Norring M, Piirainen V, Salminen S, Heinonen M, Valros A. Fewer culturable Lactobacillaceae species identified in faecal samples of pigs performing manipulative behaviour. Sci Rep 2024; 14:132. [PMID: 38168466 PMCID: PMC10762183 DOI: 10.1038/s41598-023-50791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
Manipulative behaviour that consists of touching or close contact with ears or tails of pen mates is common in pigs and can become damaging. Manipulative behaviour was analysed from video recordings of 45-day-old pigs, and 15 manipulator-control pairs (n = 30) were formed. Controls neither received nor performed manipulative behaviour. Rectal faecal samples of manipulators and controls were compared. 16S PCR was used to identify Lactobacillaceae species and 16S amplicon sequencing to determine faecal microbiota composition. Seven culturable Lactobacillaceae species were identified in control pigs and four in manipulator pigs. Manipulators (p = 0.02) and females (p = 0.005) expressed higher Lactobacillus amylovorus, and a significant interaction was seen (sex * status: p = 0.005) with this sex difference being more marked in controls. Females (p = 0.08) and manipulator pigs (p = 0.07) tended to express higher total Lactobacillaceae. A tendency for an interaction was seen in Limosilactobacillus reuteri (sex * status: p = 0.09). Results suggest a link between observed low diversity in Lactobacillaceae and the development of manipulative behaviour.
Collapse
Affiliation(s)
- Emilia König
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland.
| | | | - Sanni Kivinen
- Functional Foods Forum, University of Turku, 20520, Turku, Finland
| | | | - Shea Beasley
- Vetcare Ltd., 04600, Mäntsälä, Finland
- Sheaps Oy, 03250, Ojakkala, Finland
| | - Tuomas Borman
- Department of Computing, University of Turku, 20500, Turku, Finland
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46980, Paterna, Valencia, Spain
| | - Vilja Hukkinen
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland
| | | | - Leo Lahti
- Department of Computing, University of Turku, 20500, Turku, Finland
| | - Marianna Norring
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland
| | - Virpi Piirainen
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, 20520, Turku, Finland
| | - Mari Heinonen
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland
| | - Anna Valros
- Research Centre for Animal Welfare, Department of Production Animal Medicine, University of Helsinki, 00790, Helsinki, Finland
| |
Collapse
|
3
|
Okoye CO, Gao L, Wu Y, Li X, Wang Y, Jiang J. Identification, characterization and optimization of culture medium conditions for organic acid-producing lactic acid bacteria strains from Chinese fermented vegetables. Prep Biochem Biotechnol 2024; 54:49-60. [PMID: 37114667 DOI: 10.1080/10826068.2023.2204507] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Lactic acid bacteria (LAB) are widely exploited in fermented foods and are gaining attention for novel uses due to their safety as biopreservatives. In this study, several organic acid-producing LAB strains were isolated from fermented vegetables for their potential application in fermentation. We identified nine novel strains belonging to four genera and five species, Lactobacillus plantarum PC1-1, YCI-2 (8), YC1-1-4B, YC1-4 (4), and YC2-9, Lactobacillus buchneri PC-C1, Pediococcus pentosaceus PC2-1 (F2), Weissella hellenica PC1A, and Enterococcus sp. YC2-6. Based on the results of organic acids, acidification, growth rate, antibiotic activity and antimicrobial inhibition, PC1-1, YC1-1-4B, PC2-1(F2), and PC-C1 showed exceptional biopreservative potential. Additionally, PC-C1, YC1-1-4B, and PC2-1(F2) recorded higher (p < 0.05) growth by utilizing lower concentrations of glucose (20 g/L) and soy peptone (10 g/L) as carbon and nitrogen sources in optimized culture conditions (pH 6, temperature 32 °C, and agitation speed 180 rpm) at 24hr and acidification until 72hr in batch fermentation, which suggests their application as starter cultures in industrial fermentation.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Lu Gao
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yanfang Wu
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xia Li
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yongli Wang
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianxiong Jiang
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Maternal Probiotic or Synbiotic Supplementation on Sow and Offspring Gastrointestinal Microbiota, Health, and Performance. Animals (Basel) 2023; 13:2996. [PMID: 37835602 PMCID: PMC10571980 DOI: 10.3390/ani13192996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The increasing prevalence of antimicrobial-resistant pathogens has prompted the reduction in antibiotic and antimicrobial use in commercial pig production. This has led to increased research efforts to identify alternative dietary interventions to support the health and development of the pig. The crucial role of the GIT microbiota in animal health and performance is becoming increasingly evident. Hence, promoting an improved GIT microbiota, particularly the pioneer microbiota in the young pig, is a fundamental focus. Recent research has indicated that the sow's GIT microbiota is a significant contributor to the development of the offspring's microbiota. Thus, dietary manipulation of the sow's microbiota with probiotics or synbiotics, before farrowing and during lactation, is a compelling area of exploration. This review aims to identify the potential health benefits of maternal probiotic or synbiotic supplementation to both the sow and her offspring and to explore their possible modes of action. Finally, the results of maternal sow probiotic and synbiotic supplementation studies are collated and summarized. Maternal probiotic or synbiotic supplementation offers an effective strategy to modulate the sow's microbiota and thereby enhance the formation of a health-promoting pioneer microbiota in the offspring. In addition, this strategy can potentially reduce oxidative stress and inflammation in the sow and her offspring, enhance the immune potential of the milk, the immune system development in the offspring, and the sow's feed intake during lactation. Although many studies have used probiotics in the maternal sow diet, the most effective probiotic or probiotic blends remain unclear. To this extent, further direct comparative investigations using different probiotics are warranted to advance the current understanding in this area. Moreover, the number of investigations supplementing synbiotics in the maternal sow diet is limited and is an area where further exploration is warranted.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| |
Collapse
|
5
|
Qian M, Zhou X, Xu T, Li M, Yang Z, Han X. Evaluation of Potential Probiotic Properties of Limosilactobacillus fermentum Derived from Piglet Feces and Influence on the Healthy and E. coli-Challenged Porcine Intestine. Microorganisms 2023; 11:microorganisms11041055. [PMID: 37110478 PMCID: PMC10142273 DOI: 10.3390/microorganisms11041055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
In this work, we evaluated the probiotic properties of Limosilactobacillus fermentum strains (FL1, FL2, FL3, FL4) isolated from feces of healthy piglets. The in vitro auto-aggregation, hydrophobicity, biofilm-forming capacity, survival in the gastrointestinal tract, antimicrobial activity and anti-oxidation capacity were evaluated. Four strains were resistant to simulated gastrointestinal conditions, including low pH, pepsin, trypsin and bile salts. They also maintained strong self-aggregation and cell surface hydrophobicity. Limosilactobacillus fermentum FL4, which had the strongest adhesion ability and antimicrobial effect on Enterotoxigenic Escherichia coli K88 (ETEC K88), was then tested in porcine intestinal organoid models. The in vitro experiments in basal-out and apical-out organoids demonstrated that L. fermentum FL4 adhered to the apical surfaces more efficiently than basolateral surfaces, had the ability to activate the Wnt/β-catenin pathway to protect the mucosal barrier integrity, stimulated the proliferation and differentiation of the intestinal epithelium, and repaired ETEC K88-induced damage. Moreover, L. fermentum FL4 inhibited inflammatory responses induced by ETEC K88 through the reduced expression of pro-inflammatory cytokines (TNF-α, IL-1β and IFN-γ) and higher levels of anti-inflammatory cytokines (TGF-β and IL-10). These results show that L. fermentum FL4 isolated from feces of healthy Tunchang piglets has the potential to be used as an anti-inflammatory probiotic and for mitigation of intestinal damage in piglets.
Collapse
Affiliation(s)
- Mengqi Qian
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xinchen Zhou
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Tingting Xu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Meng Li
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Zhiren Yang
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyan Han
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Moussaid S, El Alaoui MA, Ounine K, Benali A, Bouhlal O, Rkhaila A, Hami H, El Maadoudi EH. In-vitro evaluation of the probiotic potential and the fermentation profile of Pediococcus and Enterococcus strains isolated from Moroccan camel milk. Arch Microbiol 2023; 205:144. [PMID: 36967406 DOI: 10.1007/s00203-023-03489-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
The promotion of human health through natural approaches like functional foods and probiotics is in high demand. The medicinal plants are the major feed of Moroccan dromedary, which improves the functional properties of their milk. A few studies have reported the probiotic and functional aptitudes of lactic acid bacteria (LAB) of this milk. In this context, our study aimed to identify LAB isolated from Moroccan raw camel milk and investigate their probiotic features and their fermentation profile. The molecular identification of twelve isolates indicated that they belong to Pediococcus pentosaceus, Enterococcus faecium, and Enterococcus durans. All LAB strains displayed high tolerance to gastrointestinal conditions (survival rate of 31.85-96.52% in pH 2.5, 35.23-99.05% in 0.3 bile salts, and 26.9-90.96% in pepsin), strong attachment abilities (auto-aggregation and hydrophobicity ranged from 28.75 to 95.9% and from 80.47 to 96.37%, respectively), and high co-aggregation ability with pathogenic bacteria. Importantly, they did not present antibiotic resistance or hemolytic activity. Our LAB strains demonstrated antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, and Salmonella enterica. Moreover, they could acidify cow milk (ΔpH of 2.55 after 24 h) and improve its antioxidant ability (inhibition of 36.77% of DPPH). Based on the multivariate analysis, Pediococcus pentosaceus Pd24, Pd29, Pd38, Enterococcus faecium Ef18, and Enterococcus durans Ed22 were selected as the most promising probiotics. Therefore, we propose that Pediococcus pentosaceus isolated from camel milk could be used as potential probiotic strains and/or starter cultures in functional milk fermentation.
Collapse
Affiliation(s)
- Siham Moussaid
- Laboratory of Plants, Animals, and Agro-Industry Productions, Faculty of Sciences B.P. 133, Ibn Tofail University, 1400, Kenitra, Morocco.
- RU Animal Production and Forage, Food Technology Laboratory, INRA, RCAR-Rabat, Institutes Rabat, 6570, 10101, Rabat, PB, Morocco.
| | - Moulay Abdelaziz El Alaoui
- Laboratory of Plants, Animals, and Agro-Industry Productions, Faculty of Sciences B.P. 133, Ibn Tofail University, 1400, Kenitra, Morocco
| | - Khadija Ounine
- Laboratory of Plants, Animals, and Agro-Industry Productions, Faculty of Sciences B.P. 133, Ibn Tofail University, 1400, Kenitra, Morocco
| | - Aouatif Benali
- RU Animal Production and Forage, Food Technology Laboratory, INRA, RCAR-Rabat, Institutes Rabat, 6570, 10101, Rabat, PB, Morocco
| | - Outmane Bouhlal
- Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco
| | - Amine Rkhaila
- Laboratory of Plants, Animals, and Agro-Industry Productions, Faculty of Sciences B.P. 133, Ibn Tofail University, 1400, Kenitra, Morocco
| | - Hinde Hami
- Biology and Health Laboratory, Faculty of Sciences B.P. 133, Ibn Tofail University, 1400, Kenitra, Morocco
| | - El Haj El Maadoudi
- Regional Center of Agronomic Research of Rabat, Avenue Mohamed Belarbi Alaoui, B.P:6356-Instituts.10101, Rabat, Morocco
| |
Collapse
|
7
|
Paek J, Bai L, Shin Y, Kim H, Kook JK, Kim SH, Shin JH, Chang YH. Lacticaseibacillus kribbianus sp. nov., isolated from pig farm faeces dump. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748483 DOI: 10.1099/ijsem.0.005617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
A lactic acid bacteria isolated from pig faeces was characterized using a polyphasic approach. Cells of the strain were Gram-stain-positive, rod-shaped and facultative anaerobic. Phylogenetic analysis of 16S rRNA gene sequence indicated that the isolate belonged to the genus Lacticaseibacillus; however, the similarity to other homologues within the genus was <98 %. Analysis of housekeeping gene sequences (pheS and recA) revealed that the strain formed a sub-cluster adjacent to Lacticaseibacillus absianus and Lacticaseibacillus daqingensis. The main fatty acids of the strain is the C18 : 1ω9c and C16 : 0. The G+C content of the genomic DNA was 62.8 mol %. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, aminophospholipids and phospholipids. The cell-wall peptidoglycan did not contain meso-diaminopimelic acid. Thus, YH-lac21T (=KCTC 21185=JCM 34953) represents a novel species. The name Lacticaseibacillus kribbianus sp. nov. is proposed.
Collapse
Affiliation(s)
- Jayoung Paek
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Lu Bai
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yeseul Shin
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hongik Kim
- Vitabio Inc., Daejeon, 305-500, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Si Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Young Hyo Chang
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Hwanhlem N, Salaipeth L, Charoensook R, Kanjan P, Maneerat S. Lactic Acid Bacteria from Gamecock and Goat Originating from Phitsanulok, Thailand: Isolation, Identification, Technological Properties and Probiotic Potential. J Microbiol Biotechnol 2022; 32:355-364. [PMID: 35058398 PMCID: PMC9628785 DOI: 10.4014/jmb.2110.10040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
From independent swab samples of the cloaca of indigenous gamecocks (CIG), anus of healthy baby goats (AHG), and vagina of goats (VG) originating from Phitsanulok, Thailand, a total of 263 isolates of lactic acid bacteria (LAB) were collected. Only three isolates, designated C707, G502, and V202, isolated from CIG, AHG, and VG, respectively, exhibited an excellent inhibitory zone diameter against foodborne pathogenic bacteria when evaluated by agar spot test. Isolates C707 and G502 were identified as Enterococcus faecium, whereas V202 was identified as Pediococcus acidilactici, based on 16S rRNA sequence analysis. When foodborne pathogenic bacteria were co-cultured with chosen LAB in mixed BHI-MRS broth at 39°C, their growth was suppressed. These LAB were found to be capable of surviving in simulated stomach conditions. Only the isolate G502 was able to survive in the conditions of simulated intestinal juice. This research suggests that selected LAB could be used as a food/feed supplement to reduce foodborne pathogenic bacteria and improve the safety of animal-based food or feed.
Collapse
Affiliation(s)
- Noraphat Hwanhlem
- Division of Animal Science and Feed Technology, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand,Corresponding author Phone: +6655962737 E-mail:
| | - Lakha Salaipeth
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Rangsun Charoensook
- Division of Animal Science and Feed Technology, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Pochanart Kanjan
- Department of Agricultural and Fishery Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000 Thailand
| | - Suppasil Maneerat
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
9
|
Screening of Lactic Acid Bacteria with Inhibitory Activity against ETEC K88 as Feed Additive and the Effects on Sows and Piglets. Animals (Basel) 2021; 11:ani11061719. [PMID: 34207593 PMCID: PMC8227144 DOI: 10.3390/ani11061719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Numerous reports have suggested that lactic acid bacteria (LAB), which are important probiotics, can protect animals against pathogen-induced injury and inflammation, regulate gut microflora, enhance digestive tract function, improve animal growth performance, and decrease the incidence of diarrhea caused by enterotoxigenic (ETEC) that expresses K88. This research selected Lactobacillus (L.) reuteri P7, L. amylovorus P8, and L. johnsonii P15 with good inhibition against ETEC K88 and excellent probiotic properties screened from 295 LAB strains isolated from fecal samples from 55 healthy weaned piglets for a study on feeding of sows in late pregnancy and weaned piglets. Feed supplementation with these three strains improved reproductive performance of sows and growth performance of piglets, decreased the incidence of diarrhea in piglets, and increased the antioxidant capacity of serum in both sows and piglets. Therefore, L. reuteri P7, L. amylovorus P8, and L. johnsonii P15 might be considered as potential antibiotic alternatives for further study. Abstract Enterotoxigenic Escherichia coli (ETEC), which expresses K88 is the principal microorganism responsible for bacterial diarrhea in pig husbandry, and the indiscriminate use of antibiotics has caused many problems; therefore, antibiotics need to be replaced in order to prevent diarrhea caused by ETEC K88. The objective of this study was to screen excellent lactic acid bacteria (LAB) strains that inhibit ETEC K88 and explore their effects as probiotic supplementation on reproduction, growth performance, diarrheal incidence, and antioxidant capacity of serum in sows and weaned piglets. Three LAB strains, P7, P8, and P15, screened from 295 LAB strains and assigned to Lactobacillus (L.) reuteri, L. amylovorus, and L. johnsonii with high inhibitory activity against ETEC K88 were selected for a study on feeding of sows and weaned piglets. These strains were chosen for their good physiological and biochemical characteristics, excellent exopolysaccharide (EPS) production capacity, hydrophobicity, auto-aggregation ability, survival in gastrointestinal (GI) fluids, lack of hemolytic activity, and broad-spectrum activity against a wide range of microorganisms. The results indicate that LAB strains P7, P8, and P15 had significant effects on improving the reproductive performance of sows and the growth performance of weaned piglets, increasing the activity of antioxidant enzymes and immune indexes in both.
Collapse
|
10
|
Hong SW, Park J, Jeong H, Kim M. Evaluation of the microbiome composition in particulate matter inside and outside of pig houses. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:640-650. [PMID: 34189511 PMCID: PMC8203996 DOI: 10.5187/jast.2021.e52] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
Particulate matter (PM) produced in pig houses may contain microbes which can
spread by airborne transmission, and PM and microbes in PM adversely affect
human and animal health. To investigate the microbiome in PM from pig houses,
nine PM samples were collected in summer 2020 inside and outside of pig houses
located in Jangseong-gun, Jeollanam-do Province, Korea, comprising three PM
samples from within a nursery pig house (I-NPH), three samples from within a
finishing pig house (I-FPH), and three samples from outside of the pig houses
(O-PH). Microbiomes were analyzed using 16S rRNA gene amplicon sequencing.
Firmicutes was the most dominant phylum and accounted for 64.8%–97.5% of
total sequences in all the samples, followed by Proteobacteria
(1.4%–21.8%) and Bacteroidetes (0.3%–13.7%). In total, 31 genera
were represented by > 0.3% of all sequences, and only
Lactobacillus, Turicibacter, and
Aerococcus differed significantly among the three PM sample
types. All three genera were more abundant in the I-FPH samples than in the O-PH
samples. Alpha diversity indices did not differ significantly among the three PM
types, and a principal coordinate analysis suggested that overall microbial
communities were similar across PM types. The concentration of PM did not
significantly differ among the three PM types, and no significant correlation of
PM concentration with the abundance of any potential pathogen was observed. The
present study demonstrates that microbial composition in PM inside and outside
of pig houses is similar, indicating that most microbe-containing PM inside pig
houses leaks to the outside from where it, along with microbe-containing PM on
the outside, may re-enter the pig houses. Our results may provide useful
insights regarding strategies to mitigate potential risk associated with pig
farming PM and pathogens in PM.
Collapse
Affiliation(s)
- Se-Woon Hong
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea.,Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture, Chonnam National University, Gwangju 61186, Korea.,AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
| | - Jinseon Park
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
| | - Hanna Jeong
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea.,Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture, Chonnam National University, Gwangju 61186, Korea
| | - Minseok Kim
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea.,Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
11
|
Tuyarum C, Songsang A, Lertworapreecha M. In vitro evaluation of the probiotic potential of Lactobacillus isolated from native swine manure. Vet World 2021; 14:1133-1142. [PMID: 34220114 PMCID: PMC8243659 DOI: 10.14202/vetworld.2021.1133-1142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Using antimicrobials as a feed additive in swine production is prohibited because it is a major cause of the emergence of antimicrobial-resistant bacteria. Probiotics such as Lactobacillus spp. are an attractive alternative to reduce antimicrobial resistance and promote swine growth. This study aimed to evaluate the in vitro probiotic properties of Lactobacillus isolated from indigenous swine manure. Materials and Methods: A total of 30 fecal samples from healthy individual indigenous pigs were collected and isolated on de Man, Rogosa, and Sharpe agar. The preliminary screen identified candidates with antibacterial activity against six pathogens and >50% survival and tolerance to acid (pH 3.0) and 1% bile salt. Isolates that passed the initial screen will be tested for other probiotic properties. Results: Of the 314 isolates from 30 pig manure samples, 17 isolates satisfied all initial conditions for probiotic properties. Each isolate has unique, distinctive properties. Isolates B4, B5, B8, B17, B87, and B144 formed thick biofilms, whereas isolates B5, B8, and 27 adhered well to the intestinal wall and exhibited strong autoaggregation properties. Isolate B4 aggregated with Enterohemorrhagic Escherichia coli and Enteropathogenic E. coli. Tests in pH-adjusted cell-free medium indicated that the antibacterial activity resulted from bacterial acidification rather than bacteriocin formation. Sequence analysis (16S rRNA) revealed 16 of the isolates were Lactobacillus plantarum, and only one isolate was Lactobacillus salivarius. Conclusion: We isolated 17 Lactobacillus from swine manure and demonstrated that their probiotic properties might be useful as a probiotic cocktail for swine feed.
Collapse
Affiliation(s)
- Chiraprapha Tuyarum
- Microbiology Program, Department of Biology, Faculty of Science, Thaksin University, Phatthalung, 93210, Thailand
| | - Aporn Songsang
- Faculty of Technology and Community Development, Thaksin University, Phatthalung, 93210, Thailand
| | - Monthon Lertworapreecha
- Microbiology Program, Department of Biology, Faculty of Science, Thaksin University, Phatthalung, 93210, Thailand
| |
Collapse
|
12
|
Bai L, Paek J, Shin Y, Park HY, Chang YH. Lacticaseibacillus absianus sp. nov., isolated from the cecum of a mini-pig. Int J Syst Evol Microbiol 2021; 71. [PMID: 33724174 DOI: 10.1099/ijsem.0.004752] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A rod-shaped, facultative anaerobic, Gram-stain-positive bacteria, isolated from the cecum of a mini-pig, was designated as strain YH-lac23T. Analysis of 16S rRNA gene sequences revealed that the strain was closely related to Lacticaseibacillus daqingensis JCM 33273T (97.9 %), Lacticaseibacillus porcinae KCTC 21027T (96.2 %) and Lacticaseibacillus manihotivorans KCTC 21010T (95.7 %). Analysis of housekeeping gene sequences (pheS and recA) revealed that the strain formed a sub-cluster with L. daqingensis. The average nucleotide identity value for YH-lac23T and its most closely related strain (L. daqingensis) is 80.7 %. The main fatty acids are C18 : 1ω9c and C16 : 0. The cell wall contains the peptidoglycan of meso-diaminopimelic acid. The G+C content of the genomic DNA is 59.8 mol%. In view of the chemotaxonomic, phenotypic and phylogenetic properties, YH-lac23T (=KCTC 25006=JCM 33998) represents a novel taxon. The name Lacticaseibacillus absianus sp. nov. is proposed.
Collapse
Affiliation(s)
- Lu Bai
- Industrial Bio-materials Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Biotechnology, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jayoung Paek
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yeseul Shin
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ho-Yong Park
- Industrial Bio-materials Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Biotechnology, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Young Hyo Chang
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Jitpakdee J, Kantachote D, Kanzaki H, Nitoda T. Selected probiotic lactic acid bacteria isolated from fermented foods for functional milk production: Lower cholesterol with more beneficial compounds. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|