1
|
Dietrich E, Grimaux X, Martin L, Samimi M. Etiological diagnosis of macroglossia: Systematic review and diagnostic algorithm. Ann Dermatol Venereol 2022; 149:228-237. [PMID: 36229262 DOI: 10.1016/j.annder.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/10/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The objective of this literature review was to list the different etiologies of macroglossia reported in the literature, to identify characteristics that might guide diagnosis, and to create a diagnostic algorithm. METHODS The bibliographic search was carried out between October 2019 and July 2020 in the PubMed research base using the keywords "macroglossia" (MESH) and/or "tongue enlargement". RESULTS Of the 1711 references identified, 615 articles were excluded, and 1096 abstracts were reviewed. We classified the different etiologies identified according to their mechanism and whether they were congenital or acquired. The etiologies are divided into the following categories: genetic malformation syndromes, non-syndromic congenital malformations, endocrinopathies, neuromuscular diseases, storage disorders, infectious, inflammatory, traumatic, and iatrogenic diseases. CONCLUSION Based on this review, we propose a diagnostic algorithm for macroglossia according to the characteristics described. The most common diagnoses among acquired causes were amyloidosis (13.7%), endocrinopathies (8.8%), myopathies (4%) and tongue tumors (6.7%). The most common congenital causes were aneuploidy, lymphatic malformations, and Beckwith-Wiedemann syndrome, which is the main cause of congenital macroglossia, even if it appears isolated.
Collapse
Affiliation(s)
- E Dietrich
- Dermatology Department, Centre Hospitalier Universitaire d'Angers, 4 rue Larrey, 49000 Angers, France.
| | - X Grimaux
- Dermatology Department, Centre Hospitalier Universitaire d'Angers, 4 rue Larrey, 49000 Angers, France
| | - L Martin
- Dermatology Department, Centre Hospitalier Universitaire d'Angers, 4 rue Larrey, 49000 Angers, France
| | - M Samimi
- Dermatology Department, Centre Hospitalier Universitaire de Tours, 2 boulevard Tonnellé, 37000 Tours, France
| |
Collapse
|
2
|
Bugălă NM, Carsote M, Stoica LE, Albulescu DM, Ţuculină MJ, Preda SA, Boicea AR, Alexandru DO. New Approach to Addison Disease: Oral Manifestations Due to Endocrine Dysfunction and Comorbidity Burden. Diagnostics (Basel) 2022; 12:diagnostics12092080. [PMID: 36140482 PMCID: PMC9497746 DOI: 10.3390/diagnostics12092080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
This review highlights oral anomalies with major clinical impact in Addison disease (AD), including dental health and dermatologic features, through a dual perspective: pigmentation issues and AD comorbidities with oral manifestations. Affecting 92% of AD patients, cutaneomucosal hyperpigmentation is synchronous with or precedes general manifestations by up to a decade, underlying melanocytic infiltration of the basal epidermal layer; melanophages in the superficial dermis; and, rarely, acanthosis, perivascular lymphocytic infiltrate, and hyperkeratosis. Intraoral pigmentation might be the only sign of AD; thus, early recognition is mandatory, and biopsy is helpful in selected cases. The buccal area is the most affected location; other sites are palatine arches, lips, gums, and tongue. Pigmented oral lesions are patchy or diffuse; mostly asymptomatic; and occasionally accompanied by pain, itchiness, and burn-like lesions. Pigmented lingual patches are isolated or multiple, located on dorsal and lateral areas; fungiform pigmented papillae are also reported in AD individuals. Dermoscopy examination is particularly indicated for fungal etiology; yet, it is not routinely performed. AD’s comorbidity burden includes the cluster of autoimmune polyglandular syndrome (APS) type 1 underlying AIRE gene malfunction. Chronic cutaneomucosal candidiasis (CMC), including oral CMC, represents the first sign of APS1 in 70–80% of cases, displaying autoantibodies against interleukin (IL)-17A, IL-17F ± IL-22, and probably a high mucosal concentration of interferon (IFN)-γ. CMC is prone to systemic candidiasis, representing a procarcinogenic status due to Th17 cell anomalies. In APS1, the first cause of mortality is infections (24%), followed by oral and esophageal cancers (15%). Autoimmune hypoparathyroidism (HyP) is the earliest endocrine element in APS1; a combination of CMC by the age of 5 years and dental enamel hypoplasia (the most frequent dental complication of pediatric HyP) by the age of 15 is an indication for HyP assessment. Children with HyP might experience short dental roots, enamel opacities, hypodontia, and eruption dysfunctions. Copresence of APS-related type 1 diabetes mellitus (DM) enhances the risk of CMC, as well as periodontal disease (PD). Anemia-related mucosal pallor is related to DM, hypothyroidism, hypogonadism, corresponding gastroenterological diseases (Crohn’s disease also presents oral ulceration (OU), mucogingivitis, and a 2–3 times higher risk of PD; Biermer anemia might cause hyperpigmentation by itself), and rheumatologic diseases (lupus induces OU, honeycomb plaques, keratotic plaques, angular cheilitis, buccal petechial lesions, and PD). In more than half of the patients, associated vitiligo involves depigmentation of oral mucosa at different levels (palatal, gingival, alveolar, buccal mucosa, and lips). Celiac disease may manifest xerostomia, dry lips, OU, sialadenitis, recurrent aphthous stomatitis and dental enamel defects in children, a higher prevalence of caries and dentin sensitivity, and gingival bleeding. Oral pigmented lesions might provide a useful index of suspicion for AD in apparently healthy individuals, and thus an adrenocorticotropic hormone (ACTH) stimulation is useful. The spectrum of autoimmune AD comorbidities massively complicates the overall picture of oral manifestations.
Collapse
Affiliation(s)
- Narcis Mihăiţă Bugălă
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mara Carsote
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- C.I. Parhon National Institute of Endocrinology, Aviatorilor Ave. 34–38, Sector 1, 011683 Bucharest, Romania
- Correspondence: ; Tel.: +40-744851934
| | - Loredana Elena Stoica
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dana Maria Albulescu
- Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Jana Ţuculină
- Department of Odontology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Smaranda Adelina Preda
- Department of Odontology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ancuta-Ramona Boicea
- Department of Occupational Medicine, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dragoș Ovidiu Alexandru
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|