1
|
Nashwan AJ, Abuawwad MT, Jaradat JH, Ibraheem A, Yassin MA, Taha MJJ. Prevalence of iron overload in patients with chronic kidney disease on peritoneal dialysis: A scoping review. Health Sci Rep 2024; 7:e2255. [PMID: 39253350 PMCID: PMC11381317 DOI: 10.1002/hsr2.2255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND AND AIMS Chronic kidney disease (CKD) patients undergoing peritoneal dialysis (PD) are susceptible to complications, including iron overload, which can significantly impact their prognosis and overall health. This scoping review aimed to study the prevalence and implications of iron overload in CKD patients undergoing PD. METHODS A comprehensive search was conducted across five databases, leading to the selection of 18 papers for in-depth analysis. These studies collectively involved 381 PD patients, 60.3% were males. RESULTS No consensus was reached regarding the exact diagnostic cutoff for iron overload. The investigations revealed four main aspects: (1) Seven papers identified various factors contributing to iron overload, emphasizing the role of different iron supplements and magnetic resonance imaging's capability to diagnose iron accumulation in organs; (2) Iron overload in young patients was found to hinder growth; (3) Six studies highlighted the adverse effects of iron overload, with cardiac issues being the most significant; (4) Three studies demonstrated the efficacy of iron-chelating agents, Deferoxamine and Deferasirox, in treating iron overload patients undergoing PD. Overall, the estimated prevalence of liver iron overload in CKD patients on PD ranges from approximately 10% to 28.6%, which is far lower than the prevalence of 75% elegantly shown in HD patients. CONCLUSION While iron overload was a significant concern for CKD patients undergoing PD in the past, it is less common in the current era due to advancements in treatments, such as erythropoiesis-stimulating agents. Treatment with specific chelation agents has proven beneficial, but there is also a risk of adverse effects, necessitating meticulous monitoring and timely intervention.
Collapse
Affiliation(s)
- Abdulqadir J. Nashwan
- Nursing & Midwifery Research DepartmentHamad Medical CorporationDohaQatar
- Department of Public Health, College of Health Sciences, QU HealthQatar UniversityDohaQatar
| | - Mohammad T. Abuawwad
- Clinical Medicine Department, Kasr Alainy Faculty of MedicineCairo UniversityCairoEgypt
| | | | - Anas Ibraheem
- Haematology DepartmentKing's College HospitalLondonUnited Kingdom
| | - Mohamed A. Yassin
- Hematology and Oncology Department, National Center for Cancer Care & ResearchHamad Medical CorporationDohaQatar
| | - Mohammad J. J. Taha
- Clinical Medicine Department, Kasr Alainy Faculty of MedicineCairo UniversityCairoEgypt
| |
Collapse
|
2
|
Villa Nogueyra S, Trujillo Rodríguez MF, Garcia Oliva ML, Vidal-Gallardo A, Ramírez Leal A, Beltran Hernandez J, Vargas Beltran AM, Guillen Sandoval JD, Arriaga Escamilla D, Martinez Ramirez M. The Genetic Diagnostics of Hemochromatosis: Disparities in Low- Versus High-Income Countries. Cureus 2024; 16:e64074. [PMID: 39114232 PMCID: PMC11305073 DOI: 10.7759/cureus.64074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
This study provides a comprehensive overview of hereditary hemochromatosis (HH), a genetic condition characterized by iron overload due to excessive iron absorption. It elucidates diverse inheritance patterns and clinical manifestations by exploring mutations in critical genes such as HFE (hemochromatosis), HJV (hemojuvelin), HAMP (hepcidin antimicrobial peptide), TfR2 (transferrin receptor 2), and FP (ferroportin). The significance of early screening, diagnosis, and personalized management strategies based on genetic classification is emphasized, particularly in terms of high-income vs. low-income countries. Addressing challenges in diagnosis, genetic testing accessibility, and healthcare disparities, the study highlights the importance of early detection, cost-effective screening strategies, and enhancing healthcare outcomes globally. Advanced genetic testing in high-income countries facilitates early diagnosis and management, reducing complications such as liver disease and cardiomyopathy. In contrast, low-income populations face several barriers, including limited access to genetic testing, high costs, and inadequate healthcare infrastructure. Cost-effective serum ferritin (SF) and transferrin saturation (TS) tests and emerging point-of-care (POC) tests offer affordable diagnostic options for low-resource settings. Additionally, the ongoing development of hepcidin measurement methods holds promise for enhancing diagnostic capabilities. Implementing these strategies can aid healthcare providers in improving global HH management and reducing the burden of iron overload complications. Furthermore, the study underscores the need for public health initiatives to raise awareness about HH, promote routine screenings, and advocate for equitable healthcare policies. Collaborative efforts between governments, healthcare organizations, and research institutions are crucial in addressing the global burden of HH. By fostering international cooperation and resource-sharing, it is possible to bridge the gap between high-income and low-income countries, ensuring all individuals have access to the necessary diagnostic and treatment options. This holistic approach can ultimately lead to better health outcomes and improved quality of life for individuals affected by HH worldwide. This comprehensive examination of HH not only illuminates the genetic and clinical aspects of the condition but also provides a roadmap for addressing the multifaceted challenges associated with its diagnosis and management.
Collapse
Affiliation(s)
| | | | | | | | - Amanda Ramírez Leal
- Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, MEX
| | | | | | | | | | | |
Collapse
|
3
|
Valenti L, Corradini E, Adams LA, Aigner E, Alqahtani S, Arrese M, Bardou-Jacquet E, Bugianesi E, Fernandez-Real JM, Girelli D, Hagström H, Henninger B, Kowdley K, Ligabue G, McClain D, Lainé F, Miyanishi K, Muckenthaler MU, Pagani A, Pedrotti P, Pietrangelo A, Prati D, Ryan JD, Silvestri L, Spearman CW, Stål P, Tsochatzis EA, Vinchi F, Zheng MH, Zoller H. Consensus Statement on the definition and classification of metabolic hyperferritinaemia. Nat Rev Endocrinol 2023; 19:299-310. [PMID: 36805052 PMCID: PMC9936492 DOI: 10.1038/s41574-023-00807-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Hyperferritinaemia is a common laboratory finding that is often associated with metabolic dysfunction and fatty liver. Metabolic hyperferritinaemia reflects alterations in iron metabolism that facilitate iron accumulation in the body and is associated with an increased risk of cardiometabolic and liver diseases. Genetic variants that modulate iron homeostasis and tissue levels of iron are the main determinants of serum levels of ferritin in individuals with metabolic dysfunction, raising the hypothesis that iron accumulation might be implicated in the pathogenesis of insulin resistance and the related organ damage. However, validated criteria for the non-invasive diagnosis of metabolic hyperferritinaemia and the staging of iron overload are still lacking, and there is no clear evidence of a benefit for iron depletion therapy. Here, we provide an overview of the literature on the relationship between hyperferritinaemia and iron accumulation in individuals with metabolic dysfunction, and on the associated clinical outcomes. We propose an updated definition and a provisional staging system for metabolic hyperferritinaemia, which has been agreed on by a multidisciplinary global panel of expert researchers. The goal is to foster studies into the epidemiology, genetics, pathophysiology, clinical relevance and treatment of metabolic hyperferritinaemia, for which we provide suggestions on the main unmet needs, optimal design and clinically relevant outcomes.
Collapse
Affiliation(s)
- Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
- Biological Resource Center and Precision Medicine Lab, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
| | - Elena Corradini
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy.
| | - Leon A Adams
- Medical School, University of Western Australia, Perth, Australia
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Saleh Alqahtani
- Royal Clinics and Gastroenterology and Hepatology, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Edouard Bardou-Jacquet
- University of Rennes, UMR1241, CHU Rennes, National Reference Center for Hemochromatosis and iron metabolism disorder, INSERM CIC1414, Rennes, France
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Turin, Italy
| | - Jose-Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Domenico Girelli
- Section of Internal Medicine, Department of Medicine, University of Verona, Policlinico Giambattista Rossi, Verona, Italy
| | - Hannes Hagström
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin Henninger
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kris Kowdley
- Liver Institute Northwest, Seattle, WA, USA
- Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Guido Ligabue
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Division of Radiology, Ospedale di Sassuolo S.p.A, Sassuolo, Modena, Italy
| | - Donald McClain
- Wake Forest School of Medicine, Winston Salem, NC, USA
- Department of Veterans Affairs, Salisbury, NC, USA
| | - Fabrice Lainé
- INSERM CIC1414, Liver Unit, CHU Rennes, Rennes, France
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Martina U Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
- Center for Molecular Translational Iron Research, Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Patrizia Pedrotti
- Laboratorio di RM Cardiaca Cardiologia 4, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Antonello Pietrangelo
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
| | - Daniele Prati
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - John D Ryan
- Hepatology Unit, Beaumont Hospital, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - C Wendy Spearman
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Per Stål
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Francesca Vinchi
- Iron Research Laboratory, Lindsley F.Kimball Research Institute, New York Blood Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Heinz Zoller
- Department of Medicine I, Medical University of Innsbruck, Innsbruck, Austria
- Doppler Laboratory on Iron and Phosphate Biology, Innsbruck, Austria
| |
Collapse
|
4
|
A Successful Living Donor Liver Transplantation Using Hepatic Iron Deposition Graft Suspected by Magnetic Resonance Imaging. Case Rep Transplant 2023; 2023:9075184. [PMID: 36968338 PMCID: PMC10036174 DOI: 10.1155/2023/9075184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Recently, magnetic resonance imaging (MRI) has been developed as a widely available and noninvasive method for detecting and evaluating hepatic iron overload. This case report presents a successful living donor liver transplantation (LDLT) in which the donor was suspected to have hepatic iron deposition by MRI evaluation. A preoperative donor liver biopsy and genetic examination were performed to exclude hereditary hemochromatosis and other chronic liver diseases. A liver biopsy showed an almost normal liver specimen with a slight deposition of iron in 2-3% of hepatocytes, and a genetic examination of hereditary hemochromatosis revealed no typical mutations in HFE, TFR2, HJV, HAMP, or SLC40A1. Despite the traumatic hemothorax complication caused by the liver biopsy, the liver transplant eligibility was confirmed. Two months after the hemothorax complication, an LDLT donor operation was performed. The donor was discharged from the hospital on postoperative day (POD) #17 with favorable liver function. The recipient’s posttransplant clinical course was generally favorable except for acute cellular rejection and biliary complications, and the recipient was discharged from the hospital on POD #87 with excellent graft function. A one-year follow-up liver biopsy of the recipient demonstrated almost normal liver with iron deposition in less than 1% of the hepatocytes, and no iron deposition was identified in the liver graft by MRI examination. Liver biopsy and genetic examination are effective methods to evaluate the eligibility of liver transplant donors with suspected hepatic iron deposition. The living donor with slight hepatic iron deposition, if hereditary hemochromatosis was ruled out, can donate partial liver safely.
Collapse
|
5
|
Ibrahim WH, Abokresha MM, Nigm DA, Abdelal SM, Kelani A, Aly MG. Relation of Liver Siderosis to Liver Fibrosis in Hemodialysis Patients With Severe Hyperferritinemia Secondary to High Doses of Intravenous Iron Supplementation. J Ren Nutr 2023; 33:337-345. [PMID: 36182059 DOI: 10.1053/j.jrn.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Aggressive iron substitution in hemodialysis (HD) patients leads to iron overload. The association between liver siderosis and fibrosis is still debatable. We studied the association of liver siderosis with liver fibrosis in HD patients. Furthermore, we studied the performance of liver stiffness measurements (LSMs) in identifying advanced liver fibrosis. We investigated the performance of biochemical indicators of iron status in identifying advanced liver fibrosis. METHODS Fifty-five HD patients (average HD duration 6 ± 2 years) with hyperferritinemia secondary to intravenous iron supplementation (weakly iron dose 252.7 ± 63 mg; median blood transfusions 3 [2-5]) were recruited. The liver fibrosis grade was determined with Fibroscan, aminotransferase-to-platelet ratio index (APRI), and Fib-4 index. Liver iron concentration (LIC) was estimated with magnetic resonance imaging (MRI). Iron parameters and liver function biochemical indicators were also assessed. RESULTS The median serum ferritin and transferrin saturation (TSAT) were 3531 μg/L and 77%, respectively. 34.5%, 20%, and 45.5% of the patients showed mild, moderate, or severe liver siderosis, respectively. All patients with severe liver siderosis showed advanced liver fibrosis. Patients with severe liver siderosis and advanced liver stiffness showed higher serum iron, TSAT, aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum bilirubin, APRI, and Fib-4 index scores than those with mild liver siderosis. Serum iron and TSAT showed good utility in identifying advanced liver fibrosis determined with Fibroscan, APRI, and Fib-4 index. Liver stiffness exhibited good utility in identifying advanced liver fibrosis diagnosed with APRI and Fib-4 index. CONCLUSIONS High weekly intravenous iron dose associated with severe hyperferritinemia, high serum iron, and TSAT might lead to severe liver siderosis and concomitant liver fibrosis in HD patients. Serum iron, TSAT, Fibroscan, Fib-4, and APRI scores might offer noninvasive tools for identifying advanced liver fibrosis in those patients.
Collapse
Affiliation(s)
- Walaa H Ibrahim
- Nephrology Unit, Internal Medicine Department, Assiut University, Assiut, Egypt
| | - Marwa M Abokresha
- Gastroenterology Unit, Internal Medicine Department, Assiut University, Assiut, Egypt
| | - Dalia A Nigm
- Clinical Pathology Department, Assiut University, Assiut, Egypt
| | | | - Abdalla Kelani
- Gastroenterology Unit, Internal Medicine Department, Assiut University, Assiut, Egypt
| | - Mostafa G Aly
- Nephrology Unit, Internal Medicine Department, Assiut University, Assiut, Egypt; Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
6
|
Nashwan AJ, Yassin MA, Abd-Alrazaq A, Shuweihdi F, Othman M, Abdul Rahim HF, Shraim M. Hepatic and cardiac iron overload quantified by magnetic resonance imaging in patients on hemodialysis: A systematic review and meta-analysis. Hemodial Int 2023; 27:3-11. [PMID: 36397717 DOI: 10.1111/hdi.13054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Few studies have reported hepatic and cardiac iron overload in patients with end-stage renal disease (ESRD), and the current evidence regarding the prevalence is still scarce. AIM This review aims to estimate the prevalence of hepatic and/or cardiac iron overload quantified by magnetic resonance imaging (MRI) in patients with ESRD who receive hemodialysis (HD), peritoneal dialysis (PD), or have undergone a kidney transplant. METHODS A systematic review with meta-analysis was conducted and reported in line with PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. MEDLINE and Embase bibliographic databases were searched using a comprehensive list of controlled vocabulary and keywords to identify relevant studies. All studies reporting the prevalence of hepatic and/or cardiac iron overload quantified by MRI in ESRD patients were considered. The Newcastle-Ottawa scale was used to assess the methodological quality of included studies. To investigate the heterogeneity between studies, random-effect meta-analyses for proportions were used. RESULTS The review comprised seven studies that included 339 patients. Using meta-analysis, the pooled prevalence of severe and mild to moderate hepatic iron overload quantified by MRI was 0.23 [95% CI: 0.08-0.43] and 0.52 [95% CI: 0.47-0.57], respectively. Only three studies included cardiac iron quantification, and none reported iron overload. CONCLUSIONS This review has revealed a high prevalence of severe hepatic iron overload in patients with ESRD treated by HD. Further studies with a larger sample size are needed to determine the impact of iron overload on vital organs in patients with ESRD and guide future research in this understudied field. Proper use of iron chelation and continuous monitoring will help in the early detection of unsolicited complications; however, the low renal clearance of most iron chelators limits the options for treating iron excess in patients with ESRD.
Collapse
Affiliation(s)
- Abdulqadir J Nashwan
- Department of Nursing, Hazm Mebaireek General Hospital, Hamad Medical Corporation, Doha, Qatar
- Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Mohamed A Yassin
- Hematology and Oncology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Alaa Abd-Alrazaq
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Farag Shuweihdi
- School of Medicine, Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Muftah Othman
- Nephrology Section, Medicine Department, Hamad Medical Corporation, Doha, Qatar
| | - Hanan F Abdul Rahim
- Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Mujahed Shraim
- Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Qian Y, Wong VWS, Hou J, Jiang B, Chu WCW, Chen W. Inhomogeneous liver fibrosis distribution revealed by macromolecular proton fraction quantification based on spin-lock MRI. Quant Imaging Med Surg 2022; 12:4341-4345. [PMID: 35919064 PMCID: PMC9338361 DOI: 10.21037/qims-22-302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Affiliation(s)
- Yurui Qian
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jian Hou
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Baiyan Jiang
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China.,Illuminatio Medical Technology Limited, Hong Kong SAR, China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Rostoker G, Lepeytre F, Merzoug M, Griuncelli M, Loridon C, Boulahia G, Cohen Y. Differential Pharmacokinetics of Liver Tropism for Iron Sucrose, Ferric Carboxymaltose, and Iron Isomaltoside: A Clue to Their Safety for Dialysis Patients. Pharmaceutics 2022; 14:pharmaceutics14071408. [PMID: 35890303 PMCID: PMC9323124 DOI: 10.3390/pharmaceutics14071408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 01/31/2023] Open
Abstract
Anemia is a major complication of end-stage kidney disease (ESKD). Erythropoiesis-stimulating agents and intravenous (IV) iron are the current backbone of anemia treatment in ESKD. Iron overload induced by IV iron is a potential clinical problem in dialysis patients. We compared the pharmacokinetics of liver accumulation of iron sucrose, currently used worldwide, with two third-generation IV irons (ferric carboxymaltose and iron isomaltoside). We hypothesized that better pharmacokinetics of newer irons could improve the safety of anemia management in ESKD. Liver iron concentration (LIC) was analyzed in 54 dialysis patients by magnetic resonance imaging under different modalities of iron therapy. LIC increased significantly in patients treated with 1.2 g or 2.4 g IV iron sucrose (p < 0.001, Wilcoxon test), whereas no significant increase was observed in patients treated with ferric carboxymaltose or iron isomaltoside (p > 0.05, Wilcoxon-test). Absolute differences in LIC reached 25 μmol/g in the 1.2 g iron sucrose group compared with only 5 μmol/g in the 1 g ferric carboxymaltose and 1 g iron isomaltoside groups (p < 0.0001, Kruskal−Wallis test). These results suggest the beneficial consequences of using ferric carboxymaltose or iron isomaltoside on liver structure in ESKD due to their pharmacokinetic ability to minimize iron overload.
Collapse
Affiliation(s)
- Guy Rostoker
- Division of Nephrology and Dialysis, Ramsay Santé, Hôpital Privé Claude Galien, 91480 Quincy-Sous-Sénart, France; (F.L.); (M.M.); (M.G.); (C.L.); (G.B.)
- Collége de Médecine des Hôpitaux de Paris, 75005 Paris, France
- Correspondence: ; Tel.: +33-1-69-39-92-00
| | - Fanny Lepeytre
- Division of Nephrology and Dialysis, Ramsay Santé, Hôpital Privé Claude Galien, 91480 Quincy-Sous-Sénart, France; (F.L.); (M.M.); (M.G.); (C.L.); (G.B.)
| | - Myriam Merzoug
- Division of Nephrology and Dialysis, Ramsay Santé, Hôpital Privé Claude Galien, 91480 Quincy-Sous-Sénart, France; (F.L.); (M.M.); (M.G.); (C.L.); (G.B.)
| | - Mireille Griuncelli
- Division of Nephrology and Dialysis, Ramsay Santé, Hôpital Privé Claude Galien, 91480 Quincy-Sous-Sénart, France; (F.L.); (M.M.); (M.G.); (C.L.); (G.B.)
| | - Christelle Loridon
- Division of Nephrology and Dialysis, Ramsay Santé, Hôpital Privé Claude Galien, 91480 Quincy-Sous-Sénart, France; (F.L.); (M.M.); (M.G.); (C.L.); (G.B.)
| | - Ghada Boulahia
- Division of Nephrology and Dialysis, Ramsay Santé, Hôpital Privé Claude Galien, 91480 Quincy-Sous-Sénart, France; (F.L.); (M.M.); (M.G.); (C.L.); (G.B.)
| | - Yves Cohen
- Division of Radiology, Ramsay Santé, Hôpital Privé Claude Galien, 91480 Quincy-Sous-Sénart, France;
| |
Collapse
|
9
|
Qian Y, Hou J, Jiang B, Wong VWS, Lee J, Chan Q, Wang Y, Chu WCW, Chen W. Characterization and correction of the effects of hepatic iron on T 1ρ relaxation in the liver at 3.0T. Magn Reson Med 2022; 88:1828-1839. [PMID: 35608236 DOI: 10.1002/mrm.29310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE Quantitative T1ρ imaging is an emerging technique to assess the biochemical properties of tissues. In this paper, we report our observation that liver iron content (LIC) affects T1ρ quantification of the liver at 3.0T field strength and develop a method to correct the effect of LIC. THEORY AND METHODS On-resonance R1ρ (1/T1ρ ) is mainly affected by the intrinsic R2 (1/T2 ), which is influenced by LIC. As on-resonance R1ρ is closely related to the Carr-Purcell-Meiboom-Gill (CPMG) R2 , and because the calibration between CPMG R2 and LIC has been reported at 1.5T, a correction method was proposed to correct the R2 contribution to the R1ρ . The correction coefficient was obtained from the calibration results and related transformed factors. To compensate for the difference between CPMG R2 and R1ρ , a scaling factor was determined using the values of CPMG R2 and R1ρ , obtained simultaneously from a single breath-hold from volunteers. The livers of 110 subjects were scanned to validate the correction method. RESULTS LIC was significantly correlated with R1ρ in the liver. However, when the proposed correction method was applied to R1ρ , LIC and the iron-corrected R1ρ were not significantly correlated. CONCLUSION LIC can affect T1ρ in the liver. We developed an iron-correction method for the quantification of T1ρ in the liver at 3.0T.
Collapse
Affiliation(s)
- Yurui Qian
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong, China
| | - Jian Hou
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong, China
| | - Baiyan Jiang
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong, China.,Illuminatio Medical Technology Limited, Hong Kong, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
| | - Jack Lee
- Clinical Trials and Biostatistics Lab, CUHK Shenzhen Research Institute, Shenzhen, China.,Division of Biostatistics, Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Yixiang Wang
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong, China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Majoni SW, Nelson J, Germaine D, Hoppo L, Long S, Divakaran S, Turner B, Graham J, Cherian S, Pawar B, Rathnayake G, Heron B, Maple-Brown L, Batey R, Morris P, Davies J, Fernandes DK, Sundaram M, Abeyaratne A, Wong YHS, Lawton PD, Taylor S, Barzi F, Cass A. INFERR-Iron infusion in haemodialysis study: INtravenous iron polymaltose for First Nations Australian patients with high FERRitin levels on haemodialysis-a protocol for a prospective open-label blinded endpoint randomised controlled trial. Trials 2021; 22:868. [PMID: 34857020 PMCID: PMC8641231 DOI: 10.1186/s13063-021-05854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/20/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The effectiveness of erythropoiesis-stimulating agents, which are the main stay of managing anaemia of chronic kidney disease (CKD), is largely dependent on adequate body iron stores. The iron stores are determined by the levels of serum ferritin concentration and transferrin saturation. These two surrogate markers of iron stores are used to guide iron replacement therapy. Most Aboriginal and/or Torres Islander Australians of the Northern Territory (herein respectfully referred to as First Nations Australians) with end-stage kidney disease have ferritin levels higher than current guideline recommendations for iron therapy. There is no clear evidence to guide safe and effective treatment with iron in these patients. We aim to assess the impact of intravenous iron treatment on all-cause death and hospitalisation with a principal diagnosis of all-cause infection in First Nations patients on haemodialysis with anaemia, high ferritin levels and low transferrin saturation METHODS: In a prospective open-label blinded endpoint randomised controlled trial, a total of 576 participants on maintenance haemodialysis with high ferritin (> 700 μg/L and ≤ 2000 μg/L) and low transferrin saturation (< 40%) from all the 7 renal units across the Northern Territory of Australia will be randomised 1:1 to receive intravenous iron polymaltose 400 mg once monthly (200 mg during 2 consecutive haemodialysis sessions) (Arm A) or no IV iron treatment (standard treatment) (Arm B). Rescue therapy will be administered when the ferritin levels fall below 700 μg/L or when clinically indicated. The primary outcome will be the differences between the two study arms in the risk of hospitalisation with all-cause infection or death. An economic analysis and several secondary and tertiary outcomes analyses will also be performed. DISCUSSION The INFERR clinical trial will address significant uncertainty on the safety and efficacy of iron therapy in First Nations Australians with CKD with hyperferritinaemia and evidence of iron deficiency. This will hopefully lead to the development of evidence-based guidelines. It will also provide the opportunity to explore the causes of hyperferritinaemia in First Nations Australians from the Northern Territory. TRIAL REGISTRATION This trial is registered with The Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12620000705987 . Registered 29 June 2020.
Collapse
Affiliation(s)
- Sandawana William Majoni
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, P.O. Box 41326, Casuarina, Darwin, Northern Territory, Australia.
- Flinders University and Northern Territory Medical Program, Royal Darwin Hospital Campus, Darwin, Northern Territory, Australia.
| | - Jane Nelson
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Darren Germaine
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Libby Hoppo
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Stephanie Long
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Shilpa Divakaran
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, P.O. Box 41326, Casuarina, Darwin, Northern Territory, Australia
| | - Brandon Turner
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Jessica Graham
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sajiv Cherian
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Flinders University and Northern Territory Medical Program, Royal Darwin Hospital Campus, Darwin, Northern Territory, Australia
- Department of Nephrology, Division of Medicine, Alice Springs Hospital, Alice Springs, Northern Territory, Australia
| | - Basant Pawar
- Department of Nephrology, Division of Medicine, Alice Springs Hospital, Alice Springs, Northern Territory, Australia
| | - Geetha Rathnayake
- Flinders University and Northern Territory Medical Program, Royal Darwin Hospital Campus, Darwin, Northern Territory, Australia
- Chemical Pathology-Territory Pathology, Department of Health, Northern Territory Government, Darwin, Northern Territory, Australia
| | - Bianca Heron
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, P.O. Box 41326, Casuarina, Darwin, Northern Territory, Australia
| | - Louise Maple-Brown
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Endocrinology, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Robert Batey
- Department of Nephrology, Division of Medicine, Alice Springs Hospital, Alice Springs, Northern Territory, Australia
- New South Wales Health, St Leonards, NSW, Australia
| | - Peter Morris
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Pediatrics, Division of Women, Children and Youth, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Jane Davies
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - David Kiran Fernandes
- Department of Nephrology, Division of Medicine, Alice Springs Hospital, Alice Springs, Northern Territory, Australia
| | - Madhivanan Sundaram
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, P.O. Box 41326, Casuarina, Darwin, Northern Territory, Australia
| | - Asanga Abeyaratne
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, P.O. Box 41326, Casuarina, Darwin, Northern Territory, Australia
- Flinders University and Northern Territory Medical Program, Royal Darwin Hospital Campus, Darwin, Northern Territory, Australia
| | - Yun Hui Sheryl Wong
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, P.O. Box 41326, Casuarina, Darwin, Northern Territory, Australia
| | - Paul D Lawton
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- The Central Clinical School, Monash University & Alfred Health, Melbourne, Australia
| | - Sean Taylor
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, P.O. Box 41326, Casuarina, Darwin, Northern Territory, Australia
| | - Federica Barzi
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- UQ Poche Centre for Indigenous Health, The University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Alan Cass
- Division of Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
11
|
Anderson GJ, Bardou-Jacquet E. Revisiting hemochromatosis: genetic vs. phenotypic manifestations. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:731. [PMID: 33987429 PMCID: PMC8106074 DOI: 10.21037/atm-20-5512] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron overload disorders represent an important class of human diseases. Of the primary iron overload conditions, by far the most common and best studied is HFE-related hemochromatosis, which results from homozygosity for a mutation leading to the C282Y substitution in the HFE protein. This disease is characterized by reduced expression of the iron-regulatory hormone hepcidin, leading to increased dietary iron absorption and iron deposition in multiple tissues including the liver, pancreas, joints, heart and pituitary. The phenotype of HFE-related hemochromatosis is quite variable, with some individuals showing little or no evidence of increased body iron, yet others showing severe iron loading, tissue damage and clinical sequelae. The majority of genetically predisposed individuals show at least some evidence of iron loading (increased transferrin saturation and serum ferritin), but a minority show clinical symptoms and severe consequences are rare. Thus, the disorder has a high biochemical penetrance, but a low clinical prevalence. Nevertheless, it is such a common condition in Caucasian populations (1:100–200) that it remains an important clinical entity. The phenotypic variability can largely be explained by a range of environmental, genetic and physiological factors. Men are far more likely to manifest significant disease than women, with the latter losing iron through menstrual blood loss and childbirth. Other forms of blood loss, immune system influences, the amount of bioavailable iron in the diet and lifestyle factors such as high alcohol intake can also contribute to iron loading and disease expression. Polymorphisms in a range of genes have been linked to variations in body iron levels, both in the general population and in hemochromatosis. Some of the genes identified play well known roles in iron homeostasis, yet others are novel. Other factors, including both co-morbidities and genetic polymorphisms, do not affect iron levels per se, but determine the propensity for tissue pathology.
Collapse
Affiliation(s)
- Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute and School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Edouard Bardou-Jacquet
- Liver Disease Department, University of Rennes and French Reference Center for Hemochromatosis and Iron Metabolism Disease, Rennes, France
| |
Collapse
|
12
|
Majoni SW, Lawton PD, Rathnayake G, Barzi F, Hughes JT, Cass A. Narrative Review of Hyperferritinemia, Iron Deficiency, and the Challenges of Managing Anemia in Aboriginal and Torres Strait Islander Australians With CKD. Kidney Int Rep 2021; 6:501-512. [PMID: 33615076 PMCID: PMC7879094 DOI: 10.1016/j.ekir.2020.10.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Aboriginal and Torres Strait Islander Australians (Indigenous Australians) suffer some of the highest rates of chronic kidney disease (CKD) in the world. Among Indigenous Australians in remote areas of the Northern Territory, prevalence rates for renal replacement therapy (RRT) are up to 30 times higher than national prevalence. Anemia among patients with CKD is a common complication. Iron deficiency is one of the major causes. Iron deficiency is also one of the key causes of poor response to the mainstay of anemia therapy with erythropoiesis-stimulating agents (ESAs). Therefore, the effective management of anemia in people with CKD is largely dependent on effective identification and correction of iron deficiency. The current identification of iron deficiency in routine clinical practice is dependent on 2 surrogate markers of iron status: serum ferritin concentration and transferrin saturation (TSAT). However, questions exist regarding the use of serum ferritin concentration in people with CKD because it is an acute-phase reactant that can be raised in the context of acute and chronic inflammation. Serum ferritin concentration among Indigenous Australians receiving RRT is often markedly elevated and falls outside reference ranges within most national and international guidelines for iron therapy for people with CKD. This review explores published data on the challenges of managing anemia in Indigenous people with CKD and the need for future research on the efficacy and safety of treatment of anemia of CKD in patients with high ferritin and evidence iron deficiency.
Collapse
Affiliation(s)
- Sandawana William Majoni
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
- Flinders University and Northern Territory Medical Program, Royal Darwin Hospital Campus, Darwin, Northern Territory, Australia
- Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Northern Territory, Australia
| | - Paul D. Lawton
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
- Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Northern Territory, Australia
| | - Geetha Rathnayake
- Flinders University and Northern Territory Medical Program, Royal Darwin Hospital Campus, Darwin, Northern Territory, Australia
- Chemical Pathology–Territory Pathology, Department of Health, Northern Territory Government, Northern Territory, Australia
| | - Federica Barzi
- Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Northern Territory, Australia
| | - Jaquelyne T. Hughes
- Department of Nephrology, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
- Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Northern Territory, Australia
| | - Alan Cass
- Wellbeing and Preventable Chronic Diseases, Menzies School of Health Research, Charles Darwin University, Northern Territory, Australia
| |
Collapse
|
13
|
Fragkos KC, Picasso Bouroncle MC, Kumar S, Caselton L, Menys A, Bainbridge A, Taylor SA, Torrealdea F, Kumagai T, Di Caro S, Rahman F, Macnaughtan J, Chouhan MD, Mehta S. Serum Scoring and Quantitative Magnetic Resonance Imaging in Intestinal Failure-Associated Liver Disease: A Feasibility Study. Nutrients 2020; 12:E2151. [PMID: 32707726 PMCID: PMC7400956 DOI: 10.3390/nu12072151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/20/2023] Open
Abstract
(1) Background: Intestinal failure-associated liver disease (IFALD) in adults is characterized by steatosis with variable progression to fibrosis/cirrhosis. Reference standard liver biopsy is not feasible for all patients, but non-invasive serological and quantitative MRI markers for diagnosis/monitoring have not been previously validated. Here, we examine the potential of serum scores and feasibility of quantitative MRI used in non-IFALD liver diseases for the diagnosis of IFALD steatosis; (2) Methods: Clinical and biochemical parameters were used to calculate serum scores in patients on home parenteral nutrition (HPN) with/without IFALD steatosis. A sub-group underwent multiparameter quantitative MRI measurements of liver fat fraction, iron content, tissue T1, liver blood flow and small bowel motility; (3) Results: Compared to non-IFALD (n = 12), patients with IFALD steatosis (n = 8) demonstrated serum score elevations in Enhanced Liver Fibrosis (p = 0.032), Aspartate transaminase-to-Platelet Ratio Index (p < 0.001), Fibrosis-4 Index (p = 0.010), Forns Index (p = 0.001), Gamma-glutamyl transferase-to-Platelet Ratio Index (p = 0.002) and Fibrosis Index (p = 0.001). Quantitative MRI scanning was feasible in all 10 sub-group patients. Median liver fat fraction was higher in IFALD steatosis patients (10.9% vs 2.1%, p = 0.032); other parameter differences were non-significant; (4) Conclusion: Serum scores used for non-IFALD liver diseases may be useful in IFALD steatosis. Multiparameter MRI is feasible in patients on HPN.
Collapse
Affiliation(s)
- Konstantinos C. Fragkos
- Intestinal Failure Service, Gastrointestinal Services, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK; (K.C.F.); (M.C.P.B.); (S.D.C.); (F.R.)
- UCL Division of Medicine, University College London, London WC1E 6BT, UK;
| | - María Claudia Picasso Bouroncle
- Intestinal Failure Service, Gastrointestinal Services, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK; (K.C.F.); (M.C.P.B.); (S.D.C.); (F.R.)
- UCL Division of Medicine, University College London, London WC1E 6BT, UK;
| | - Shankar Kumar
- UCL Centre for Medical Imaging, University College London, London WC1E 6BT, UK; (S.K.); (L.C.); (A.M.); (S.A.T.)
| | - Lucy Caselton
- UCL Centre for Medical Imaging, University College London, London WC1E 6BT, UK; (S.K.); (L.C.); (A.M.); (S.A.T.)
| | - Alex Menys
- UCL Centre for Medical Imaging, University College London, London WC1E 6BT, UK; (S.K.); (L.C.); (A.M.); (S.A.T.)
| | - Alan Bainbridge
- Department of Medical Physics, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK; (A.B.); (F.T.)
| | - Stuart A. Taylor
- UCL Centre for Medical Imaging, University College London, London WC1E 6BT, UK; (S.K.); (L.C.); (A.M.); (S.A.T.)
| | - Francisco Torrealdea
- Department of Medical Physics, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK; (A.B.); (F.T.)
| | - Tomoko Kumagai
- UCL Division of Medicine, University College London, London WC1E 6BT, UK;
| | - Simona Di Caro
- Intestinal Failure Service, Gastrointestinal Services, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK; (K.C.F.); (M.C.P.B.); (S.D.C.); (F.R.)
- UCL Division of Medicine, University College London, London WC1E 6BT, UK;
| | - Farooq Rahman
- Intestinal Failure Service, Gastrointestinal Services, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK; (K.C.F.); (M.C.P.B.); (S.D.C.); (F.R.)
- UCL Division of Medicine, University College London, London WC1E 6BT, UK;
| | - Jane Macnaughtan
- UCL Institute for Liver and Digestive Health, University College London, London WC1E 6BT, UK;
| | - Manil D. Chouhan
- UCL Centre for Medical Imaging, University College London, London WC1E 6BT, UK; (S.K.); (L.C.); (A.M.); (S.A.T.)
| | - Shameer Mehta
- Intestinal Failure Service, Gastrointestinal Services, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK; (K.C.F.); (M.C.P.B.); (S.D.C.); (F.R.)
- UCL Division of Medicine, University College London, London WC1E 6BT, UK;
| |
Collapse
|
14
|
Histological Scores Validate the Accuracy of Hepatic Iron Load Measured by Signal Intensity Ratio and R2* Relaxometry MRI in Dialysis Patients. J Clin Med 2019; 9:jcm9010017. [PMID: 31861625 PMCID: PMC7019535 DOI: 10.3390/jcm9010017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
Almost all haemodialysis patients are treated with parenteral iron to compensate for blood loss and to allow the full therapeutic effect of erythropoiesis-stimulating agents. Iron overload is an increasingly recognised clinical situation diagnosed by quantitative magnetic resonance imaging (MRI). MRI methods have not been fully validated in dialysis patients. We compared Deugnier’s and Turlin’s histological scoring of iron overload and Scheuer’s classification (with Perls’ stain) with three quantitative MRI methods for measuring liver iron concentration (LIC)—signal intensity ratio (SIR), R2* relaxometry, and R2* multi-peak spectral modelling (Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares estimation (IDEAL-IQ®)) relaxometry—in 16 haemodialysis patients in whom a liver biopsy was formally indicated for medical follow-up. LIC MRI with these three different methods was highly correlated with Deugnier’s and Turlin’s histological scoring (SIR: r = 0.8329, p = 0.0002; R2* relaxometry: r = −0.9099, p < 0.0001; R2* relaxometry (IDEAL-IQ®): r = −0.872, p = 0.0018). Scheuer’s classification was also significantly correlated with these three MRI techniques. The positive likelihood ratio for the diagnosis of abnormal LIC by Deugnier’s histological scoring was > 62 for the three MRI methods. This study supports the accuracy of quantitative MRI methods for the non-invasive diagnosis and follow-up of iron overload in haemodialysis patients.
Collapse
|
15
|
Wurschi GW, Mentzel HJ, Herrmann KH, Krumbein I, Beck JF, Reichenbach JR, Kentouche K. MRI as an alternative to serum ferritin for diagnosis of iron overload in children in the context of immune response after stem cell transplantation. Pediatr Transplant 2019; 23:e13583. [PMID: 31535426 DOI: 10.1111/petr.13583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/18/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022]
Abstract
Multiple blood cell transfusions may cause iron overload or even liver fibrosis, requiring early diagnosis and intervention. SF is the standard for estimating iron levels in the body, but it also increases with inflammation. We hypothesized that T2 * magnetic resonance (MR) relaxometry is a more accurate alternative for follow-up in pediatric patients before and after allogenic SCT. Twenty-three children (mean age 10.2 years, 10 female, 13 male) were evaluated prospectively before SCT as well as at least 1 year after SCT with T2 * relaxometry on a 1.5 T MR-scanner to estimate liver iron concentrations from the T2 * values ("MR-Fe"). The results were compared with SF, while also considering CRP, and correlated with the number of transfusions. Overall, 24.3 transfusions were administered in average, mainly within 100 days of SCT (mean 10.5 units). Both MR-Fe and SF increased after SCT and decreased in the absence of new transfusions 1 year later without chelate therapy. This suggests regeneration of LP and iron loss, although the original states were not reached. Additionally, simultaneous peaks of CRP and SF were observed directly after SCT. MR-Fe did neither reveal these peaks nor was it associated with CRP (P = .39). We postulate that these early CRP and SF peaks after SCT are probably related to inflammatory reactions and not to iron overload. Thus, SF is not reliable for iron overload diagnosis after SCT in every condition. Beside this interaction, SF and MR-Fe revealed similar accuracy. MRI, however, has practical and economical disadvantages in routine estimation of iron.
Collapse
Affiliation(s)
- Georg W Wurschi
- Section of Pediatric Radiology, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Hans-Joachim Mentzel
- Section of Pediatric Radiology, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Ines Krumbein
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - James F Beck
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Juergen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Karim Kentouche
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
16
|
Wilman HR, Parisinos CA, Atabaki-Pasdar N, Kelly M, Thomas EL, Neubauer S, Mahajan A, Hingorani AD, Patel RS, Hemingway H, Franks PW, Bell JD, Banerjee R, Yaghootkar H. Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration. J Hepatol 2019; 71:594-602. [PMID: 31226389 PMCID: PMC6694204 DOI: 10.1016/j.jhep.2019.05.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Excess liver iron content is common and is linked to the risk of hepatic and extrahepatic diseases. We aimed to identify genetic variants influencing liver iron content and use genetics to understand its link to other traits and diseases. METHODS First, we performed a genome-wide association study (GWAS) in 8,289 individuals from UK Biobank, whose liver iron level had been quantified by magnetic resonance imaging, before validating our findings in an independent cohort (n = 1,513 from IMI DIRECT). Second, we used Mendelian randomisation to test the causal effects of 25 predominantly metabolic traits on liver iron content. Third, we tested phenome-wide associations between liver iron variants and 770 traits and disease outcomes. RESULTS We identified 3 independent genetic variants (rs1800562 [C282Y] and rs1799945 [H63D] in HFE and rs855791 [V736A] in TMPRSS6) associated with liver iron content that reached the GWAS significance threshold (p <5 × 10-8). The 2 HFE variants account for ∼85% of all cases of hereditary haemochromatosis. Mendelian randomisation analysis provided evidence that higher central obesity plays a causal role in increased liver iron content. Phenome-wide association analysis demonstrated shared aetiopathogenic mechanisms for elevated liver iron, high blood pressure, cirrhosis, malignancies, neuropsychiatric and rheumatological conditions, while also highlighting inverse associations with anaemias, lipidaemias and ischaemic heart disease. CONCLUSION Our study provides genetic evidence that mechanisms underlying higher liver iron content are likely systemic rather than organ specific, that higher central obesity is causally associated with higher liver iron, and that liver iron shares common aetiology with multiple metabolic and non-metabolic diseases. LAY SUMMARY Excess liver iron content is common and is associated with liver diseases and metabolic diseases including diabetes, high blood pressure, and heart disease. We identified 3 genetic variants that are linked to an increased risk of developing higher liver iron content. We show that the same genetic variants are linked to higher risk of many diseases, but they may also be associated with some health advantages. Finally, we use genetic variants associated with waist-to-hip ratio as a tool to show that central obesity is causally associated with increased liver iron content.
Collapse
Affiliation(s)
- Henry R Wilman
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK; Perspectum Diagnostics Ltd., Oxford, UK
| | - Constantinos A Parisinos
- Institute of Health Informatics, Faculty of Population Health Sciences, University College London, London, UK.
| | - Naeimeh Atabaki-Pasdar
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | | | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - Stefan Neubauer
- Perspectum Diagnostics Ltd., Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Riyaz S Patel
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Harry Hemingway
- Institute of Health Informatics, Faculty of Population Health Sciences, University College London, London, UK
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Jimmy D Bell
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | | | - Hanieh Yaghootkar
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK; Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK.
| |
Collapse
|
17
|
Abstract
Hereditary hemochromatosis (HH) is one of the most common genetic disorders among persons of northern European descent. There have been recent advances in the diagnosis, management, and treatment of HH. The availability of molecular diagnostic testing for HH has made possible confirmation of the diagnosis for most patients. Several genotype-phenotype correlation studies have clarified the differences in clinical features between patients with the C282Y homozygous genotypes and other HFE mutation patterns. The increasing use of noninvasive tests such as MRI T2* has made quantification of hepatic iron deposition easier and eliminated the need for liver biopsy in most patients. Serum ferritin of <1,000 ng/mL at diagnosis remains an important diagnostic test to identify patients with a low risk of advanced hepatic fibrosis and should be used routinely as part of the initial diagnostic evaluation. Genetic testing for other types of HH is available but is expensive and generally not useful in most clinical settings. Serum ferritin may be elevated among patients with nonalcoholic fatty liver disease and in those with alcoholic liver disease. These diagnoses are more common than HH among patients with elevated serum ferritin who are not C282Y homozygotes or C282Y/H63D compound heterozygotes. A secondary cause for liver disease should be excluded among patients with suspected iron overload who are not C282Y homozygotes. Phlebotomy remains the mainstay of therapy, but emerging novel therapies such as new chelating agents may have a role for selected patients.
Collapse
|
18
|
Rostoker G, Vaziri ND. Risk of iron overload with chronic indiscriminate use of intravenous iron products in ESRD and IBD populations. Heliyon 2019; 5:e02045. [PMID: 31338466 PMCID: PMC6627982 DOI: 10.1016/j.heliyon.2019.e02045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 03/14/2019] [Accepted: 07/03/2019] [Indexed: 01/19/2023] Open
Abstract
The routine use of recombinant erythropoiesis-stimulating agents (ESA) over the past three decades has enabled the partial correction of anaemia in most patients with end-stage renal disease (ESRD). Since ESA use frequently leads to iron deficiency, almost all ESA-treated haemodialysis patients worldwide receive intravenous iron (IV) to ensure sufficient available iron during ESA therapy. Patients with inflammatory bowel disease (IBD) are also often treated with IV iron preparations, as anaemia is common in IBD. Over the past few years, liver magnetic resonance imaging (MRI) has become the gold standard method for non-invasive diagnosis and follow-up of iron overload diseases. Studies using MRI to quantify liver iron concentration in ESRD have shown a link between high infused iron dose and risk of haemosiderosis in dialysis patients. In September 2017, the Pharmacovigilance Committee (PRAC) of the European Medicines Agency (EMA) considered convergent publications over the last few years on iatrogenic haemosiderosis in dialysis patients and requested that companies holding marketing authorization for iron products should investigate the risk of iron overload, particularly in patients with end-stage renal disease on dialysis and, by analogy, patients with IBD. We present a narrative review of data supporting the views and decision of the EMA, and then give our expert opinion on this controversial field of anaemia therapeutics.
Collapse
Affiliation(s)
- Guy Rostoker
- Division of Nephrology and Dialysis, Hôpital Privé Claude Galien, Ramsay-Générale de Santé, Quincy-sous-Sénart, France
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California, Irvine, USA
| |
Collapse
|
19
|
Evaluation of liver tissue by ultrasound elastography and clinical parameters in children with multiple blood cell transfusions. Pediatr Radiol 2019; 49:897-905. [PMID: 30927037 DOI: 10.1007/s00247-019-04382-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/23/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Children receiving multiple blood cell transfusions are prone to iron overload and successive tissue damage in liver parenchyma, making noninvasive screening options desirable. Ultrasound (US) elastography using acoustic radiation force impulse (ARFI) imaging enables evaluation of liver parenchyma stiffness, and MRI allows for quantification of liver iron concentration. OBJECTIVE The objective was to correlate US elastography with MRI in children who had undergone bone marrow transplantation and to evaluate the modification of liver tissue with US in combination with clinical parameters at follow-up. MATERIALS AND METHODS ARFI, T2*-weighted MRI and a clinical score (HepScore, based on parameters of liver function) were performed in 45 patients (24 male; mean age 9.7 years) before and 100 days and 365 days after transplantation. All received multiple blood transfusions (mean number 22.2 up until 1 year after transplantation). We correlated US findings and HepScore with MRI findings. RESULTS We observed signs of iron accumulation in 29/45 (64.4%) patients on MRI (T2*<10 ms) and 15/45 (33.3%) showed increased tissue stiffness (ARFI>5.5 kPa). Correlation of elastography and MRI was not significant (P=0.57; n=51 matched measurements). Comparing US elastography with HepScore in receiver operating characteristic (ROC) curve analysis indicated a cut-off for affected parenchyma if HepScore was >5 points (sensitivity 67%, specificity 68%). Simultaneous increases of both indicated tissue alteration. CONCLUSION Combining US and HepScore enabled detection of liver tissue alteration through iron overload, but we found no direct significant effect of estimated iron from MRI on ARFI imaging.
Collapse
|
20
|
Xie T, Li Y, He G, Zhang Z, Shi Q, Cheng G. The influence of liver fat deposition on the quantification of the liver-iron fraction using fast-kilovolt-peak switching dual-energy CT imaging and material decomposition technique: an in vitro experimental study. Quant Imaging Med Surg 2019; 9:654-661. [PMID: 31143656 DOI: 10.21037/qims.2019.04.06] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background To assess the feasibility of dual-energy spectral computed tomography (DECT) for quantifying the liver iron content (LIC) with material decomposition (MD) technique in vitro. Methods Liver-iron mixture samples (model A) and liver-iron-fat mixture samples (model B) were prepare and scanned by a single source DECT using GSI mode with successive tube currents of 200, 320, and 485 mA. A standard algorithm of 1.25 mm was used to reconstruct iron (fat) MD images and iron (water) MD images. The iron concentrations of all samples were measured and analyzed by Spearman's rank correlation and linear regression analysis. Results Significant positive linear correlations were found between virtual iron content (VIC) and LIC in the absence of fat (model A) and in the presence of fat (model B) in the range of LIC 0 to 25 mg/mL. The lines of best fit to model A had slopes around 1.1 and an intercept around (-1.5) mg/mL for iron (water) MD images, and had slopes around 1.1 and an intercept around (-10) mg/mL for iron (fat) MD images. The lines of best fit to the model B had slopes around 1.5 and an intercept around (-15) mg/mL. At the same value of LIC (LIC >0), the VIC values of model A were always higher than those of model B. At the high value of LIC (12.5 mg/mL), the VIC values of model B were similar, but they differed greatly from those of model A. Conclusions The fast-kilovolt-peak switching dual-energy CT imaging and MD techniques allow for quantification of iron content. Fat and the post-reconstruction algorithm of iron (fat) MD images, were confounding factors, and led to the underestimation and overestimation of LIC, respectively.
Collapse
Affiliation(s)
- Tingting Xie
- Medical Imaging Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yongbin Li
- Department of Ultrasound Imaging, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Guanyong He
- Medical Imaging Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhen Zhang
- Medical Imaging Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qiao Shi
- Medical Imaging Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Guanxun Cheng
- Medical Imaging Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
21
|
Abstract
Parenteral iron is used to restore the body's iron pool before and during erythropoiesis-stimulating agent (ESA) therapy; together these agents form the backbone of anemia management in end-stage renal disease (ESRD) patients undergoing hemodialysis. ESRD patients receiving chronic intravenous iron products, which exceed their blood loss are exposed to an increased risk of positive iron balance. Measurement of the liver iron concentration (LIC) reflects total body iron stores in patients with secondary hemosiderosis and genetic hemochromatosis. Recent studies of LIC in hemodialysis patients, measured by quantitative MRI and magnetic susceptometry, have demonstrated a high risk of iron overload in dialysis patients treated with IV iron products at doses advocated by current anemia management guidelines for dialysis patients. Liver iron overload causes increased production of hepcidin and elevated plasma levels, which can activate macrophages of atherosclerotic plaques. This mechanism may explain the results of 3 long-term epidemiological studies which showed the association of excessive IV iron doses with increased risk of cardiovascular morbidity and mortality among hemodialysis patients. A more physiological approach of iron therapy in ESRD is needed. Peritoneal dialysis patients, hemodialysis patients infected with hepatitis C virus, and hemodialysis patients with ferritin above 1000 μg/L without a concomitant inflammatory state, all require specific and cautious iron management. Two recent studies have shown that most hemodialysis patients will benefit from lower maintenance IV iron dosages; their results are applicable to American hemodialysis patients. Novel pharmacometric and economic approaches to iron therapy and anemia management are emerging which are designed to lessen the potential side effects of excessive IV iron while maintaining hemoglobin stability without an increase in ESA dosing.
Collapse
Affiliation(s)
- Guy Rostoker
- Ramsay‐Générale de SantéDivision of Nephrology and DialysisHôpital Privé Claude GalienQuincy sous SénartFrance
| |
Collapse
|
22
|
Measurement of liver iron by magnetic resonance imaging in the UK Biobank population. PLoS One 2018; 13:e0209340. [PMID: 30576354 PMCID: PMC6303057 DOI: 10.1371/journal.pone.0209340] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023] Open
Abstract
The burden of liver disease continues to increase in the UK, with liver cirrhosis reported to be the third most common cause of premature death. Iron overload, a condition that impacts liver health, was traditionally associated with genetic disorders such as hereditary haemochromatosis, however, it is now increasingly associated with obesity, type-2 diabetes and non-alcoholic fatty liver disease. The aim of this study was to assess the prevalence of elevated levels of liver iron within the UK Biobank imaging study in a cohort of 9108 individuals. Magnetic resonance imaging (MRI) was undertaken at the UK Biobank imaging centre, acquiring a multi-echo spoiled gradient-echo single-breath-hold MRI sequence from the liver. All images were analysed for liver iron and fat (expressed as proton density fat fraction or PDFF) content using LiverMultiScan. Liver iron was measured in 97.3% of the cohort. The mean liver iron content was 1.32 ± 0.32 mg/g while the median was 1.25 mg/g (min: 0.85 max: 6.44 mg/g). Overall 4.82% of the population were defined as having elevated liver iron, above commonly accepted 1.8 mg/g threshold based on biochemical iron measurements in liver specimens obtained by biopsy. Further analysis using univariate models showed elevated liver iron to be related to male sex (p<10−16, r2 = 0.008), increasing age (p<10−16, r2 = 0.013), and red meat intake (p<10−16, r2 = 0.008). Elevated liver fat (>5.6% PDFF) was associated with a slight increase in prevalence of elevated liver iron (4.4% vs 6.3%, p = 0.0007). This study shows that population studies including measurement of liver iron concentration are feasible, which may in future be used to better inform patient stratification and treatment.
Collapse
|
23
|
Rostoker G, Loridon C, Griuncelli M, Rabaté C, Lepeytre F, Ureña-Torres P, Issad B, Ghali N, Cohen Y. Liver Iron Load Influences Hepatic Fat Fraction in End-Stage Renal Disease Patients on Dialysis: A Proof of Concept Study. EBioMedicine 2018; 39:461-471. [PMID: 30502056 PMCID: PMC6354439 DOI: 10.1016/j.ebiom.2018.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a spectrum of diseases including steatosis, nonalcoholic steatohepatitis (NASH), cirrhosis, and end-stage liver failure. Hepatic iron accumulation has been linked to hepatic fibrosis severity in NASH and NAFLD. Iron overload induced by parenteral (IV) iron therapy is a potential clinical problem in dialysis patients. We analyzed the hypothetical triggering and aggravating role of iron on NAFLD in patients on dialysis. Methods Liver iron concentration (LIC) and hepatic proton density fat fraction (PDFF) were analyzed prospectively in 68 dialysis patients by magnetic resonance imaging (MRI). Follow up of LIC and PDFF was performed in 17 dialysis patients during iron therapy. Findings PDFF differed significantly among dialysis patients classified according to LIC: patients with moderate or severe iron overload had increased fat fraction (PDFF: 7.9% (0.5–14.8%)) when compared to those with normal LIC (PDFF: 5% (0.27–11%)) or mild iron overload (PDFF: 5% (0.30–11.6%); P = 0.0049). PDFF correlated with LIC, and ferritin and body mass index. In seven patients monitored during IV iron therapy, LIC and PDFF increased concomitantly (PDFF: initial 2.5%, final 8%, P = 0.0156; LIC: initial 20 μmol/g, final 160 μmol/g: P = 0.0156), whereas in ten patients with iron overload, PDFF decreased after IV iron withdrawal or major dose reduction (initial: 8%, final: 4%; P = 0.0098) in parallel with LIC (initial: 195 μmol/g, final: 45 μmol/g; P = 0.002). Interpretation Liver iron load influences hepatic fat fraction in dialysis patients. Iron overload induced by iron therapy may aggravate or trigger NAFLD in dialysis patients. Trial registration number (ISRCTN) 80100088.
Collapse
Affiliation(s)
- Guy Rostoker
- Division of Nephrology and Dialysis, Ramsay Générale de Santé, Hôpital Privé Claude Galien, Quincy-Sous-Sénart, France.
| | - Christelle Loridon
- Division of Nephrology and Dialysis, Ramsay Générale de Santé, Hôpital Privé Claude Galien, Quincy-Sous-Sénart, France
| | - Mireille Griuncelli
- Division of Nephrology and Dialysis, Ramsay Générale de Santé, Hôpital Privé Claude Galien, Quincy-Sous-Sénart, France
| | - Clémentine Rabaté
- Division of Nephrology and Dialysis, Ramsay Générale de Santé, Hôpital Privé Claude Galien, Quincy-Sous-Sénart, France
| | - Fanny Lepeytre
- Division of Nephrology and Dialysis, Ramsay Générale de Santé, Hôpital Privé Claude Galien, Quincy-Sous-Sénart, France
| | - Pablo Ureña-Torres
- Division of Dialysis, Ramsay Générale de Santé, Clinique du Landy, Saint-Ouen, France
| | - Belkacem Issad
- Division of Nephrology and Dialysis, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Nasredine Ghali
- Division of Nephrology and Dialysis, Centre Hospitalier Marc Jacquet, Melun, France
| | - Yves Cohen
- Division of Radiology, Ramsay Générale de Santé, Hôpital Privé Claude Galien, Quincy-Sous-Sénart, France
| |
Collapse
|