1
|
Chen L, Yang Q, Zhang Y, Sun Y. Miniature-inverted-repeat transposable elements contribute to phenotypic variation regulation of rice induced by space environment. FRONTIERS IN PLANT SCIENCE 2025; 15:1446383. [PMID: 39845491 PMCID: PMC11751223 DOI: 10.3389/fpls.2024.1446383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025]
Abstract
Introduction Rice samples exposed to the space environment have generated diverse phenotypic variations. Miniature-inverted-repeat transposable elements (MITEs), often found adjacent to genes, play a significant role in regulating the plant genome. Herein, the contribution of MITEs in regulating space-mutagenic phenotypes was explored. Methods The space-mutagenic phenotype changes in the F3 to F5 generations of three space-mutagenic lines from the rice varieties Dongnong423 (DN423) and Dongnong (DN416) were meticulously traced. Rice leaves samples at the heading stage from three space-mutagenic lines were subjected to high coverage whole-genome bisulfite sequencing and whole-genome sequencing. These analyses were conducted to investigate the effects of MITEs related epigenetic and genetic variations on space-mutagenic phenotypes. Results and discussion Studies have indicated that MITEs within gene regulatory regions might contribute to the formation and differentiation of space-mutagenic phenotypes. The space environment has been shown to induce the transposable elements insertion polymorphisms of MITEs (MITEs-TIPs), with a notable preference for insertion near genes involved in stress response and phenotype regulation. The space-induced MITEs-TIPs contributed to the formation of space-mutagenic phenotype by modulating the expression of gene near the insertion site. This study underscored the pivotal role of MITEs in modulating plant phenotypic variation induced by the space environment, as well as the transgenerational stability of these phenotypic variants.
Collapse
Affiliation(s)
| | | | | | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| |
Collapse
|
2
|
Yang Q, Chen L, Zhang M, Wang W, Zhang B, Zhou D, Sun Y. Activation characteristics of Ty3-retrotransposons after spaceflight and genetic stability of insertion sites in rice progeny. FRONTIERS IN PLANT SCIENCE 2024; 15:1452592. [PMID: 39687316 PMCID: PMC11646775 DOI: 10.3389/fpls.2024.1452592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Introduction The space environment is mutagenic and may induce genomic and phenotypic variations. Exploring the changes in transposon activity in the rice genome under space radiation is of great significance. Methods To analyze the activation characteristics of Ty3-retrotransposons and genetic stability of insertion sites in rice progeny after spaceflight, seeds of Nipponbare, DN416, and DN423 were exposed on board the SJ-10 recoverable satellite for 12.5 days. The differential methylation and transcription levels of Ty3-retrotransposons in the genome of Nipponbare's F0 generation after spaceflight, as well as the genetic stability of Ty3-retrotransposon insertion sites in DN416 and DN423 from F3 to F5 generations, was analyzed. Results The study found that the retrotransposons of ancient and young transposon families underwent demethylation from the tillering to heading stages of Nipponbare plants, which were F0 generation of space-exposed seeds, when the Nipponbare seeds were hit by single space high charge and energy (HZE) particles with LET ≥ 100 keV/μm. the transcription levels significantly increased in ancient transposon families (osr30, osr40, and rire10) and young transposon families (dagul, rn215-125, osr37, RLG_15, osr34, rire8, rire3, rire2, and hopi) (p ≤ 0.05) when LET > 100 keV/μm. Furthermore, the young Ty3-retrotransposons, which included the hopi, squiq, dasheng, rire2, rire3, rire8, osr34, rn_215-125, dagul, and RLG_15 families, underwent 1 to 8 transpositions in the F3 to F5 of DN416 and DN423 mutants, and some of these transposon insertion sites were stably inherited. Discussion The research holds great significance for understanding the activation characteristics of Ty3-retrotransposons in the rice genome induced by space radiation and the genetic characteristics of transposon insertion sites in its progeny.
Collapse
Affiliation(s)
- Qing Yang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Lishan Chen
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Meng Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Wei Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Binquan Zhang
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Dazhuang Zhou
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| |
Collapse
|
3
|
Zhang Y, Wang W, Zhang M, Zhang B, Gao S, Hao M, Zhou D, Zhao L, Reitz G, Sun Y. Using single-sample networks and genetic algorithms to identify radiation-responsive genes in rice affected by heavy ions of the galactic cosmic radiation with different LET values. FRONTIERS IN PLANT SCIENCE 2024; 15:1457587. [PMID: 39582626 PMCID: PMC11581881 DOI: 10.3389/fpls.2024.1457587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
Introduction Heavy ions of the galactic cosmic radiation dominate the radiation risks and biological effects for plants under spaceflight conditions. However, the biological effects and sensitive genes caused by heavy ions with different linear energy transfer (LET) values have not been thoroughly studied. Methods To comprehensively analyze the biological effects of heavy ions with different LET values on rice under spaceflight conditions, we utilized the Shijian-10 recoverable satellite (SJ-10) to transport the dehydrated rice seeds on a 12.5-day mission in a 252 km low Earth orbit (LEO), and obtained rice plants hit by individual heavy ions with LET values ranging from 18 keV/μm to 213 keV/μm. The transcriptome and methylation sequencing were conducted on above plants, and a bioinformatics pipeline based on single-sample networks (SSNs) and genetic algorithms (GA) was developed to analyze the multi-omics expression profiles in this work. Note that SSNs can depict the gene interaction patterns within a single sample. The LET regression models were constructed from both gene expression and interaction pattern perspectives respectively, and the radiation response genes that played significant roles in the models were identified. We designed a gene selection algorithm based on GA to enhance the performance of LET regression models. Results The experimental results demonstrate that all our models exhibit excellent regression performance (R2 values close to 1), which indicates that both gene expressions and interaction patterns can reflect the molecular changes caused by heavy ions with different LET values. LET-related genes (genes exhibiting strong correlation with LET values) and radiation-responsive genes were identified, primarily involved in DNA damage and repair, oxidative stress, photosynthesis, nucleic acid metabolism, energy metabolism, amino acid/protein metabolism, and lipid metabolism, etc. DNA methylation plays a crucial role in responding to heavy ions stressors and regulates the aforementioned processes. Discussion To the best of our knowledge, this is the first study to report the multi-omics changes in plants after exposure to heavy ions with different LET values under spaceflight conditions.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Wei Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Meng Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Binquan Zhang
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Shuai Gao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Meng Hao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Dazhuang Zhou
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Guenther Reitz
- Consultant German Aerospace Center, Aerospace Medicine, Radiobiology Department, Köln, Germany
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| |
Collapse
|
4
|
Chen X, Xiong H, Guo H, Chen S, Zhao L, Xie Y, Gu J, Zhao S, Ding Y, Li H, Wang Q, Liu L. Mapping and identification of a reverse mutation of Rht2 that enhances plant height and thousand grain weight in an elite wheat mutant induced by spaceflight. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108425. [PMID: 38368728 DOI: 10.1016/j.plaphy.2024.108425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
As climate change continues to negatively impact our farmlands, abiotic factors like salinity and drought stress increasingly threaten global food security. The development of elite germplasms with resistance to multiple abiotic stresses is essential for breeding climate-resilient wheat cultivars. In this study, we determined that the previously reported salt-tolerant st1 mutant, obtained via spaceflight mutagenesis, may also resist to drought stress at the seedling stage. Moreover, our field trial revealed that yield-related traits including plant height, 1000-grain weight, and spike number per plant were significantly increased in st1 compared to the wild type. An F2 population of 334 individuals derived from a cross between the wild type and st1 displayed a bimodal distribution indicating that st1 plant height is controlled by a single major gene. Our Bulked Segregant Analysis and exome capture sequencing indicate that this gene is located on chromosome 4D. Further genetic linkage and gene sequence analysis suggests that a reverse mutation of Rht2 is putatively responsible for plant height variation in st1. Our genotypic and phenotypic analysis of the F2 population and F3 lines indicate that this reverse mutation significantly increases plant height and thousand grain weight but slightly decreases spike number per plant. Together, these results supply helpful information for the utilization of Rht2 in wheat breeding and provide an important material for breeding environmentally resilient, high-yield wheat varieties.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Plant Molecular & Developmental Biology, College of Life Sciences, Yantai University, Yantai, Shandong, China; National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongchun Xiong
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huijun Guo
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shihua Chen
- Key Laboratory of Plant Molecular & Developmental Biology, College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Linshu Zhao
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongdun Xie
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiayu Gu
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shirong Zhao
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuping Ding
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huiyuan Li
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingguo Wang
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Luxiang Liu
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
5
|
Li B, Zhao L, Zhang S, Cai H, Xu L, An B, Wang R, Liu G, He Y, Jiao C, Liu L, Xu Y. The Mutational, Epigenetic, and Transcriptional Effects Between Mixed High-Energy Particle Field (CR) and 7Li-Ion Beams (LR) Radiation in Wheat M 1 Seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:878420. [PMID: 35646033 PMCID: PMC9131052 DOI: 10.3389/fpls.2022.878420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Ionizing radiation (IR) is an effective approach for mutation breeding. Understanding the mutagenesis and transcriptional profiles induced by different mutagens is of great significance for improving mutation breeding efficiency. Here, using RNA sequencing and methylation-sensitive amplification polymorphism (MSAP) approaches, we compared the genetic variations, epigenetics, and transcriptional responses induced by the mixed high-energy particle field (CR) and 7Li-ion beam (LR) radiation in M1 seedlings of two wheat genotypes (Yangmai 18 and Yangmai 20). The results showed that, in both wheat genotypes, CR displayed significantly a higher mutation efficiency (1.79 × 10-6/bp) than that by LR (1.56 × 10-6/bp). The induced mutations were not evenly distributed across chromosomes and varied across wheat genotypes. In Y18 M1, the highest number of mutations were detected on Chr. 6B and Chr. 6D, whilst in Y20 M1, Chr. 7A and Chr. 3A had the highest mutations. The transcript results showed that total of 4,755 CR-regulated and 1,054 LR-regulated differentially expressed genes (DEGs) were identified in the both genotypes. Gene function enrichment analysis of DEGs showed that these DEGs overlapped or diverged in the cascades of molecular networks involved in "phenylpropanoid biosynthesis" and "starch and sucrose metabolism" pathways. Moreover, IR type specific responses were observed between CR an LR irradiation, including specific TFs and response pathways. MSAP analysis showed that DNA methylation level increased in LR treatment, while decreased at CR. The proportion of hypermethylation was higher than that of hypomethylation at LR, whereas a reverse pattern was observed at CR, indicating that DNA methylation plays critical roles in response to IR irradiation. All these results support that the response to different IRs in wheat includes both common and unique pathways, which can be served as a useful resource to better understand the mechanisms of responses to different IRs in other plants.
Collapse
Affiliation(s)
- Bo Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Collaborative Innovation Centre for the Industrialization of Major Grain Crops, Yangtze University, Jingzhou, China
| | - Linshu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuo Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Haiya Cai
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Le Xu
- Hubei Collaborative Innovation Centre for the Industrialization of Major Grain Crops, Yangtze University, Jingzhou, China
| | - Bingzhuang An
- Hubei Collaborative Innovation Centre for the Industrialization of Major Grain Crops, Yangtze University, Jingzhou, China
| | - Rong Wang
- Hubei Collaborative Innovation Centre for the Industrialization of Major Grain Crops, Yangtze University, Jingzhou, China
| | - Gang Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yonggang He
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chunhai Jiao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Luxiang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
6
|
Zeng D, Cui J, Yin Y, Xiong Y, Liu M, Guan S, Cheng D, Sun Y, Lu W. Metabolomics Analysis in Different Development Stages on SP0 Generation of Rice Seeds After Spaceflight. FRONTIERS IN PLANT SCIENCE 2021; 12:700267. [PMID: 34276752 PMCID: PMC8278407 DOI: 10.3389/fpls.2021.700267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Spaceflight is a special abiotic stress condition. In recent years, it has been confirmed that the spaceflight caused the stress response of rice seeds, and the protein level, transcription level, and methylation level will change during the planting process after returning to the ground. However, the changes at the metabolome level are not very clear. In this study, two kinds of rice seeds, Dongnong423 (DN3) and Dongnong416 (DN6), were carried on the ShiJian-10 retractable satellite (SJ-10) for 12.5 days in orbit, returned to the ground and planted in the field until the three-leaf (TLP) and tillering stage (TS). The results of antioxidant enzyme activity, soluble sugar, and electron leakage rate revealed that the spaceflight caused the stress response of rice. The TLP and TS of DN3 identified 110 and 57 different metabolites, respectively, while the TLP and TS of DN6 identified 104 and 74 different metabolites, respectively. These metabolites included amino acids, sugars, fatty acids, organic acids and secondary metabolites. We used qRT-PCR technology to explore the changes of enzyme genes in the tricarboxylic acid cycle (TCA) and amino acid metabolism pathway. Combined with the results of metabolomics, we determined that during the TLP, the TCA cycle rate of DN3 was inhibited and amino acid metabolism was activated, while the TCA cycle rate of DN6 was activated and amino acid metabolism was inhibited. In TS, the TCA cycle rate of DN3 was inhibited, and amino acid metabolism was not significantly changed, while the TCA cycle rate of DN6 was activated and amino acid metabolism was inhibited. These results suggested that the response mechanisms of the two different rice strains to spaceflight stress are different, and these differences may be reflected in energy consumption and compound biosynthesis of rice in different growth and development stages. This study provided new insights for further exploring the effects of spaceflight.
Collapse
Affiliation(s)
- Deyong Zeng
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Jie Cui
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - YiShu Yin
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Yi Xiong
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Mengyao Liu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Shuanghong Guan
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Dayou Cheng
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Yeqing Sun
- Dalian Maritime University, Environmental Systems Biology Institute, Dalian, China
| | - Weihong Lu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
7
|
Yin M, Ye B, Jin Y, Liu L, Zhang Y, Li P, Wang Y, Li Y, Han Y, Shen W, Zhao Z. Changes in Vibrio natriegens Growth Under Simulated Microgravity. Front Microbiol 2020; 11:2040. [PMID: 32983034 PMCID: PMC7483581 DOI: 10.3389/fmicb.2020.02040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/03/2020] [Indexed: 01/20/2023] Open
Abstract
The growth rate of bacteria increases under simulated microgravity (SMG) with low-shear force. The next-generation microbial chassis Vibrio natriegens (V. natriegens) is a fast-growing Gram-negative, non-pathogenic bacterium with a generation time of less than 10 min. Screening of a V. natriegens strain with faster growth rate was attempted by 2-week continuous long-term culturing under SMG. However, the rapid growth rate of this strain made it difficult to obtain the desired mutant strain with even more rapid growth. Thus, a mutant with slower growth rate emerged. Multi-omics integration analysis was conducted to explore why this mutant grew more slowly, which might inform us about the molecular mechanisms of rapid growth of V. natriegens instead. The transcriptome data revealed that whereas genes related to mechanical signal transduction and flagellin biogenesis were up-regulated, those involved in adaptive responses, anaerobic and nitrogen metabolism, chromosome segregation and cell vitality were down-regulated. Moreover, genome-wide chromosome conformation capture (Hi-C) results of the slower growth mutant and wide type indicated that SMG-induced great changes of genome 3D organization were highly correlated with differentially expressed genes (DEGs). Meanwhile, whole genome re-sequencing found a significant number of structure variations (SVs) were enriched in regions with lower interaction frequency and down-regulated genes in the slower growth mutant compared with wild type (WT), which might represent a prophage region. Additionally, there was also a decreased interaction frequency in regions associated with well-orchestrated chromosomes replication. These results suggested that SMG might regulate local gene expression by sensing stress changes through conformation changes in the genome region of genes involved in flagellin, adaptability and chromosome segregation, thus followed by alteration of some physiological characteristics and affecting the growth rate and metabolic capacity.
Collapse
Affiliation(s)
- Man Yin
- Beijing Institute of Biotechnology, Beijing, China
| | - Bingyu Ye
- Beijing Institute of Biotechnology, Beijing, China.,College of Life Science, Henan Normal University, Xinxiang, China
| | - Yifei Jin
- Beijing Institute of Biotechnology, Beijing, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Yahao Wang
- Beijing Institute of Biotechnology, Beijing, China
| | - Ye Li
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenlong Shen
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
8
|
Bhat RS, Rockey J, Shirasawa K, Tilak IS, Brijesh Patil MP, Reddy Lachagari VB. DNA methylation and expression analyses reveal epialleles for the foliar disease resistance genes in peanut (Arachis hypogaea L.). BMC Res Notes 2020; 13:20. [PMID: 31910887 PMCID: PMC6947992 DOI: 10.1186/s13104-020-4883-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/02/2020] [Indexed: 01/02/2023] Open
Abstract
Objective Low DNA sequence polymorphism despite enormous phenotypic variations in peanut indicates the possible role of epigenetic variations. An attempt was made to analyze genome-wide DNA methylation pattern and its influence on gene expression across 11 diverse genotypes of peanut. Results The genotypes were subjected to bisulfite sequencing after 21 days of sowing (DAS). CHG regions showed the highest (30,537,376) DNA methylation followed by CpG (30,356,066) and CHH (15,993,361) across 11 genotypes. The B sub-genome exhibited higher DNA methylation sites (46,294,063) than the A sub-genome (30,415,166). Overall, the DNA methylation was more frequent in inter-genic regions than in the genic regions. The genes showing altered methylation and expression between the parent (TMV 2) and its EMS-derived mutant (TMV 2-NLM) were identified. Foliar disease resistant genotypes showed significant differential DNA methylation at 766 sites corresponding to 25 genes. Of them, two genes (Arahy.1XYC2X on chromosome 01 and Arahy.00Z2SH on chromosome 17) coding for senescence-associated protein showed differential expression with resistant genotypes recording higher fragments per kilobase of transcript per million mapped reads (FPKM) at their epialleles. Overall, the study indicated the variation in the DNA methylation pattern among the diverse genotypes of peanut and its influence of gene expression.
Collapse
Affiliation(s)
- R S Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, 580 005, India.
| | - J Rockey
- AgriGenome Labs Pvt. Ltd., Kochi, Kerala, 682 042, India
| | - Kenta Shirasawa
- Department of Frontier Research, Kazusa DNA Research Institute, Chiba, 292-0818, Japan
| | - I S Tilak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, 580 005, India
| | - M P Brijesh Patil
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, 580 005, India
| | | |
Collapse
|
9
|
Pei W, Hu W, Chai Z, Zhou G. Current status of space radiobiological studies in China. LIFE SCIENCES IN SPACE RESEARCH 2019; 22:1-7. [PMID: 31421843 DOI: 10.1016/j.lssr.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/16/2019] [Accepted: 05/07/2019] [Indexed: 06/10/2023]
Abstract
After successfully launching two space laboratories, namely, Tiangong-1 and Tiangong-2, China has announced her next plan of constructing the Chinese Space Station (CSS) in 2022. The CSS will provide not only platforms for Chinese scientists to carry out experimental studies in outer space but also opportunities for open international cooperation. In this article, we review the development of China's manned space exploration missions and the preliminary plan for CSS. Additionally, China has initiated space radiation research decades ago with both ground-based simulation research platform and space vehicles and has made noticeable progresses in several aspects. These include studies on human health risk assessment using mammalian cell cultures and animals as models. Furthermore, there have been numerous studies on assessing the space environment in plant breeding.
Collapse
Affiliation(s)
- Weiwei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Academy of Space Life Sciences, Soochow University, Suzhou 215123, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Academy of Space Life Sciences, Soochow University, Suzhou 215123, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Academy of Space Life Sciences, Soochow University, Suzhou 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Academy of Space Life Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
10
|
Zhou M, Sng NJ, LeFrois CE, Paul AL, Ferl RJ. Epigenomics in an extraterrestrial environment: organ-specific alteration of DNA methylation and gene expression elicited by spaceflight in Arabidopsis thaliana. BMC Genomics 2019; 20:205. [PMID: 30866818 PMCID: PMC6416986 DOI: 10.1186/s12864-019-5554-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/21/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Plants adapted to diverse environments on Earth throughout their evolutionary history, and developed mechanisms to thrive in a variety of terrestrial habitats. When plants are grown in the novel environment of spaceflight aboard the International Space Station (ISS), an environment completely outside their evolutionary history, they respond with unique alterations to their gene expression profile. Identifying the genes important for physiological adaptation to spaceflight and dissecting the biological processes and pathways engaged by plants during spaceflight has helped reveal spaceflight adaptation, and has furthered understanding of terrestrial growth processes. However, the underlying regulatory mechanisms responsible for these changes in gene expression patterns are just beginning to be explored. Epigenetic modifications, such as DNA methylation at position five in cytosine, has been shown to play a role in the physiological adaptation to adverse terrestrial environments, and may play a role in spaceflight as well. RESULTS Whole Genome Bisulfite Sequencing of DNA of Arabidopsis grown on the ISS from seed revealed organ-specific patterns of differential methylation compared to ground controls. The overall levels of methylation in CG, CHG, and CHH contexts were similar between flight and ground DNA, however, thousands of specifically differentially methylated cytosines were discovered, and there were clear organ-specific differences in methylation patterns. Spaceflight leaves had higher methylation levels in CHG and CHH contexts within protein-coding genes in spaceflight; about a fifth of the leaf genes were also differentially regulated in spaceflight, almost half of which were associated with reactive oxygen signaling. CONCLUSIONS The physiological adaptation of plants to spaceflight is likely nuanced by epigenomic modification. This is the first examination of differential genomic methylation from plants grown completely in the spaceflight environment of the ISS in plant growth hardware developed for informing exploration life support strategies. Yet even in this optimized plant habitat, plants respond as if stressed. These data suggest that gene expression associated with physiological adaptation to spaceflight is regulated in part by methylation strategies similar to those engaged with familiar terrestrial stress responses. The differential methylation maps generated here provide a useful reference for elucidating the layers of regulation of spaceflight responses.
Collapse
Affiliation(s)
- Mingqi Zhou
- 0000 0004 1936 8091grid.15276.37Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL USA ,0000 0004 1936 8091grid.15276.37Horticultural Sciences Department, University of Florida, Gainesville, FL USA
| | - Natasha J. Sng
- 0000 0004 1936 8091grid.15276.37Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL USA ,0000 0004 1936 8091grid.15276.37Horticultural Sciences Department, University of Florida, Gainesville, FL USA
| | - Collin E. LeFrois
- 0000 0004 1936 8091grid.15276.37Horticultural Sciences Department, University of Florida, Gainesville, FL USA
| | - Anna-Lisa Paul
- 0000 0004 1936 8091grid.15276.37Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL USA ,0000 0004 1936 8091grid.15276.37Horticultural Sciences Department, University of Florida, Gainesville, FL USA
| | - Robert J. Ferl
- 0000 0004 1936 8091grid.15276.37Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL USA ,0000 0004 1936 8091grid.15276.37Horticultural Sciences Department, University of Florida, Gainesville, FL USA ,0000 0004 1936 8091grid.15276.37Interdisciplinary Center for Biotechnology, University of Florida, Gainesville, FL USA
| |
Collapse
|
11
|
Zhao Q, Wang W, Gao S, Sun Y. Analysis of DNA methylation alterations in rice seeds induced by different doses of carbon-ion radiation. JOURNAL OF RADIATION RESEARCH 2018; 59:565-576. [PMID: 30020485 PMCID: PMC6151634 DOI: 10.1093/jrr/rry053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/08/2018] [Indexed: 06/08/2023]
Abstract
To investigate the mechanism underlying differences in biological effects induced by low- versus high-dose heavy-ion radiation (HIR) in rice plants, two-dimensional gel electrophoresis (2-DE) coupled with methylation-sensitive amplification polymorphism (MSAP) analysis were used to check the expression changes in rice leaf proteome profiles and the changes in DNA methylation after exposure of seeds to ground-based carbon-ion radiation at various cumulative doses (0, 0.01, 0.02, 0.1, 0.2, 1, 2, 5 or 20 Gy; 12C6+; energy, 165 MeV/u; mean linear energy transfer, 30 KeV/μm). In this study, principal component analysis (PCA) and gene ontology (GO) functional analysis of differentially expressed proteins of rice at tillering stage showed that proteins expressed in rice samples exposed to 0.01, 0.02, 0.1, 0.2 or 1 Gy differed from those exposed to 2, 5 or 20 Gy. Correspondingly, the proportion of hypermethylation was higher than that of hypomethylation at CG sites following low-dose HIR (LDR; 0.01, 0.2 or 1 Gy), whereas this was reversed at high-dose HIR (HDR; 2, 5 or 20 Gy). The hypomethylation changes tended to occur at CHG sites with both low- and high-dose HIR. Furthermore, sequencing of MSAP variant bands indicated that the plants might activate more metabolic processes and biosynthetic pathways on exposure to LDR, but activate stress resistance on exposure to HDR. This study showed that radiation induced different biological effects with low- and high-dose HIR, and that this may have been caused by different patterns of hyper- and hypomethylation at the CG sites.
Collapse
Affiliation(s)
- Qian Zhao
- Institute of Environmental System Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, PR China
| | - Wei Wang
- Institute of Environmental System Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, PR China
| | - Shuai Gao
- Institute of Environmental System Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, PR China
| | - Yeqing Sun
- Institute of Environmental System Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, PR China
| |
Collapse
|
12
|
Zhang H, Lu D, Li X, Feng Y, Cui Q, Song X. Heavy ion mutagenesis combined with triclosan screening provides a new strategy for improving the arachidonic acid yield in Mortierella alpina. BMC Biotechnol 2018; 18:23. [PMID: 29716562 PMCID: PMC5930740 DOI: 10.1186/s12896-018-0437-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/18/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Arachidonic acid (ARA), which is a ω-6 polyunsaturated fatty acid, has a wide range of biological activities and is an essential component of cellular membranes in some human tissues. Mortierella alpina is the best strain for industrial production of ARA. To increase its yield of arachidonic acid, heavy ion beam irradiation mutagenesis of Mortierella alpina was carried out in combination with triclosan and octyl gallate treatment. RESULTS The obtained mutant strain F-23 ultimately achieved an ARA yield of 5.26 g L- 1, which is 3.24 times higher than that of the wild-type strain. In addition, quantitative real-time PCR confirmed that the expression levels of fatty acid synthase (FAS), Δ5-desaturase, Δ6-desaturase, and Δ9-desaturase were all significantly up-regulated in the mutant F-23 strain, especially Δ6- and Δ9-desaturase, which were up-regulated 3- and 2-fold, respectively. CONCLUSIONS This study confirmed a feasible mutagenesis breeding strategy for improving ARA production and provided a mutant of Mortierella alpina with high ARA yield.
Collapse
Affiliation(s)
- Huidan Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.,Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, 266101, Shandong, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Xin Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Yingang Feng
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.,Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, 266101, Shandong, China
| | - Qiu Cui
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.,Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.,Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, 266101, Shandong, China
| | - Xiaojin Song
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China. .,Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, 266101, Shandong, China.
| |
Collapse
|
13
|
Hu W, Li W, Chen J. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP. Lett Appl Microbiol 2017; 65:274-280. [PMID: 28741678 DOI: 10.1111/lam.12780] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022]
Abstract
Nowadays, the value of heavy-ion mutagenesis has been accepted as a novel powerful mutagen technique to generate new microbial mutants due to its high linear energy transfer and high relative biological effectiveness. This paper briefly reviews recent progress in developing a more efficient mutagenesis technique for microbial breeding using heavy-ion mutagenesis, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou. Then, new insights into microbial biotechnology via heavy-ion mutagenesis are also further explored. We hope that our concerns will give deep insight into microbial breeding biotechnology via heavy-ion mutagenesis. We also believe that heavy-ion mutagenesis breeding will greatly contribute to the progress of a comprehensive study industrial strain engineering for bioindustry in the future. SIGNIFICANCE AND IMPACT OF THE STUDY There is currently a great interest in developing rapid and diverse microbial mutation tool for strain modification. Heavy-ion mutagenesis has been proved as a powerful technology for microbial breeding due to its broad spectrum of mutation phenotypes with high efficiency. In order to deeply understand heavy-ion mutagenesis technology, this paper briefly reviews recent progress in microbial breeding using heavy-ion mutagenesis at IMP, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou (HIRFL) as well as new insights into microbial biotechnology via heavy-ion mutagenesis. Thus, this work can provide the guidelines to promote the development of novel microbial biotechnology cross-linking heavy-ion mutagenesis breeding that could make breeding process more efficiently in the future.
Collapse
Affiliation(s)
- W Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - W Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - J Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|