1
|
Rajpurohit YS, Sharma DK, Lal M, Soni I. A perspective on tumor radiation resistance following high-LET radiation treatment. J Cancer Res Clin Oncol 2024; 150:226. [PMID: 38696003 PMCID: PMC11065934 DOI: 10.1007/s00432-024-05757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
High-linear energy transfer (LET) radiation is a promising alternative to conventional low-LET radiation for therapeutic gain against cancer owing to its ability to induce complex and clustered DNA lesions. However, the development of radiation resistance poses a significant barrier. The potential molecular mechanisms that could confer resistance development are translesion synthesis (TLS), replication gap suppression (RGS) mechanisms, autophagy, epithelial-mesenchymal transition (EMT) activation, release of exosomes, and epigenetic changes. This article will discuss various types of complex clustered DNA damage, their repair mechanisms, mutagenic potential, and the development of radiation resistance strategies. Furthermore, it highlights the importance of careful consideration and patient selection when employing high-LET radiotherapy in clinical settings.
Collapse
Affiliation(s)
- Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India.
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India.
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Mitu Lal
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Ishu Soni
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India
| |
Collapse
|
2
|
Luitel K, Siteni S, Barron S, Shay JW. Simulated galactic cosmic radiation-induced cancer progression in mice. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:43-51. [PMID: 38670651 DOI: 10.1016/j.lssr.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/29/2023] [Accepted: 01/28/2024] [Indexed: 04/28/2024]
Abstract
Prolonged manned space flight exposure risks to galactic comic radiation, has led to uncertainties in a variety of health risks. Our previous work, utilizing either single ion or multiple ion radiation exposure conducted at the NSRL (NASA Space Radiation Laboratory, Brookhaven, NY) demonstrated that HZE ion components of the GCR result in persistent inflammatory signaling, increased mutations, and higher rates of cancer initiation and progression. With the development of the 33-beam galactic cosmic radiation simulations (GCRsim) at the NSRL, we can more closely test on earth the radiation environment found in space. With a previously used lung cancer susceptible mouse model (K-rasLA-1), we performed acute exposure experiments lasting 1-2 h, and chronic exposure experiments lasting 2-6 weeks with a total dose of 50 cGy and 75 cGy. We obtained histological samples from a subset of mice 100 days post-irradiation, and the remaining mice were monitored for overall survival up to 1-year post-irradiation. When we compared acute exposures (1-2 hrs.) and chronic exposure (2-6 weeks), we found a trend in the increase of lung adenocarcinoma respectively for a total dose of 50 cGy and 75 cGy. Furthermore, when we added neutron exposure to the 75 cGy of GCRsim, we saw a further increase in the incidence of adenocarcinoma. We interpret these findings to suggest that the risks of carcinogenesis are heightened with doses anticipated during a round trip to Mars, and this risk is magnified when coupled with extra neutron exposure that are expected on the Martian surface. We also observed that risks are reduced when the NASA official 33-beam GCR simulations are provided at high dose rates compared to low dose rates.
Collapse
Affiliation(s)
- Krishna Luitel
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Silvia Siteni
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Summer Barron
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Tomsia M, Cieśla J, Śmieszek J, Florek S, Macionga A, Michalczyk K, Stygar D. Long-term space missions' effects on the human organism: what we do know and what requires further research. Front Physiol 2024; 15:1284644. [PMID: 38415007 PMCID: PMC10896920 DOI: 10.3389/fphys.2024.1284644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Space has always fascinated people. Many years have passed since the first spaceflight, and in addition to the enormous technological progress, the level of understanding of human physiology in space is also increasing. The presented paper aims to summarize the recent research findings on the influence of the space environment (microgravity, pressure differences, cosmic radiation, etc.) on the human body systems during short-term and long-term space missions. The review also presents the biggest challenges and problems that must be solved in order to extend safely the time of human stay in space. In the era of increasing engineering capabilities, plans to colonize other planets, and the growing interest in commercial space flights, the most topical issues of modern medicine seems to be understanding the effects of long-term stay in space, and finding solutions to minimize the harmful effects of the space environment on the human body.
Collapse
Affiliation(s)
- Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Śmieszek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Szymon Florek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Macionga
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Huff JL, Poignant F, Rahmanian S, Khan N, Blakely EA, Britten RA, Chang P, Fornace AJ, Hada M, Kronenberg A, Norman RB, Patel ZS, Shay JW, Weil MM, Simonsen LC, Slaba TC. Galactic cosmic ray simulation at the NASA space radiation laboratory - Progress, challenges and recommendations on mixed-field effects. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:90-104. [PMID: 36682835 DOI: 10.1016/j.lssr.2022.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/17/2023]
Abstract
For missions beyond low Earth orbit to the moon or Mars, space explorers will encounter a complex radiation field composed of various ion species with a broad range of energies. Such missions pose significant radiation protection challenges that need to be solved in order to minimize exposures and associated health risks. An innovative galactic cosmic ray simulator (GCRsim) was recently developed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The GCRsim technology is intended to represent major components of the space radiation environment in a ground analog laboratory setting where it can be used to improve understanding of biological risks and serve as a testbed for countermeasure development and validation. The current GCRsim consists of 33 energetic ion beams that collectively simulate the primary and secondary GCR field encountered by humans in space over the broad range of particle types, energies, and linear energy transfer (LET) of interest to health effects. A virtual workshop was held in December 2020 to assess the status of the NASA baseline GCRsim. Workshop attendees examined various aspects of simulator design, with a particular emphasis on beam selection strategies. Experimental results, modeling approaches, areas of consensus, and questions of concern were also discussed in detail. This report includes a summary of the GCRsim workshop and a description of the current status of the GCRsim. This information is important for future advancements and applications in space radiobiology.
Collapse
Affiliation(s)
- Janice L Huff
- NASA Langley Research Center, Hampton, VA, 23681, United States of America.
| | - Floriane Poignant
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Shirin Rahmanian
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Nafisah Khan
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Eleanor A Blakely
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States of America
| | - Richard A Britten
- Department of Radiation Oncology, Department of Microbiology and Molecular Cell Biology, Leroy T Canoles Jr. Cancer Center, School of Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, United States of America
| | - Polly Chang
- SRI International, Menlo Park, CA, 94025, United States of America
| | - Albert J Fornace
- Georgetown University, Washington, DC, 20057, United States of America
| | - Megumi Hada
- Prairie View A&M University, Prairie View, TX, 77446, United States of America
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States of America
| | - Ryan B Norman
- NASA Langley Research Center, Hampton, VA, 23681, United States of America
| | - Zarana S Patel
- KBR Inc., Houston, TX, 77058, United States of America; NASA Johnson Space Center, Houston, TX, 77058, United States of America
| | - Jerry W Shay
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Michael M Weil
- Colorado State University, Fort Collins, CO, 80523, United States of America
| | - Lisa C Simonsen
- NASA Headquarters, Washington, DC, 20546, United States of America
| | - Tony C Slaba
- NASA Langley Research Center, Hampton, VA, 23681, United States of America
| |
Collapse
|
5
|
Nuyts S, Bollen H, Ng SP, Corry J, Eisbruch A, Mendenhall WM, Smee R, Strojan P, Ng WT, Ferlito A. Proton Therapy for Squamous Cell Carcinoma of the Head and Neck: Early Clinical Experience and Current Challenges. Cancers (Basel) 2022; 14:cancers14112587. [PMID: 35681568 PMCID: PMC9179360 DOI: 10.3390/cancers14112587] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Proton therapy is a promising type of radiation therapy used to destroy tumor cells. It has the potential to further improve the outcomes for patients with head and neck cancer since it allows to minimize the radiation dose to vital structures around the tumor, leading to less toxicity. This paper describes the current experience worldwide with proton therapy in head and neck cancer. Abstract Proton therapy (PT) is a promising development in radiation oncology, with the potential to further improve outcomes for patients with squamous cell carcinoma of the head and neck (HNSCC). By utilizing the finite range of protons, healthy tissue can be spared from beam exit doses that would otherwise be irradiated with photon-based treatments. Current evidence on PT for HNSCC is limited to comparative dosimetric analyses and retrospective single-institution series. As a consequence, the recognized indications for the reimbursement of PT remain scarce in most countries. Nevertheless, approximately 100 PT centers are in operation worldwide, and initial experiences for HNSCC are being reported. This review aims to summarize the results of the early clinical experience with PT for HNSCC and the challenges that are currently faced.
Collapse
Affiliation(s)
- Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;
- Department of Oncology, Leuven Cancer Institute, Universitair Ziekenhuis Leuven, 3000 Leuven, Belgium
- Correspondence:
| | - Heleen Bollen
- Laboratory of Experimental Radiotherapy, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;
- Department of Oncology, Leuven Cancer Institute, Universitair Ziekenhuis Leuven, 3000 Leuven, Belgium
| | - Sweet Ping Ng
- Department of Radiation Oncology, Austin Health, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - June Corry
- Division of Medicine, Department of Radiation Oncology, St. Vincent’s Hospital, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Avraham Eisbruch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - William M Mendenhall
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL 32209, USA;
| | - Robert Smee
- Department of Radiation Oncology, The Prince of Wales Cancer Centre, Sydney, NSW 2031, Australia;
| | - Primoz Strojan
- Department of Radiation Oncology, Institute of Oncology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Wai Tong Ng
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35125 Padua, Italy;
| |
Collapse
|
6
|
Luitel K, Kim SB, Barron S, Richardson JA, Shay JW. Lung cancer progression using fast switching multiple ion beam radiation and countermeasure prevention. LIFE SCIENCES IN SPACE RESEARCH 2020; 24:108-115. [PMID: 31987474 PMCID: PMC6991460 DOI: 10.1016/j.lssr.2019.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 05/13/2023]
Abstract
Most of the research in understanding space radiation-induced cancer progression and risk assessment has been performed using mono-energetic single-ion beams. However, the space radiation environment consists of a wide variety of ion species with a various range of energies. Using the fast beam switching technology developed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), ion species can be switched rapidly allowing investigators to use multiple ions with different energies to simulate more closely the radiation environment found in space. Here, we exposed a lung cancer susceptible mouse model (K-rasLA-1) to three sequential ion beams: Proton (H) (120 MeV/n) 20 cGy, Helium (He) (250 MeV/n) 5.0 cGy, and Silicon (Si) (300 MeV/n) 5.0 cGy with a dose rate of 0.5 cGy/min. Using three ion beams we performed whole body irradiation with a total dose of 30 cGy in two different orders: 3B-1 (H→He→Si) and 3B-2 (Si→He→H) and used 30 cGy H single-ion beam as a reference. In this study we show that whole-body irradiation with H→He→Si increases the incidence of premalignant lesions and systemic oxidative stress in mice 100 days post-irradiation more than (Si→He→H) and H only irradiation. Additionally, we observed an increase in adenomas with atypia and adenocarcinomas in H→He→Si irradiated mice but not in (Si→He→H) or H (30 cGy) only irradiated mice. When we used the H→He→Si irradiation sequence but skipped a day before exposing the mice to Si, we did not observe the increased incidence of cancer initiation and progression. We also found that a non-toxic anti-inflammatory, anti-oxidative radioprotector (CDDO-EA) reduced H→He→Si induced oxidative stress and cancer initiation almost back to baseline. Thus, exposure to H→He→Si elicits significant changes in lung cancer initiation that can be mitigated using CDDO-EA.
Collapse
Affiliation(s)
- Krishna Luitel
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sang Bum Kim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Sevrance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Summer Barron
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James A Richardson
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Gjyshi O, Liao Z. Proton therapy for locally advanced non-small cell lung cancer. Br J Radiol 2019; 93:20190378. [PMID: 31430188 DOI: 10.1259/bjr.20190378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy is an essential component of treatment for locally advanced non-small cell lung cancer (NSCLC) but can be technically challenging because of the proximity of lung tumors to nearby critical organs or structures. The most effective strategy for reducing radiation-induced toxicity is to reduce unnecessary exposure of normal tissues by using advanced technology; examples from photon (X-ray) therapy have included three-dimensional conformal radiation therapy versus its predecessor, two-dimensional radiation therapy, and intensity-modulated photon radiation therapy versus its predecessor, three-dimensional conformal therapy. Using particle-beam therapy rather than photons offers the potential for further advantages because of the unique depth-dose characteristics of the particles, which can be exploited to allow still higher dose escalation to tumors with greater sparing of normal tissues, with the ultimate goal of improving local tumor control and survival while preserving quality of life by reducing treatment-related toxicity. However, the costs associated with particle therapy with protons are considerably higher than the current state of the art in photon technology, and evidence of clinical benefit from protons is increasingly being demanded to justify the higher financial burden on the healthcare system. Some such evidence is available from preclinical studies, from retrospective, single-institution clinical series, from analyses of national databases, and from single-arm prospective studies in addition to several ongoing randomized comparative trials. This review summarizes the rationale for and challenges of using proton therapy to treat thoracic cancers, reviews the current clinical experience, and suggests topics for future research.
Collapse
Affiliation(s)
- Olsi Gjyshi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston, Texas, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston, Texas, USA
| |
Collapse
|