1
|
Wadhwa A, Moreno-Villanueva M, Crucian B, Wu H. Synergistic interplay between radiation and microgravity in spaceflight-related immunological health risks. Immun Ageing 2024; 21:50. [PMID: 39033285 PMCID: PMC11264846 DOI: 10.1186/s12979-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Spaceflight poses a myriad of environmental stressors to astronauts´ physiology including microgravity and radiation. The individual impacts of microgravity and radiation on the immune system have been extensively investigated, though a comprehensive review on their combined effects on immune system outcomes is missing. Therefore, this review aims at understanding the synergistic, additive, and antagonistic interactions between microgravity and radiation and their impact on immune function as observed during spaceflight-analog studies such as rodent hindlimb unloading and cell culture rotating wall vessel models. These mimic some, but not all, of the physiological changes observed in astronauts during spaceflight and provide valuable information that should be considered when planning future missions. We provide guidelines for the design of further spaceflight-analog studies, incorporating influential factors such as age and sex for rodent models and standardizing the longitudinal evaluation of specific immunological alterations for both rodent and cellular models of spaceflight exposure.
Collapse
Affiliation(s)
- Anna Wadhwa
- Harvard Medical School, Boston, MA, 02115, USA.
- NASA Johnson Space Center, Houston, TX, 77058, USA.
| | | | | | - Honglu Wu
- NASA Johnson Space Center, Houston, TX, 77058, USA
| |
Collapse
|
2
|
Adamopoulos KI, Sanders LM, Costes SV. NASA GeneLab derived microarray studies of Mus musculus and Homo sapiens organisms in altered gravitational conditions. NPJ Microgravity 2024; 10:49. [PMID: 38671027 PMCID: PMC11053165 DOI: 10.1038/s41526-024-00392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
One of the greatest challenges of humanity for deep space exploration is to fully understand how altered gravitational conditions affect human physiology. It is evident that the spaceflight environment causes multiple alterations to musculoskeletal, cardiovascular, immune and central nervous systems, to name a few known effects. To better characterize these biological effects, we compare gene expression datasets from microarray studies found in NASA GeneLab, part of the NASA Open Science Data Repository. In this review, we summarize these archived results for various tissues, emphasizing key genes which are highly reproducible in different mice or human experiments. Such exhaustive mining shows the potential of NASA Open Science data to identify and validate mechanisms taking place when mammalian organisms are exposed to microgravity or other spaceflight conditions. Our comparative meta-analysis findings highlight certain degrees of overlap and reproducibility in genes identified as differentially expressed within musculoskeletal tissues in each species across a variety of altered gravity conditions. However, the level of overlap between species was found to be significantly limited, partly attributed to the limited availability of human samples.
Collapse
Affiliation(s)
- Konstantinos I Adamopoulos
- National Technical University of Athens, School of Electrical and Computer Engineering, Biomedical Engineering Laboratory, Zografou, Athens, Greece
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Lauren M Sanders
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- NASA Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Sylvain V Costes
- NASA Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
3
|
Li W, Yu Y, Zhou G, Hu G, Li B, Ma H, Yan W, Pei H. Large-scale ORF screening based on LC-MS to discover novel lncRNA-encoded peptides responding to ionizing radiation and microgravity. Comput Struct Biotechnol J 2023; 21:5201-5211. [PMID: 37928948 PMCID: PMC10624585 DOI: 10.1016/j.csbj.2023.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
In the human genome, 98% of genes can be transcribed into non-coding RNAs (ncRNAs), among which lncRNAs and their encoded peptides play important roles in regulating various aspects of cellular processes and may serve as crucial factors in modulating the biological effects induced by ionizing radiation and microgravity. Unfortunately, there are few reports in space radiation biology on lncRNA-encoded peptides below 10kD due to limitations in detection techniques. To fill this gap, we integrated a variety of methods based on genomics and peptidomics, and discovered 22 lncRNA-encoded small peptides that are sensitive to space radiation and microgravity, which have never been reported before. We concurrently validated the transmembrane helix, subcellular localization, and biological function of these small peptides using bioinformatics and molecular biology techniques. More importantly, we found that these small peptides function independently of the lncRNAs that encode them. Our findings have uncovered a previously unknown human proteome encoded by 'non-coding' genes in response to space conditions and elucidated their involvement in biological processes, providing valuable strategies for individual protection mechanisms for astronauts who carry out deep space exploration missions in space radiation environments.
Collapse
Affiliation(s)
- Wanshi Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yongduo Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guang Hu
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Center for Systems Biology, Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou 215123, China
| | - Bingyan Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hong Ma
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Wenying Yan
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Center for Systems Biology, Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou 215123, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Wang Y, Wang L, Li C, Pei Y, Liu X, Tian Y. AMP-EBiLSTM: employing novel deep learning strategies for the accurate prediction of antimicrobial peptides. Front Genet 2023; 14:1232117. [PMID: 37554402 PMCID: PMC10405519 DOI: 10.3389/fgene.2023.1232117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
Antimicrobial peptides are present ubiquitously in intra- and extra-biological environments and display considerable antibacterial and antifungal activities. Clinically, it has shown good antibacterial effect in the treatment of diabetic foot and its complications. However, the discovery and screening of antimicrobial peptides primarily rely on wet lab experiments, which are inefficient. This study endeavors to create a precise and efficient method of predicting antimicrobial peptides by incorporating novel machine learning technologies. We proposed a deep learning strategy named AMP-EBiLSTM to accurately predict them, and compared its performance with ensemble learning and baseline models. We utilized Binary Profile Feature (BPF) and Pseudo Amino Acid Composition (PSEAAC) for effective local sequence capture and amino acid information extraction, respectively, in deep learning and ensemble learning. Each model was cross-validated and externally tested independently. The results demonstrate that the Enhanced Bi-directional Long Short-Term Memory (EBiLSTM) deep learning model outperformed others with an accuracy of 92.39% and AUC value of 0.9771 on the test set. On the other hand, the ensemble learning models demonstrated cost-effectiveness in terms of training time on a T4 server equipped with 16 GB of GPU memory and 8 vCPUs, with training durations varying from 0 to 30 s. Therefore, the strategy we propose is expected to predict antimicrobial peptides more accurately in the future.
Collapse
Affiliation(s)
- Yuanda Wang
- School of Modern Post (School of Automation), Beijing University of Posts and Telecommunications, Beijing, China
| | - Liyang Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chengquan Li
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yilin Pei
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xiaoxiao Liu
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yu Tian
- Vascular Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Liu M, Lan Y, Qin Y, Gao Y, Deng Y, Li N, Zhang C, Ma H. Interaction between astrocytes and neurons in simulated space radiation-induced CNS injury. Int J Radiat Biol 2023; 99:1830-1840. [PMID: 37436484 DOI: 10.1080/09553002.2023.2232004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/26/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Astronauts exhibit neurological dysfunction during long-duration spaceflight, and the specific mechanisms may be closely related to the cumulative effects of these neurological injuries in the space radiation environment. Here, we investigated the interaction between astrocytes and neuronal cells exposed to simulated space radiation. MATERIALS AND METHODS we selected human astrocytes (U87 MG) and neuronal cells (SH-SY5Y) to establish an experimental model to explore the interaction between astrocytes and neuronal cells in the CNS under simulated space radiation environment and the role of exosomes in the interactions. RESULTS We found that γ-ray caused oxidative and inflammatory damage in human U87 MG and SH-SY5Y. The results of the conditioned medium transfer experiments showed that astrocytes exhibited a protective effect on neuronal cells, and neuronal cells influenced the activation of astrocytes in oxidative and inflammatory injury of CNS. We demonstrated that the number and size distribution of exosomes derived from U87 MG and SH-SY5Y cells were changed in response to H2O2, TNF-α or γ-ray treatment. Furthermore, we found that exosome derived from treated nerve cells influenced the cell viability and gene expression of untreated nerve cells, and the effect of exosomes was partly consistent with that of the conditioned medium. CONCLUSION Our findings demonstrated that astrocytes showed a protective effect on neuronal cells, and neuronal cells influenced the activation of astrocytes in oxidative and inflammatory damage of CNS induced by simulated space radiation. Exosomes played an essential role in the interaction between astrocytes and neuronal cells exposed to simulated space radiation.
Collapse
Affiliation(s)
- Mengjin Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yu Lan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yuhan Qin
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanan Gao
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Nuomin Li
- School of Medical Technology, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Chen Zhang
- School of Medical Technology, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
6
|
Zhao L, Zhang G, Tang A, Huang B, Mi D. Microgravity alters the expressions of DNA repair genes and their regulatory miRNAs in space-flown Caenorhabditis elegans. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:25-38. [PMID: 37087176 DOI: 10.1016/j.lssr.2023.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 05/03/2023]
Abstract
During spaceflight, multiple unique hazardous factors, particularly microgravity and space radiation, can induce different types of DNA damage, which pose a constant threat to genomic integrity and stability of living organisms. Although organisms have evolved different kinds of conserved DNA repair pathways to eliminate this DNA damage on Earth, the impact of space microgravity on the expressions of these DNA repair genes and their regulatory miRNAs has not been fully explored. In this study, we integrated all existing datasets, including both transcriptional and miRNA microarrays in wild-type (WT) Caenorhabditis elegans that were exposed to the treatments of spaceflight (SF), spaceflight control with a 1g centrifugal device (SC), and ground control (GC) in three space experiments with the periods of 4, 8 and 16.5 days. The results of principal component analysis showed the gene expression patterns for five major DNA repair pathways (i.e., non-homologous end joining (NHEJ), homologous recombination (HR), mismatch repair (MMR), nucleotide excision repair (NER), and base excision repair (BER)) were well separated and clustered between SF/GC and SC/GC treatments after three spaceflights. In the 16.5-days space experiment, we also selected the datasets of dys-1 mutant and ced-1 mutant of C. elegans, which respectively presented microgravity-insensitivity and radiosensitivity. Compared to the WT C. elegans flown in the 16.5-days spaceflight, the separation distances between SF and SC samples were significantly reduced in the dys-1 mutant, while greatly enhanced in the ced-1 mutant for five DNA repair pathways. By comparing the results of differential expression analysis in SF/GC versus SC/GC samples, we found the DNA repair genes annotated in the pathways of BER and NER were prominently down-regulated under microgravity during both the 4- and 8-days spaceflights. While, under microgravity, the genes annotated in MMR were dominatingly up-regulated during the 4-days spaceflight, and those annotated in HR were mainly up-regulated during the 8-days spaceflight. And, most of the DNA repair genes annotated in the pathways of BER, NER, MMR, and HR were up-regulated under microgravity during the 16.5-days spaceflight. Using miRNA-mRNA integrated analysis, we determined the regulatory networks of differentially expressed DNA repair genes and their regulatory miRNAs in WT C. elegans after three spaceflights. Compared to GC conditions, the differentially expressed miRNAs were analyzed under SF and SC treatments of three spaceflights, and some altered miRNAs that responded to SF and SC could regulate the expressions of corresponding DNA repair genes annotated in different DNA repair pathways. In summary, these findings indicate that microgravity can significantly alter the expression patterns of DNA repair genes and their regulatory miRNAs in space-flown C. elegans. The alterations of the expressions of DNA repair genes and the dominating DNA repair pathways under microgravity are possibly related to the spaceflight period. In addition, the key miRNAs are identified as the post-transcriptional regulators to regulate the expressions of various DNA repair genes under microgravity. These altered miRNAs that responded to microgravity can be implicated in regulating diverse DNA repair processes in space-flown C. elegans.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China.
| | - Ge Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Aiping Tang
- College of Science, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Baohang Huang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian 116026, Liaoning, China
| |
Collapse
|
7
|
Xu Y, Pei W, Hu W. A Current Overview of the Biological Effects of Combined Space Environmental Factors in Mammals. Front Cell Dev Biol 2022; 10:861006. [PMID: 35493084 PMCID: PMC9039719 DOI: 10.3389/fcell.2022.861006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 12/28/2022] Open
Abstract
Distinct from Earth’s environment, space environmental factors mainly include space radiation, microgravity, hypomagnetic field, and disrupted light/dark cycles that cause physiological changes in astronauts. Numerous studies have demonstrated that space environmental factors can lead to muscle atrophy, bone loss, carcinogenesis, immune disorders, vascular function and cognitive impairment. Most current ground-based studies focused on single environmental factor biological effects. To promote manned space exploration, a better understanding of the biological effects of the spaceflight environment is necessary. This paper summarizes the latest research progress of the combined biological effects of double or multiple space environmental factors on mammalian cells, and discusses their possible molecular mechanisms, with the hope of providing a scientific theoretical basis to develop appropriate countermeasures for astronauts.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Weiwei Pei
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
- *Correspondence: Weiwei Pei, ; Wentao Hu,
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
- *Correspondence: Weiwei Pei, ; Wentao Hu,
| |
Collapse
|
8
|
Li Y, Cheng Z, Fan H, Hao C, Yao W. Epigenetic Changes and Functions in Pneumoconiosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2523066. [PMID: 35096264 PMCID: PMC8794660 DOI: 10.1155/2022/2523066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022]
Abstract
Pneumoconiosis is one of the most common occupational diseases in the world, and specific treatment methods of pneumoconiosis are lacking at present, so it carries great social and economic burdens. Pneumoconiosis, coronavirus disease 2019, and idiopathic pulmonary fibrosis all have similar typical pathological changes-pulmonary fibrosis. Pulmonary fibrosis is a chronic lung disease characterized by excessive deposition of the extracellular matrix and remodeling of the lung tissue structure. Clarifying the pathogenesis of pneumoconiosis plays an important guiding role in its treatment. The occurrence and development of pneumoconiosis are accompanied by epigenetic factors (e.g., DNA methylation and noncoding RNA) changes, which in turn can promote or inhibit the process of pneumoconiosis. Here, we summarize epigenetic changes and functions in the several kinds of evidence classification (epidemiological investigation, in vivo, and in vitro experiments) and main types of cells (macrophages, fibroblasts, and alveolar epithelial cells) to provide some clues for finding specific therapeutic targets for pneumoconiosis and even for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yiping Li
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, Henan Province, China
| | - Zhiwei Cheng
- Department of Case Management, The Third Affiliated Hospital of Zhengzhou University, China
| | - Hui Fan
- Ultrasonography Department, The Third Affiliated Hospital of Zhengzhou University, China
| | - Changfu Hao
- Department of Child and Adolecence Health, School of Public Health, Zhengzhou University, Henan, 450001, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, Henan Province, China
| |
Collapse
|
9
|
Bisserier M, Saffran N, Brojakowska A, Sebastian A, Evans AC, Coleman MA, Walsh K, Mills PJ, Garikipati VNS, Arakelyan A, Hadri L, Goukassian DA. Emerging Role of Exosomal Long Non-coding RNAs in Spaceflight-Associated Risks in Astronauts. Front Genet 2022; 12:812188. [PMID: 35111205 PMCID: PMC8803151 DOI: 10.3389/fgene.2021.812188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
During spaceflight, astronauts are exposed to multiple unique environmental factors, particularly microgravity and ionizing radiation, that can cause a range of harmful health consequences. Over the past decades, increasing evidence demonstrates that the space environment can induce changes in gene expression and RNA processing. Long non-coding RNA (lncRNA) represent an emerging area of focus in molecular biology as they modulate chromatin structure and function, the transcription of neighboring genes, and affect RNA splicing, stability, and translation. They have been implicated in cancer development and associated with diverse cardiovascular conditions and associated risk factors. However, their role on astronauts' health after spaceflight remains poorly understood. In this perspective article, we provide new insights into the potential role of exosomal lncRNA after spaceflight. We analyzed the transcriptional profile of exosomes isolated from peripheral blood plasma of three astronauts who flew on various Shuttle missions between 1998-2001 by RNA-sequencing. Computational analysis of the transcriptome of these exosomes identified 27 differentially expressed lncRNAs with a Log2 fold change, with molecular, cellular, and clinical implications.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nathaniel Saffran
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Angela Clare Evans
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Kenneth Walsh
- School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Paul J. Mills
- Center of Excellence for Research and Training in Integrative Health, University of California, San Diego, San Diego, CA, United States
| | - Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Arsen Arakelyan
- Bioinformatics Group, The Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - David A. Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Cialdai F, Bolognini D, Vignali L, Iannotti N, Cacchione S, Magi A, Balsamo M, Vukich M, Neri G, Donati A, Monici M, Capaccioli S, Lulli M. Effect of space flight on the behavior of human retinal pigment epithelial ARPE-19 cells and evaluation of coenzyme Q10 treatment. Cell Mol Life Sci 2021; 78:7795-7812. [PMID: 34714361 PMCID: PMC11073052 DOI: 10.1007/s00018-021-03989-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Astronauts on board the International Space Station (ISS) are exposed to the damaging effects of microgravity and cosmic radiation. One of the most critical and sensitive districts of an organism is the eye, particularly the retina, and > 50% of astronauts develop a complex of alterations designated as spaceflight-associated neuro-ocular syndrome. However, the pathogenesis of this condition is not clearly understood. In the current study, we aimed to explore the cellular and molecular effects induced in the human retinal pigment ARPE-19 cell line by their transfer to and 3-day stay on board the ISS in the context of an experiment funded by the Agenzia Spaziale Italiana. Treatment of cells on board the ISS with the well-known bioenergetic, antioxidant, and antiapoptotic coenzyme Q10 was also evaluated. In the ground control experiment, the cells were exposed to the same conditions as on the ISS, with the exception of microgravity and radiation. The transfer of ARPE-19 retinal cells to the ISS and their living on board for 3 days did not affect cell viability or apoptosis but induced cytoskeleton remodeling consisting of vimentin redistribution from the cellular boundaries to the perinuclear area, underlining the collapse of the network of intermediate vimentin filaments under unloading conditions. The morphological changes endured by ARPE-19 cells grown on board the ISS were associated with changes in the transcriptomic profile related to the cellular response to the space environment and were consistent with cell dysfunction adaptations. In addition, the results obtained from ARPE-19 cells treated with coenzyme Q10 indicated its potential to increase cell resistance to damage.
Collapse
Affiliation(s)
- Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Davide Bolognini
- Department of Experimental and Clinical Medicine, Università Degli Studi Di Firenze, Firenze, Italy
| | - Leonardo Vignali
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Nicola Iannotti
- Department of Life Sciences, Università Degli Studi Di Siena, Siena, Italy
| | - Stefano Cacchione
- Department of Biology and Biotechnology "Charles Darwin", Università Di Roma "La Sapienza", Roma, Italy
| | - Alberto Magi
- Department of Information Engineering, Università Degli Studi Di Firenze, Firenze, Italy
| | | | | | | | | | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Sergio Capaccioli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, viale Morgagni 50, 50134, Firenze, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, viale Morgagni 50, 50134, Firenze, Italy.
| |
Collapse
|
11
|
Beheshti A, McDonald JT, Hada M, Takahashi A, Mason CE, Mognato M. Genomic Changes Driven by Radiation-Induced DNA Damage and Microgravity in Human Cells. Int J Mol Sci 2021; 22:ijms221910507. [PMID: 34638848 PMCID: PMC8508777 DOI: 10.3390/ijms221910507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022] Open
Abstract
The space environment consists of a complex mixture of different types of ionizing radiation and altered gravity that represents a threat to humans during space missions. In particular, individual radiation sensitivity is strictly related to the risk of space radiation carcinogenesis. Therefore, in view of future missions to the Moon and Mars, there is an urgent need to estimate as accurately as possible the individual risk from space exposure to improve the safety of space exploration. In this review, we survey the combined effects from the two main physical components of the space environment, ionizing radiation and microgravity, to alter the genetics and epigenetics of human cells, considering both real and simulated space conditions. Data collected from studies on human cells are discussed for their potential use to estimate individual radiation carcinogenesis risk from space exposure.
Collapse
Affiliation(s)
- Afshin Beheshti
- KBR, NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: or (A.B.); (M.M.)
| | - J. Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, DC 20007, USA;
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA;
- The World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maddalena Mognato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: or (A.B.); (M.M.)
| |
Collapse
|
12
|
Wang S, Zhang N, Di J, Zhao W, Shi G, Xie R, Hu B, Yang H. Analysis of the effects of magnetic levitation to simulate microgravity environment on the Arp2/3 complex pathway in macrophage. J Biol Phys 2021; 47:323-335. [PMID: 34533653 PMCID: PMC8452804 DOI: 10.1007/s10867-021-09581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022] Open
Abstract
With dwindling natural resources on earth, current and future generations will need to explore space to new planets that will require travel under no or varying gravity conditions. Hence, long-term space missions and anticipated impacts on human biology such as changes in immune function are of growing research interest. Here, we reported new findings on mechanisms of immune response to microgravity with a focus on macrophage as a cellular model. We employed a superconducting magnet to generate a simulated microgravity environment and evaluated the effects of simulated microgravity on RAW 264.7 mouse macrophage cell line in three time frames: 8, 24, and 48 h. As study endpoints, we measured cell viability, phagocytosis, and used next-generation sequencing to explore its changing mechanism. Macrophage cell viability and phagocytosis both showed a marked decrease under microgravity. The differentially expressed genes (DEG) were identified in two ways: (1) gravity-dependent DEG, compared μg samples and 1 g samples at each time point; (2) time-dependent DEG, compared time-point samples within the same gravitational field. Through transcriptome analysis and confirmed by molecular biological verification, our findings firstly suggest that microgravity might affect macrophage phagocytosis by targeting Arp2/3 complex involved cytoskeleton synthesis and causing macrophage immune dysfunction. Our findings contribute to an emerging body of scholarship on biological effects of space travel.
Collapse
Affiliation(s)
- Sufang Wang
- School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China
- Center of Special Environmental Biomechanics & Biomedical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China
| | - Nu Zhang
- School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China
- Center of Special Environmental Biomechanics & Biomedical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China
| | - Jianglei Di
- Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wenjuan Zhao
- School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China
- Center of Special Environmental Biomechanics & Biomedical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China
| | - Guolin Shi
- School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China
- Center of Special Environmental Biomechanics & Biomedical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China
| | - Ruiheng Xie
- Department of Computer and Information Science, College of Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Bohan Hu
- College of Innovation and Experiment, Yangling Demonstration Area, Northwest A&F University, 22 Xinong Road, Xianyang City, Shaanxi Province, 712100 , China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China.
- Center of Special Environmental Biomechanics & Biomedical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
13
|
May JM, Bylicky M, Chopra S, Coleman CN, Aryankalayil MJ. Long and short non-coding RNA and radiation response: a review. Transl Res 2021; 233:162-179. [PMID: 33582242 PMCID: PMC8475769 DOI: 10.1016/j.trsl.2021.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/12/2022]
Abstract
Once thought of as arising from "junk DNA," noncoding RNAs (ncRNAs) have emerged as key molecules in cellular processes and response to stress. From diseases such as cancer, coronary artery disease, and diabetes to the effects of ionizing radiation (IR), ncRNAs play important roles in disease progression and as biomarkers of damage. Noncoding RNAs regulate cellular processes by competitively binding DNA, mRNA, proteins, and other ncRNAs. Through these interactions, specific ncRNAs can modulate the radiosensitivity of cells and serve as diagnostic and prognostic biomarkers of radiation damage, whether from incidental exposure in radiotherapy or in accidental exposure scenarios. Analysis of RNA expression after radiation exposure has shown alterations not only in mRNAs, but also in ncRNAs (primarily miRNA, circRNA, and lncRNA), implying an important role in cellular stress response. Due to their abundance and stability in serum and other biofluids, ncRNAs also have great potential as minimally invasive biomarkers with advantages over current biodosimetry methods. Several studies have examined changes in ncRNA expression profiles in response to IR and other forms of oxidative stress. Furthermore, some studies have reported modulation of radiosensitivity by altering expression levels of these ncRNAs. This review discusses the roles of ncRNAs in the radiation response and evaluates prior research on ncRNAs as biomarkers of radiation damage. Future directions and applications of ncRNAs in radiation research are introduced, including the potential for a clinical ncRNA assay for assessing radiation damage and for the therapeutic use of RNA interference (RNAi).
Collapse
Affiliation(s)
- Jared M May
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michelle Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
14
|
Radioprotective Effects of Allium jesdianum Extract on Reduction of Pancrease Damages Following γ-Radiation through Down-regulation of Apoptotic Genes, Antioxidants Regulation, and Suppression of Inflammatory Markers. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.103997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Allium jesdianum (AJ), as a plant in onion category, has antioxidant features. Moreover, γ-ray potentially generates oxidative stress in living organisms. Objectives: In this study, the probable therapeutic effects of AJ on destruction of pancreas tissue following γ-ray were evaluated. Methods: Sixty-four mature NMRI mice (8 animals in each group) were assigned to eight groups as follows: (1) Control; (2) γ-ray (dose rate of 1 Gy/min); (3-5) AJ extract (500, 1,000, and 2,000 mg/kg); and (6-8) AJ + γ-ray. AJ extract was prepared, and all administrations were applied orally for 70 consecutive days. Antioxidant parameters (nitrite oxide, peroxidation, and ferric reducing ability of plasma (FRAP)), the expression of apoptotic genes (p53 and Bax, by quantitative real-time PCR), and blood concentrations of glucose and insulin were determined biochemically and genetically. Inflammatory cytokines were evaluated by ELISA technique. The number and diameter of Langerhan islets were also studied histologically. Results: In this study, γ-ray increased the levels of all parameters significantly (except for FRAP, insulin, and morphometric parameters, which were reduced) in the γ-ray group compared to the control group (P < 0.05). In the γ-ray and AJ + γ-ray groups, all factors were reduced significantly (except for FRAP, insulin, and morphometric parameters, which were increased) compared to the γ-ray group (P < 0.05). Conclusions: Administration of AJ extract can decrease the damage and radiosensitization in pancreatic cells induced by γ-ray.
Collapse
|
15
|
Willey JS, Britten RA, Blaber E, Tahimic CG, Chancellor J, Mortreux M, Sanford LD, Kubik AJ, Delp MD, Mao XW. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:129-179. [PMID: 33902391 PMCID: PMC8274610 DOI: 10.1080/26896583.2021.1885283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.g., rodent or cell culture studies) that investigate the biology of and risks associated with spaceflight hazards will focus on an individual hazard in isolation. However, astronauts will face these challenges simultaneously Combined hazard studies are necessary for understanding the risks astronauts face as they travel outside of LEO, and are also critical for countermeasure development. The focus of this review is to describe biologic and functional outcomes from ground-based analogue models for microgravity and radiation, specifically highlighting the combined effects of radiation and reduced weight-bearing from rodent ground-based tail suspension via hind limb unloading (HLU) and partial weight-bearing (PWB) models, although in vitro and spaceflight results are discussed as appropriate. The review focuses on the skeletal, ocular, central nervous system (CNS), cardiovascular, and stem cells responses.
Collapse
Affiliation(s)
| | | | - Elizabeth Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | | | | | - Marie Mortreux
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center
| | - Larry D. Sanford
- Department of Radiation Oncology, Eastern Virginia Medical School
| | - Angela J. Kubik
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | - Michael D. Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University
| |
Collapse
|
16
|
Nikzamir A, Rezaei-Tavirani M, Razzaghi Z, Rostami-Nejad M, Hamdieh M, Arjmand B. Gene Activation as a Cell Protection Mechanism Against Gamma-Ray radiation. J Lasers Med Sci 2020; 11:S80-S84. [PMID: 33995974 DOI: 10.34172/jlms.2020.s13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: Gamma radiation is accompanied by prominent biological effects and damages. Cell proliferation and tumorigenesis are highlighted as the main resulted effects of gamma radiation on cultured cells. This study aims to assess the dysregulated mode of gene function after gamma radiation in human Jurkat cells. Methods: Six gene expression profiles from Gene Expression Omnibus (GEO) were analyzed by GEO2R to find the significant differentially expressed genes (DEGs) via gamma radiation. Action map analysis was applied to screen the query DEGs. Results: Among 108 study genes, 20 critical DEGs including AURKA, AURKB, BORA, CCNB1, CCNB2, CCNF, CDC20, CDCA8, CENPA, CENPE, CENPF, KIF18A, KIF20A, KIF23, BUB1, DLGAP5, ECT2, PLK1, SGO2, and TPX2 were introduced as down-regulated genes by the gamma ray. Conclusion: Activators of the introduced critical genes may be the cell protector against gamma radiation.
Collapse
Affiliation(s)
- Abdolrahim Nikzamir
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hamdieh
- Department of Psychosomatic, Taleghani Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Ge C, Su F, Fu H, Wang Y, Tian B, Liu B, Zhu J, Ding Y, Zheng X. RNA Profiling Reveals a Common Mechanism of Histone Gene Downregulation and Complementary Effects for Radioprotectants in Response to Ionizing Radiation. Dose Response 2020; 18:1559325820968433. [PMID: 33117095 PMCID: PMC7573744 DOI: 10.1177/1559325820968433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
High-dose ionizing radiation (IR) alters the expression levels of non-coding RNAs (ncRNAs). However, the roles of ncRNAs and mRNAs in mediating radiation protection by radioprotectants remain unknown. Microarrays were used to determine microRNA (miRNA), long ncRNA (lncRNA), and mRNA expression profiles in the bone marrow of irradiated mice pretreated with amifostine, CBLB502, and nilestriol. Differentially expressed mRNAs were functionally annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Some histone cluster genes were validated by real-time PCR, and the effects of radioprotectant combinations were monitored by survival analysis. We found that these radioprotectants increased the induction of lncRNAs and mRNAs. miRNA, lncRNA, and mRNA expression patterns were similar with amifostine and CBLB502, but not nilestriol. The radioprotectants exhibited mostly opposite effects against IR-induced miRNAs, lncRNAs, and mRNAs while inducing a common histone gene downregulation following IR, mainly via nucleosome assembly and related signaling pathways. Notably, the effects of nilestriol significantly complemented those of amisfostine or CBLB502; low-dose drug combinations resulted in better radioprotective effects in pretreated mice. Thus, we present histone gene downregulation by radioprotectants, together with the biological functions of miRNA, lncRNA, and mRNA, to explain the mechanism underlying radioprotection.
Collapse
Affiliation(s)
- Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fei Su
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hanjiang Fu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuan Wang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Baolei Tian
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bin Liu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jie Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yong Ding
- 5th Medical Center, The General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Xiaofei Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
18
|
Yan Y, Zhang K, Zhou G, Hu W. MicroRNAs Responding to Space Radiation. Int J Mol Sci 2020; 21:ijms21186603. [PMID: 32917057 PMCID: PMC7555309 DOI: 10.3390/ijms21186603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
High-energy and high-atom-number (HZE) space radiation poses an inevitable potential threat to astronauts on deep space exploration missions. Compared with low-LET radiation, high-energy and high-LET radiation in space is more efficient in inducing clustered DNA damage with more serious biological consequences, such as carcinogenesis, central nervous system injury and degenerative disease. Space radiation also causes epigenetic changes in addition to inducing damage at the DNA level. Considering the important roles of microRNAs in the regulation of biological responses of radiation, we systematically reviewed both expression profiling and functional studies relating to microRNAs responding to space radiation as well as to space compound environment. Finally, the directions for improvement of the research related to microRNAs responding to space radiation are proposed. A better understanding of the functions and underlying mechanisms of the microRNAs responding to space radiation is of significance to both space radiation risk assessment and therapy development for lesions caused by space radiation.
Collapse
Affiliation(s)
| | | | - Guangming Zhou
- Correspondence: (G.Z.); (W.H.); Tel.: +86-512-65884829 (G.Z.); +86-512-65882451 (W.H.)
| | - Wentao Hu
- Correspondence: (G.Z.); (W.H.); Tel.: +86-512-65884829 (G.Z.); +86-512-65882451 (W.H.)
| |
Collapse
|