1
|
Saigusa Y, Little MP, Azimzadeh O, Hamada N. Biological effects of high-LET irradiation on the circulatory system. Int J Radiat Biol 2025; 101:429-452. [PMID: 40063776 PMCID: PMC12011529 DOI: 10.1080/09553002.2025.2470947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
PURPOSE High-linear energy transfer (LET) radiation is generally thought to be more biologically effective in various tissues than low-LET radiation, but whether this also applies to the circulatory system remains unclear. We therefore reviewed biological studies about the effects of high-LET radiation on the circulatory system. CONCLUSIONS We identified 76 relevant papers (24 in vitro, 2 ex vivo, 51 in vivo, one overlapping). In vitro studies used human, bovine, porcine or chick vascular endothelial cells or cardiomyocytes, while ex vivo studies used porcine hearts. In vivo studies used mice, rats, rabbits, dogs or pigs. The types of high-LET radiation used were neutrons, α particles, heavy ions and negative pions. Most studies used a single dose, although some investigated fractionation effects. Twenty-one studies estimated the relative biological effectiveness (RBE) that ranged from 0.1 to 130, depending on radiation quality and endpoint. A meta-analysis of 6 in vitro and 8 in vivo studies (selected based on the feasibility of estimating the RBE and its uncertainty) suggested an RBE of 6.69 (95% confidence intervals (CI): 2.51, 10.88) for in vitro studies and 1.14 (95% CI: 0.91, 1.37) for in vivo studies. The meta-analysis of these 14 studies yielded an RBE of 2.88 (95% CI: 1.52, 4.25). This suggests that high-LET radiation is only slightly more effective than low-LET radiation, although substantial inter-study heterogeneity complicates interpretation. Therapeutic effects have also been reported in disease models. Further research is needed to better understand the effects on the cardiovascular system and to improve radiation protection.
Collapse
Affiliation(s)
- Yumi Saigusa
- Dosimetry Facility Management Section, Department of Nuclear Emergency Preparedness, Institute for Radiological Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-0024, Japan
| | - Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA
- Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba 270-1194, Japan
| |
Collapse
|
2
|
Tavakol DN, Nash TR, Kim Y, Graney PL, Liberman M, Fleischer S, Lock RI, O'Donnell A, Andrews L, Ning D, Yeager K, Harken A, Deoli N, Amundson SA, Garty G, Leong KW, Brenner DJ, Vunjak‐Novakovic G. Modeling the Effects of Protracted Cosmic Radiation in a Human Organ-on-Chip Platform. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401415. [PMID: 38965824 PMCID: PMC11558103 DOI: 10.1002/advs.202401415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/18/2024] [Indexed: 07/06/2024]
Abstract
Galactic cosmic radiation (GCR) is one of the most serious risks posed to astronauts during missions to the Moon and Mars. Experimental models capable of recapitulating human physiology are critical to understanding the effects of radiation on human organs and developing radioprotective measures against space travel exposures. The effects of systemic radiation are studied using a multi-organ-on-a-chip (multi-OoC) platform containing engineered tissue models of human bone marrow (site of hematopoiesis and acute radiation damage), cardiac muscle (site of chronic radiation damage) and liver (site of metabolism), linked by vascular circulation with an endothelial barrier separating individual tissue chambers from the vascular perfusate. Following protracted neutron radiation, the most damaging radiation component in deep space, a greater deviation of tissue function is observed as compared to the same cumulative dose delivered acutely. Further, by characterizing engineered bone marrow (eBM)-derived immune cells in circulation, 58 unique genes specific to the effects of protracted neutron dosing are identified, as compared to acutely irradiated and healthy tissues. It propose that this bioengineered platform allows studies of human responses to extended radiation exposure in an "astronaut-on-a-chip" model that can inform measures for mitigating cosmic radiation injury.
Collapse
Affiliation(s)
| | - Trevor R. Nash
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Youngbin Kim
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Pamela L. Graney
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Martin Liberman
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Sharon Fleischer
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Roberta I. Lock
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Aaron O'Donnell
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Leah Andrews
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Derek Ning
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Keith Yeager
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Andrew Harken
- Center for Radiological ResearchColumbia UniversityNew YorkNY10032USA
| | - Naresh Deoli
- Center for Radiological ResearchColumbia UniversityNew YorkNY10032USA
| | - Sally A. Amundson
- Center for Radiological ResearchColumbia UniversityNew YorkNY10032USA
| | - Guy Garty
- Center for Radiological ResearchColumbia UniversityNew YorkNY10032USA
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - David J. Brenner
- Center for Radiological ResearchColumbia UniversityNew YorkNY10032USA
| | - Gordana Vunjak‐Novakovic
- Department of Biomedical EngineeringDepartment of Medicine, and College of Dental MedicineColumbia UniversityNew YorkNY10032USA
| |
Collapse
|
3
|
Han H, Jia H, Wang YF, Song JP. Cardiovascular adaptations and pathological changes induced by spaceflight: from cellular mechanisms to organ-level impacts. Mil Med Res 2024; 11:68. [PMID: 39334239 PMCID: PMC11429428 DOI: 10.1186/s40779-024-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
The advancement in extraterrestrial exploration has highlighted the crucial need for studying how the human cardiovascular system adapts to space conditions. Human development occurs under the influence of gravity, shielded from space radiation by Earth's magnetic field, and within an environment characterized by 24-hour day-night cycles resulting from Earth's rotation, thus deviating from these conditions necessitates adaptive responses for survival. With upcoming manned lunar and Martian missions approaching rapidly, it is essential to understand the impact of various stressors induced by outer-space environments on cardiovascular health. This comprehensive review integrates insights from both actual space missions and simulated experiments on Earth, to analyze how microgravity, space radiation, and disrupted circadian affect cardiovascular well-being. Prolonged exposure to microgravity induces myocardial atrophy and endothelial dysfunction, which may be exacerbated by space radiation. Mitochondrial dysfunction and oxidative stress emerge as key underlying mechanisms along with disturbances in ion channel perturbations, cytoskeletal damage, and myofibril changes. Disruptions in circadian rhythms caused by factors such as microgravity, light exposure, and irregular work schedules, could further exacerbate cardiovascular issues. However, current research tends to predominantly focus on disruptions in the core clock gene, overlooking the multifactorial nature of circadian rhythm disturbances in space. Future space missions should prioritize targeted prevention strategies and early detection methods for identifying cardiovascular risks, to preserve astronaut health and ensure mission success.
Collapse
Affiliation(s)
- Han Han
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yi-Fan Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jiang-Ping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
4
|
Jullienne A, Malo M, Shaw K, Zheng Y, Johnston JD, Kontulainen S, Chilibeck PD, Dadachova E, Obenaus A, Sarty GE. Musculoskeletal perturbations of deep space radiation: Assessment using a Gateway MRI. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:74-83. [PMID: 39067994 DOI: 10.1016/j.lssr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 07/30/2024]
Abstract
Human space exploration expansion from Low-Earth Orbit to deep space is accelerating the need to monitor and address the known health concerns related to deep space radiation. The human musculoskeletal system is vulnerable to these risks (alongside microgravity) and its health reflects the well-being of other body systems. Multiparametric magnetic resonance imaging (MRI) is an important approach for assessing temporal physiological changes in the musculoskeletal system. We propose that ultra-low-field MRI provides an optimal low Size Weight and Power (SwaP) solution for non-invasively monitoring muscle and bone changes on the planned Gateway lunar space station. Our proposed ultra-low-field Gateway MRI meets low SWaP design specifications mandated by limited room in the lunar space station. This review summarizes the current state of our knowledge on musculoskeletal consequences of spaceflight, especially with respect to radiation, and then elaborates how MRI can be used to monitor the deleterious effects of space travel and the efficacy of putative countermeasures. We argue that an ultra-low-field MRI in cis-lunar space on the Gateway can provide valuable research and medical insights into the effects of deep space radiation exposure on astronauts. Such an MRI would also allow the development of imaging protocols that would facilitate Earth-bound teams to monitor space personnel musculoskeletal changes during future interplanetary spaceflight. It will especially have a role in monitoring countermeasures, such as the use of melanin, in protecting space explorers.
Collapse
Affiliation(s)
- Amandine Jullienne
- School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617, United States
| | - Mackenzie Malo
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Keely Shaw
- College of Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, SK S7N 5B2, Canada
| | - Yuwen Zheng
- College of Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, SK S7N 5B2, Canada
| | - James D Johnston
- College of Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, SK S7N 5A9, Canada
| | - Saija Kontulainen
- College of Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, SK S7N 5B2, Canada
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, SK S7N 5B2, Canada
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Andre Obenaus
- School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617, United States; School of Medicine, University of California Riverside, United States
| | - Gordon E Sarty
- Space MRI Lab, University of Saskatchewan, QuanTA Centre, 9 Campus Dr, Saskatoon, SK S7N 5A5, Canada.
| |
Collapse
|
5
|
Cucinotta FA. Non-targeted effects and space radiation risks for astronauts on multiple International Space Station and lunar missions. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:166-175. [PMID: 38245342 DOI: 10.1016/j.lssr.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 01/22/2024]
Abstract
Future space travel to the earth's moon or the planet Mars will likely lead to the selection of experienced International Space Station (ISS) or lunar crew persons for subsequent lunar or mars missions. Major concerns for space travel are galactic cosmic ray (GCR) risks of cancer and circulatory diseases. However large uncertainties in risk prediction occur due to the quantitative and qualitative differences in heavy ion microscopic energy deposition leading to differences in biological effects compared to low LET radiation. In addition, there are sparse radiobiology data and absence of epidemiology data for heavy ions and other high LET radiation. Non-targeted effects (NTEs) are found in radiobiology studies to increase the biological effectiveness of high LET radiation at low dose for cancer related endpoints. In this paper the most recent version of the NASA Space Cancer Risk model (NSCR-2022) is used to predict mission risks while considering NTEs in solid cancer risk predictions. I discuss predictions of space radiation risks of cancer and circulatory disease mortality for US Whites and US Asian-Pacific Islander (API) populations for 6-month ISS, 80-day lunar missions, and combined ISS-lunar mission. Model predictions suggest NTE increase cancer risks by about ∼2.3 fold over a model that ignores NTEs. US API are predicted to have a lower cancer risks of about 30% compared to US Whites. Cancer risks are slightly less than additive for multiple missions, which is due to the decease of risk with age of exposure and the increased competition with background risks as radiation risks increase. The inclusion of circulatory risks increases mortality estimates about 25% and 37% for females and males, respectively in the model ignoring NTEs, and 20% and 30% when NTEs are assumed to modify solid cancer risk. The predictions made here for combined ISS and lunar missions suggest risks are within risk limit recommendations by the National Council on Radiation Protection and Measurements (NCRP) for such missions.
Collapse
Affiliation(s)
- Francis A Cucinotta
- Univerity of Nevada Las Vegas, Las Vegas, NV, 89154, United States of America.
| |
Collapse
|
6
|
Nemec-Bakk AS, Sridharan V, Seawright JW, Nelson GA, Cao M, Singh P, Cheema AK, Singh B, Li Y, Koturbash I, Miousse IR, Ewing LE, Skinner CM, Landes RD, Lowery JD, Mao XW, Singh SP, Boerma M. Effects of proton and oxygen ion irradiation on cardiovascular function and structure in a rabbit model. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:78-87. [PMID: 37087182 PMCID: PMC10122719 DOI: 10.1016/j.lssr.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE Astronauts on missions beyond low Earth orbit will be exposed to galactic cosmic radiation, and there is concern about potential adverse cardiovascular effects. Most of the research to identify cardiovascular risk of space radiation has been performed in rodent models. To aid in the translation of research results to humans, the current study identified long-term effects of high-energy charged particle irradiation on cardiovascular function and structure in a larger non-rodent animal model. MATERIALS AND METHODS At the age of 12 months, male New Zealand white rabbits were exposed to whole-body protons (250 MeV) or oxygen ions (16O, 600 MeV/n) at a dose of 0 or 0.5 Gy and were followed for 12 months after irradiation. Ultrasonography was used to measure in vivo cardiac function and blood flow parameters at 10- and 12-months post-irradiation. At 12 months after irradiation, blood cell counts and blood chemistry values were assessed, and cardiac tissue and aorta were collected for histological as well as molecular and biochemical analyses. Plasma was used for metabolomic analysis and to quantify common markers of cardiac injury. RESULTS A small but significant decrease in the percentage of circulating lymphocytes and an increase in neutrophil percentage was seen 12 months after 0.5 Gy protons, while 16O exposure resulted in an increase in monocyte percentage. Markers of cardiac injury, cardiac troponin I (cTnI) and N-Terminal pro-B-type Natriuretic Peptide were modestly increased in the proton group, and cTnI was also increased after 16O. On the other hand, metabolomics on plasma at 12 months revealed no changes. Both types of irradiation demonstrated alterations in cardiac mitochondrial morphology and an increase in left ventricular protein levels of inflammatory cell marker CD68. However, changes in cardiac function were only mild. CONCLUSION Low dose charged particle irradiation caused mild long-term changes in inflammatory markers, cardiac function, and structure in the rabbit heart, in line with previous studies in mouse and rat models.
Collapse
Affiliation(s)
- Ashley S Nemec-Bakk
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Gregory A Nelson
- Departments of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Maohua Cao
- College of Dentistry, Texas A&M, Dallas, TX, USA
| | | | - Amrita K Cheema
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Bhaldev Singh
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Yaoxiang Li
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Igor Koturbash
- Department of Environmental Health Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Isabelle R Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laura E Ewing
- Natural State Laboratories and Natural State Genomics, North Little Rock, AR, USA
| | - Charles M Skinner
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John D Lowery
- Department of Laboratory Animal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Xiao-Wen Mao
- Departments of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Sharda P Singh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
7
|
Nemec-Bakk AS, Sridharan V, Desai P, Landes RD, Hart B, Allen AR, Boerma M. Effects of Simulated 5-Ion Galactic Cosmic Radiation on Function and Structure of the Mouse Heart. Life (Basel) 2023; 13:life13030795. [PMID: 36983950 PMCID: PMC10057791 DOI: 10.3390/life13030795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Missions into deep space will expose astronauts to the harsh space environment, and the degenerative tissue effects of space radiation are largely unknown. To assess the risks, in this study, male BALB/c mice were exposed to 500 mGy 5-ion simulated GCR (GCRsim) at the NASA Space Radiation Laboratory. In addition, male and female CD1 mice were exposed to GCRsim and administered a diet containing Transforming Growth Factor-beta (TGF-β)RI kinase (ALK5) inhibitor IPW-5371 as a potential countermeasure. An ultrasound was performed to investigate cardiac function. Cardiac tissue was collected to determine collagen deposition, the density of the capillary network, and the expression of the immune mediator toll-like receptor 4 (TLR4) and immune cell markers CD2, CD4, and CD45. In male BALB/c mice, the only significant effects of GCRsim were an increase in the CD2 and TLR4 markers. In male CD1 mice, GCRsim caused a significant increase in total collagens and a decrease in the expression of TLR4, both of which were mitigated by the TGF-β inhibitor diet. In female CD1 mice, GCRsim caused an increase in the number of capillaries per tissue area in the ventricles, which may be explained by the decrease in the left ventricular mass. However, this increase was not mitigated by TGF-β inhibition. In both male and female CD1 mice, the combination of GCRsim and TGF-β inhibition caused changes in left ventricular immune cell markers that were not seen with GCRsim alone. These data suggest that GCRsim results in minor changes to cardiac tissue in both an inbred and outbred mouse strain. While there were few GCRsim effects to be mitigated, results from the combination of GCRsim and the TGF-β inhibitor do point to a role for TGF-β in maintaining markers of immune cells in the heart after exposure to GCR.
Collapse
Affiliation(s)
- Ashley S. Nemec-Bakk
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence:
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Parth Desai
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Reid D. Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Barry Hart
- Innovation Pathways, LLC of Palo Alto, Palo Alto, CA 94301, USA
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|