1
|
Duan Y, Liu Z, Wang Q, Zhang J, Liu J, Zhang Z, Li C. Targeting MYC: Multidimensional regulation and therapeutic strategies in oncology. Genes Dis 2025; 12:101435. [PMID: 40290126 PMCID: PMC12022651 DOI: 10.1016/j.gendis.2024.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 04/30/2025] Open
Abstract
MYC is dysregulated in approximately 70% of human cancers, strongly suggesting its essential function in cancer. MYC regulates many biological processes, such as cell cycle, metabolism, cellular senescence, apoptosis, angiogenesis, and immune escape. MYC plays a central role in carcinogenesis and is a key regulator of tumor development and drug resistance. Therefore, MYC is one of the most alluring therapeutic targets for developing cancer drugs. Although the search for direct inhibitors of MYC is challenging, MYC cannot simply be assumed to be undruggable. Targeting the MYC-MAX complex has been an effective method for directly targeting MYC. Alternatively, indirect targeting of MYC represents a more pragmatic therapeutic approach, mainly including inhibition of the transcriptional or translational processes of MYC, destabilization of the MYC protein, and blocking genes that are synthetically lethal with MYC overexpression. In this review, we delineate the multifaceted roles of MYC in cancer progression, highlighting a spectrum of therapeutic strategies and inhibitors for cancer therapy that target MYC, either directly or indirectly.
Collapse
Affiliation(s)
- Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jiaxin Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Ziyi Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Melia E, Parsons JL. The Potential for Targeting G 2/M Cell Cycle Checkpoint Kinases in Enhancing the Efficacy of Radiotherapy. Cancers (Basel) 2024; 16:3016. [PMID: 39272874 PMCID: PMC11394570 DOI: 10.3390/cancers16173016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Radiotherapy is one of the main cancer treatments being used for ~50% of all cancer patients. Conventional radiotherapy typically utilises X-rays (photons); however, there is increasing use of particle beam therapy (PBT), such as protons and carbon ions. This is because PBT elicits significant benefits through more precise dose delivery to the cancer than X-rays, but also due to the increases in linear energy transfer (LET) that lead to more enhanced biological effectiveness. Despite the radiotherapy type, the introduction of DNA damage ultimately drives the therapeutic response through stimulating cancer cell death. To combat this, cells harbour cell cycle checkpoints that enables time for efficient DNA damage repair. Interestingly, cancer cells frequently have mutations in key genes such as TP53 and ATM that drive the G1/S checkpoint, whereas the G2/M checkpoint driven through ATR, Chk1 and Wee1 remains intact. Therefore, targeting the G2/M checkpoint through specific inhibitors is considered an important strategy for enhancing the efficacy of radiotherapy. In this review, we focus on inhibitors of Chk1 and Wee1 kinases and present the current biological evidence supporting their utility as radiosensitisers with different radiotherapy modalities, as well as clinical trials that have and are investigating their potential for cancer patient benefit.
Collapse
Affiliation(s)
- Emma Melia
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jason L Parsons
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Zhuang W, Liu L, Sun B, Bai H, Wang Z, Duan J, Wan R, Ma Z, Zhong J, Wang J. Evaluation of first-line and salvage therapies for unresectable malignant mesothelioma: A systematic review and network meta-analysis. Crit Rev Oncol Hematol 2024; 198:104372. [PMID: 38677356 DOI: 10.1016/j.critrevonc.2024.104372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Randomized controlled trials (RCTs) of systemic therapies for unresectable malignant mesothelioma have reported conflicting results. It is crucial and urgent to find optimal treatment options for this malignancy, which currently has a poor prognosis. METHODS Databases PubMed, EMBASE, Cochrane Library, ClinicalTrials.gov, and major international conferences were searched until February 29, 2024. The main outcomes of interest were overall survival (OS), progression-free survival (PFS), overall response rate (ORR), and grade ≥3 treatment-related adverse events (TRAEs). RESULTS We analyzed 16 RCTs with a total of 5018 patients. Among first-line therapies, nivolumab and ipilimumab significantly increased OS and resulted in fewer grade ≥3 TRAEs. Bevacizumab plus chemotherapy significantly increased PFS. Among salvage therapies, ramucirumab and chemotherapy was associated with the best OS and PFS, but resulted in more grade ≥3 TRAEs. Subgroup analysis by histologic types suggested that in first-line settings, bevacizumab and chemotherapy increase OS the most for epithelioid type, while the nivolumab plus ipilimumab treatment increases OS the most for non-epithelioid type. In salvage therapies, ramucirumab and chemotherapy increase OS for both epithelioid and non-epithelioid types. CONCLUSION Nivolumab plus ipilimumab was associated with the best OS among first-line treatments. Ramucirumab and chemotherapy was associated with the best clinical outcomes in salvage settings. Treatment for malignant mesothelioma should be tailored based on different clinicopathological characteristics.
Collapse
Affiliation(s)
- Wei Zhuang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lihui Liu
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Boyang Sun
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hua Bai
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhijie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianchun Duan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Rui Wan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zixiao Ma
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jia Zhong
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Jie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
4
|
Duabil AJN, Cooper CR, Aldujaily E, Halford SER, Hirschberg S, Katugampola SD, Jones GDD. Investigations of the novel checkpoint kinase 1 inhibitor SRA737 in non-small cell lung cancer and colorectal cancer cells of differing tumour protein 53 gene status. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1210-1226. [PMID: 38214010 PMCID: PMC10776598 DOI: 10.37349/etat.2023.00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 01/13/2024] Open
Abstract
Aim In response to DNA damage the serine/threonine-specific protein kinase checkpoint kinase 1 (CHK1) is activated allowing cells to enter S phase (S) and G2 phase (G2) cell-cycle arrest. CHK1 inhibitors are expected to prevent cells from entering such arrest, thereby enhancing DNA damage-induced cytotoxicity. In contrast, normal cells with intact ataxia-telangiectasia mutated (ATM), CHK2 and tumour suppressor protein 53 (P53) signalling are still able to enter cell-cycle arrest using the functioning G1/S checkpoint, thereby being rescued from enhanced cytotoxicity. The main objective of this work is to investigate the in vitro effects of the novel CHK1 inhibitor SRA737 on pairs of non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) cell lines, all with genetic aberrations rendering them susceptible to replication stress but of differing tumour protein 53 (TP53) gene status, focusing on DNA damage induction and the subsequent effects on cell proliferation and viability. Methods NSCLC cell lines H23 [TP53 mutant (MUT)] and A549 [TP53 wild-type (WT)] and CRC cell lines HT29 (TP53 MUT) and HCT116 (TP53 WT) were incubated with differing micromolar concentrations of SRA737 for 24 h and then analysed using alkaline comet and phosphorylated H2A.X variant histone (γH2AX)-foci assays to assess mostly DNA single strand break and double strand break damage, respectively. Cell-counting/trypan blue staining was also performed to assess cell proliferation/viability. Results Clear concentration-dependent increases in comet formation and γH2AX-foci/cell were noted for the TP53 MUT cells with no or lower increases being noted in the corresponding TP53 WT cells. Also, greater anti-proliferative and cell killing effects were noted in the TP53 MUT cells than in the TP53 WT cells. Conclusions This study's data suggests that P53 status/functioning is a key factor in determining the sensitivity of NSCLC and CRC cancer cells towards CHK1 inhibition, even in circumstances conducive to high replicative stress.
Collapse
Affiliation(s)
- Ali JN Duabil
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, LE1 7RH Leics, UK
- Department of Surgery, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Christian R Cooper
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, LE1 7RH Leics, UK
- MRC Oxford Institute for Radiation Oncology, University of Oxford, OX3 7DQ Oxon, UK
| | - Esraa Aldujaily
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, LE1 7RH Leics, UK
- Department of Pathology & Forensic Medicine, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Sarah ER Halford
- Cancer Research UK Centre for Drug Development, London E20 1JQ, UK
| | | | | | - George DD Jones
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, LE1 7RH Leics, UK
| |
Collapse
|
5
|
Wang R, Sun Y, Li C, Xue Y, Ba X. Targeting the DNA Damage Response for Cancer Therapy. Int J Mol Sci 2023; 24:15907. [PMID: 37958890 PMCID: PMC10648182 DOI: 10.3390/ijms242115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Over the course of long-term evolution, cells have developed intricate defense mechanisms in response to DNA damage; these mechanisms play a pivotal role in maintaining genomic stability. Defects in the DNA damage response pathways can give rise to various diseases, including cancer. The DNA damage response (DDR) system is instrumental in safeguarding genomic stability. The accumulation of DNA damage and the weakening of DDR function both promote the initiation and progression of tumors. Simultaneously, they offer opportunities and targets for cancer therapeutics. This article primarily elucidates the DNA damage repair pathways and the progress made in targeting key proteins within these pathways for cancer treatment. Among them, poly (ADP-ribose) polymerase 1 (PARP1) plays a crucial role in DDR, and inhibitors targeting PARP1 have garnered extensive attention in anticancer research. By delving into the realms of DNA damage and repair, we aspire to explore more precise and effective strategies for cancer therapy and to seek novel avenues for intervention.
Collapse
Affiliation(s)
- Ruoxi Wang
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (R.W.); (Y.S.)
| | - Yating Sun
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (R.W.); (Y.S.)
| | - Chunshuang Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China; (C.L.); (Y.X.)
| | - Yaoyao Xue
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China; (C.L.); (Y.X.)
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun 130024, China; (C.L.); (Y.X.)
| |
Collapse
|
6
|
Aria H, Rezaei M. Immunogenic cell death inducer peptides: A new approach for cancer therapy, current status and future perspectives. Biomed Pharmacother 2023; 161:114503. [PMID: 36921539 DOI: 10.1016/j.biopha.2023.114503] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Immunogenic Cell Death (ICD) is a type of cell death that kills tumor cells by stimulating the adaptive immune response against other tumor cells. ICD depends on the endoplasmic reticulum (ER) stress and the secretion of Damage-Associated Molecular Patterns (DAMP) by the dying tumor cell. DAMPs recruit innate immune cells such as Dendritic Cells (DC), triggering a cancer-specific immune response such as cytotoxic T lymphocytes (CTLs) to eliminate remaining cancer cells. ICD is accompanied by several hallmarks in dying cells, such as surface translocation of ER chaperones, calreticulin (CALR), and extracellular secretion of DAMPs such as high mobility group protein B1 (HMGB1) and adenosine triphosphate (ATP). Therapeutic peptides can kill bacteria and tumor cells thus affecting the immune system. They have high specificity and affinity for their targets, small size, appropriate cell membrane penetration, short half-life, and simple production processes. Peptides are interesting agents for immunomodulation since they may overcome the limitations of other therapeutics. Thus, the development of peptides affecting the TME and active antitumoral immunity has been actively pursued. On the other hand, several peptides have been recently identified to trigger ICD and anti-cancer responses. In the present review, we review previous studies on peptide-induced ICD, their mechanism, their targets, and markers. They include anti-microbial peptides (AMPs), cationic or mitochondrial targeting, checkpoint inhibitors, antiapoptotic inhibitors, and "don't eat me" inhibitor peptides. Also, peptides will be investigated potentially inducing ICD that is divided into ER stressors, ATPase inhibitors, and anti-microbial peptides.
Collapse
Affiliation(s)
- Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Paajanen J, Bueno R, De Rienzo A. The Rocky Road from Preclinical Findings to Successful Targeted Therapy in Pleural Mesothelioma. Int J Mol Sci 2022; 23:13422. [PMID: 36362209 PMCID: PMC9658134 DOI: 10.3390/ijms232113422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2023] Open
Abstract
Pleural mesothelioma (PM) is a rare and aggressive disease that arises from the mesothelial cells lining the pleural cavity. Approximately 80% of PM patients have a history of asbestos exposure. The long latency period of 20-40 years from the time of asbestos exposure to diagnosis, suggests that multiple somatic genetic alterations are required for the tumorigenesis of PM. The genomic landscape of PM has been characterized by inter- and intratumor heterogeneity associated with the impairment of tumor suppressor genes such as CDKN2A, NF2, and BAP1. Current systemic therapies have shown only limited efficacy, and none is approved for patients with relapsed PM. Advances in understanding of the molecular landscape of PM has facilitated several biomarker-driven clinical trials but so far, no predictive biomarkers for targeted therapies are in clinical use. Recent advances in the PM genetics have provided optimism for successful molecular strategies in the future. Here, we summarize the molecular mechanism underlying PM pathogenesis and review potential therapeutic targets.
Collapse
Affiliation(s)
| | - Raphael Bueno
- The Thoracic Surgery Oncology Laboratory and The International Mesothelioma Program, Division of Thoracic Surgery and the Lung Center, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | |
Collapse
|
8
|
Durvalumab with platinum-pemetrexed for unresectable pleural mesothelioma: survival, genomic and immunologic analyses from the phase 2 PrE0505 trial. Nat Med 2021; 27:1910-1920. [PMID: 34750557 PMCID: PMC8604731 DOI: 10.1038/s41591-021-01541-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Mesothelioma is a rare and fatal cancer with limited therapeutic options until the recent approval of combination immune checkpoint blockade. Here we report the results of the phase 2 PrE0505 trial (NCT02899195) of the anti-PD-L1 antibody durvalumab plus platinum-pemetrexed chemotherapy for 55 patients with previously untreated, unresectable pleural mesothelioma. The primary endpoint was overall survival compared to historical control with cisplatin and pemetrexed chemotherapy; secondary and exploratory endpoints included safety, progression-free survival and biomarkers of response. The combination of durvalumab with chemotherapy met the pre-specified primary endpoint, reaching a median survival of 20.4 months versus 12.1 months with historical control. Treatment-emergent adverse events were consistent with known side effects of chemotherapy, and all adverse events due to immunotherapy were grade 2 or lower. Integrated genomic and immune cell repertoire analyses revealed that a higher immunogenic mutation burden coupled with a more diverse T cell repertoire was linked to favorable clinical outcome. Structural genome-wide analyses showed a higher degree of genomic instability in responding tumors of epithelioid histology. Patients with germline alterations in cancer predisposing genes, especially those involved in DNA repair, were more likely to achieve long-term survival. Our findings indicate that concurrent durvalumab with platinum-based chemotherapy has promising clinical activity and that responses are driven by the complex genomic background of malignant pleural mesothelioma. In a phase 2 trial, the combination of chemotherapy with durvalumab, an anti-PD-L1 antibody, exhibited promising clinical activity in patients with previously untreated, unresectable mesothelioma, with additional analyses providing insights into genomic and immunologic features potentially associated with response.
Collapse
|
9
|
Opitz I, Scherpereel A, Berghmans T, Psallidas I, Glatzer M, Rigau D, Astoul P, Bölükbas S, Boyd J, Coolen J, De Bondt C, De Ruysscher D, Durieux V, Faivre-Finn C, Fennell DA, Galateau-Salle F, Greillier L, Hoda MA, Klepetko W, Lacourt A, McElnay P, Maskell NA, Mutti L, Pairon JC, Van Schil P, van Meerbeeck JP, Waller D, Weder W, Putora PM, Cardillo G. ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma. Eur J Cardiothorac Surg 2021; 58:1-24. [PMID: 32448904 DOI: 10.1093/ejcts/ezaa158] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The European Respiratory Society (ERS)/European Society of Thoracic Surgeons (ESTS)/European Association for Cardio-Thoracic Surgery (EACTS)/European Society for Radiotherapy and Oncology (ESTRO) task force brought together experts to update previous 2009 ERS/ESTS guidelines on management of malignant pleural mesothelioma (MPM), a rare cancer with globally poor outcome, after a systematic review of the 2009-2018 literature. The evidence was appraised using the Grading of Recommendations, Assessment, Development and Evaluation approach. The evidence syntheses were discussed and recommendations formulated by this multidisciplinary group of experts. Diagnosis: pleural biopsies remain the gold standard to confirm the diagnosis, usually obtained by thoracoscopy but occasionally via image-guided percutaneous needle biopsy in cases of pleural symphysis or poor performance status. Pathology: standard staining procedures are insufficient in ∼10% of cases, justifying the use of specific markers, including BAP-1 and CDKN2A (p16) for the separation of atypical mesothelial proliferation from MPM. Staging: in the absence of a uniform, robust and validated staging system, we advise using the most recent 2016 8th TNM (tumour, node, metastasis) classification, with an algorithm for pretherapeutic assessment. Monitoring: patient's performance status, histological subtype and tumour volume are the main prognostic factors of clinical importance in routine MPM management. Other potential parameters should be recorded at baseline and reported in clinical trials. Treatment: (chemo)therapy has limited efficacy in MPM patients and only selected patients are candidates for radical surgery. New promising targeted therapies, immunotherapies and strategies have been reviewed. Because of limited data on the best combination treatment, we emphasize that patients who are considered candidates for a multimodal approach, including radical surgery, should be treated as part of clinical trials in MPM-dedicated centres.
Collapse
Affiliation(s)
- Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Arnaud Scherpereel
- Department of Pulmonary and Thoracic Oncology, French National Network of Clinical Expert Centers for Malignant Pleural Mesothelioma Management (Mesoclin), Lille, France.,Department of Pulmonary and Thoracic Oncology, University Lille, CHU Lille, INSERM U1189, OncoThAI, Lille, France
| | | | - Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Markus Glatzer
- Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - David Rigau
- Iberoamerican Cochrane Center, Barcelona, Spain
| | - Philippe Astoul
- Department of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology, Hôpital Nord, Aix-Marseille University, Marseille, France
| | - Servet Bölükbas
- Department of Thoracic Surgery, Evang, Kliniken Essen-Mitte, Essen, Germany
| | | | - Johan Coolen
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Charlotte De Bondt
- Department of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center+, GROW Research Institute, Maastricht, Netherlands
| | - Valerie Durieux
- Bibliothèque des Sciences de la Santé, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Corinne Faivre-Finn
- The Christie NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Dean A Fennell
- Leicester Cancer Research Centre, University of Leicester and University of Leicester Hospitals NHS Trust, Leicester, UK
| | - Francoise Galateau-Salle
- Department of Biopathology, National Reference Center for Pleural Malignant Mesothelioma and Rare Peritoneal Tumors MESOPATH, Centre Leon Berard, Lyon, France
| | - Laurent Greillier
- Department of Multidisciplinary Oncology and Therapeutic Innovations, Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Inserm UMR1068, CNRS UMR7258, Marseille, France
| | - Mir Ali Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Aude Lacourt
- University Bordeaux, INSERM, Bordeaux Population Health Research Center, Team EPICENE, UMR 1219, Bordeaux, France
| | | | - Nick A Maskell
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luciano Mutti
- Teaching Hospital Vercelli/Gruppo Italiano, Vercelli, Italy
| | - Jean-Claude Pairon
- INSERM U955, GEIC2O, Université Paris-Est Créteil, Service de Pathologies professionnelles et de l'Environnement, Institut Santé -Travail Paris-Est, CHI Créteil, Créteil, France
| | - Paul Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Jan P van Meerbeeck
- Department of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - David Waller
- Barts Thorax Centre, St Bartholomew's Hospital, London, UK
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Paul Martin Putora
- Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Department of Radiation Oncology, University of Bern, Bern, Switzerland
| | - Giuseppe Cardillo
- Unit of Thoracic Surgery, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| |
Collapse
|
10
|
Meta-Analysis of Survival and Development of a Prognostic Nomogram for Malignant Pleural Mesothelioma Treated with Systemic Chemotherapy. Cancers (Basel) 2021; 13:cancers13092186. [PMID: 34063225 PMCID: PMC8124134 DOI: 10.3390/cancers13092186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022] Open
Abstract
(1) Purpose: Malignant pleural mesothelioma (MPM) is a rare cancer with an aggressive course. For patients who are medically inoperable or surgically unresectable, multi-agent systemic chemotherapy remains an accepted standard-of-care. The purpose of this meta-analysis is to provide baseline summative survival estimates as well as evaluate the influence of prognostic variables to provide comparative estimates for future trial designs. (2) Methods: Using PRISMA guidelines, a systematic review and meta-analysis was performed of MPM studies published from 2002-2019 obtained from the Medline database evaluating systemic therapy combinations for locally advanced or metastatic disease. Weighted random effects models were used to calculate survival estimates. The influence of proportions of known prognostic factors on overall survival (OS) were evaluated in the creation of a prognostic nomogram to estimate survival. The performance of this model was evaluated against data generated from one positive phase II study and two positive randomized trials. (3) Results: Twenty-four phase II studies and five phase III trials met the eligibility criteria; 2534 patients were treated on the included clinical studies. Ten trials included a platinum-pemetrexed-based treatment regimen, resulting in a pooled estimate of progression-free survival (PFS) of 6.7 months (95% CI: 6.2-7.2 months) and OS of 14.2 months (95% CI: 12.7-15.9 months). Fifteen experimental chemotherapy regimens have been tested in phase II or III studies, with a pooled median survival estimate of 13.5 months (95% CI: 12.6-14.6 months). Meta-regression analysis was used to estimate OS with platinum-pemetrexed using a variety of features, such as pathology (biphasic vs. epithelioid), disease extent (locally advanced vs. metastatic), ECOG performance status, age, and gender. The nomogram-predicted estimates and corresponding 95% CIs performed well when applied to recent randomized studies. (4) Conclusions: Given the rarity of MPM and the aggressive nature of the disease, innovative clinical trial designs with significantly greater randomization to experimental regimens can be performed using robust survival estimates from prior studies. This study provides baseline comparative values and also allows for accounting for differing proportions of known prognostic variables.
Collapse
|
11
|
Xu D, Yang H, Schmid RA, Peng RW. Therapeutic Landscape of Malignant Pleural Mesothelioma: Collateral Vulnerabilities and Evolutionary Dependencies in the Spotlight. Front Oncol 2020; 10:579464. [PMID: 33072611 PMCID: PMC7538645 DOI: 10.3389/fonc.2020.579464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is the epitome of a recalcitrant cancer driven by pharmacologically intractable tumor suppressor proteins. A significant but largely unmet challenge in the field is the translation of genetic information on alterations in tumor suppressor genes (TSGs) into effective cancer-specific therapies. The notion that abnormal tumor genome subverts physiological cellular processes, which creates collateral vulnerabilities contextually related to specific genetic alterations, offers a promising strategy to target TSG-driven MPM. Moreover, emerging evidence has increasingly appreciated the therapeutic potential of genetic and pharmacological dependencies acquired en route to cancer development and drug resistance. Here, we review the most recent progress on vulnerabilities co-selected by functional loss of major TSGs and dependencies evolving out of cancer development and resistance to cisplatin based chemotherapy, the only first-line regimen approved by the US Food and Drug Administration (FDA). Finally, we highlight CRISPR-based functional genomics that has emerged as a powerful platform for cancer drug discovery in MPM. The repertoire of MPM-specific “Achilles heel” rises on the horizon, which holds the promise to elucidate therapeutic landscape and may promote precision oncology for MPM.
Collapse
Affiliation(s)
- Duo Xu
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Haitang Yang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph A Schmid
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Scherpereel A, Opitz I, Berghmans T, Psallidas I, Glatzer M, Rigau D, Astoul P, Bölükbas S, Boyd J, Coolen J, De Bondt C, De Ruysscher D, Durieux V, Faivre-Finn C, Fennell D, Galateau-Salle F, Greillier L, Hoda MA, Klepetko W, Lacourt A, McElnay P, Maskell NA, Mutti L, Pairon JC, Van Schil P, van Meerbeeck JP, Waller D, Weder W, Cardillo G, Putora PM. ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma. Eur Respir J 2020; 55:13993003.00953-2019. [PMID: 32451346 DOI: 10.1183/13993003.00953-2019] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/17/2019] [Indexed: 12/23/2022]
Abstract
The European Respiratory Society (ERS)/European Society of Thoracic Surgeons (ESTS)/European Association for Cardio-Thoracic Surgery (EACTS)/European Society for Radiotherapy and Oncology (ESTRO) task force brought together experts to update previous 2009 ERS/ESTS guidelines on management of malignant pleural mesothelioma (MPM), a rare cancer with globally poor outcome, after a systematic review of the 2009-2018 literature. The evidence was appraised using the Grading of Recommendations, Assessment, Development and Evaluation approach. The evidence syntheses were discussed and recommendations formulated by this multidisciplinary group of experts. Diagnosis: pleural biopsies remain the gold standard to confirm the diagnosis, usually obtained by thoracoscopy but occasionally via image-guided percutaneous needle biopsy in cases of pleural symphysis or poor performance status. Pathology: standard staining procedures are insufficient in ∼10% of cases, justifying the use of specific markers, including BAP-1 and CDKN2A (p16) for the separation of atypical mesothelial proliferation from MPM. Staging: in the absence of a uniform, robust and validated staging system, we advise using the most recent 2016 8th TNM (tumour, node, metastasis) classification, with an algorithm for pre-therapeutic assessment. Monitoring: patient's performance status, histological subtype and tumour volume are the main prognostic factors of clinical importance in routine MPM management. Other potential parameters should be recorded at baseline and reported in clinical trials. Treatment: (chemo)therapy has limited efficacy in MPM patients and only selected patients are candidates for radical surgery. New promising targeted therapies, immunotherapies and strategies have been reviewed. Because of limited data on the best combination treatment, we emphasise that patients who are considered candidates for a multimodal approach, including radical surgery, should be treated as part of clinical trials in MPM-dedicated centres.
Collapse
Affiliation(s)
- Arnaud Scherpereel
- Pulmonary and Thoracic Oncology, Univ. Lille, CHU Lille, INSERM U1189, OncoThAI, Lille, France .,French National Network of Clinical Expert Centers for Malignant Pleural Mesothelioma Management (Mesoclin), Lille, France
| | - Isabelle Opitz
- Dept of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | - Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Markus Glatzer
- Dept of Radiation Oncology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - David Rigau
- Iberoamerican Cochrane Center, Barcelona, Spain
| | - Philippe Astoul
- Dept of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology, Hôpital Nord, Aix-Marseille University, Marseille, France
| | - Servet Bölükbas
- Dept of Thoracic Surgery, Evang, Kliniken Essen-Mitte, Essen, Germany
| | | | - Johan Coolen
- Dept of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Charlotte De Bondt
- Dept of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Dirk De Ruysscher
- Dept of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center+, GROW Research Institute, Maastricht, The Netherlands
| | - Valerie Durieux
- Bibliothèque des Sciences de la Santé, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Corinne Faivre-Finn
- The Christie NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Dean Fennell
- Leicester Cancer Research Centre, University of Leicester and University of Leicester Hospitals NHS Trust, Leicester, UK
| | - Francoise Galateau-Salle
- National Reference Center for Pleural Malignant Mesothelioma and Rare Peritoneal Tumors MESOPATH, Dept of Biopathology, Centre Leon Berard, Lyon, France
| | - Laurent Greillier
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Inserm UMR1068, CNRS UMR7258, Dept of Multidisciplinary Oncology and Therapeutic Innovations, Marseille, France
| | - Mir Ali Hoda
- Dept of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Dept of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Aude Lacourt
- Univ. Bordeaux, INSERM, Bordeaux Population Health Research Center, team EPICENE, UMR 1219, Bordeaux, France
| | | | - Nick A Maskell
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luciano Mutti
- Teaching Hosp. Vercelli/Gruppo Italiano Mesotelioma, Italy
| | - Jean-Claude Pairon
- INSERM U955, Equipe 4, Université Paris-Est Créteil, and Service de Pathologies professionnelles et de l'Environnement, Institut Santé-Travail Paris-Est, CHI Créteil, Créteil, France
| | - Paul Van Schil
- Dept Thoracic and Vascular Surgery, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Jan P van Meerbeeck
- Dept of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - David Waller
- Barts Thorax Centre, St Bartholomew's Hospital, London, UK
| | - Walter Weder
- Dept of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Giuseppe Cardillo
- Unit of Thoracic Surgery, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - Paul Martin Putora
- Dept of Radiation Oncology, Kantonsspital St Gallen, St Gallen, Switzerland.,Dept of Radiation Oncology, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Aubets E, Noé V, Ciudad CJ. Targeting replication stress response using polypurine reverse hoogsteen hairpins directed against WEE1 and CHK1 genes in human cancer cells. Biochem Pharmacol 2020; 175:113911. [PMID: 32173365 DOI: 10.1016/j.bcp.2020.113911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022]
Abstract
In response to DNA damage, cell cycle checkpoints produce cell cycle arrest to repair and maintain genomic integrity. Due to the high rates of replication and genetic abnormalities, cancer cells are dependent on replication stress response (RSR) and inhibitors of this pathway are being studied as an anticancer approach. In this direction, we investigated the inhibition of CHK1 and WEE1, key components of RSR, using Polypurine Reverse Hoogsteen hairpins (PPRHs) as gene silencing tool. PPRHs designed against WEE1 or CHK1 reduced the viability of different cancer cell lines and showed an increase of apoptosis in HeLa cells. The effect of the PPRHs on cell viability were dose- and time-dependent in HeLa cells. Both the levels of mRNA and protein for each gene were decreased after treatment with the PPRHs. When analyzing the levels of the two CHK1 mRNA splicing variants, CHK1 and CHK1-S, there was a proportional decrease of the two forms, thus maintaining the same expression ratio. PPRHs targeting WEE1 and CHK1 also proved to disrupt cell cycle after 15 h of treatment. Moreover, PPRHs showed a synergy effect when combined with DNA damaging agents, such as methotrexate or 5-Fluorouracil, widely used in clinical practice. This work validates in vitro the usage of PPRHs as a silencing tool against the RSR genes WEE1 and CHK1 and corroborates the potential of inhibiting these targets as a single agent therapy or in combination with other chemotherapy agents in cancer research.
Collapse
Affiliation(s)
- Eva Aubets
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain.
| |
Collapse
|
14
|
Studies of lncRNAs in DNA double strand break repair: what is new? Oncotarget 2017; 8:102690-102704. [PMID: 29254281 PMCID: PMC5731991 DOI: 10.18632/oncotarget.22090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/24/2017] [Indexed: 01/06/2023] Open
Abstract
The ‘junk DNA’ that has haunted human genetics for a long time now turns out to hold enormous hidden treasures. As species had their genomes and transcriptomes sequenced, there are an overwhelming number of lncRNA transcripts being reported, however, less than 100 of them have been functionally characterized. DNA damage is recognized and quickly repaired by the cell, with increased expression of numerous genes involved in DNA repair. Most of the time the studies have focused only on proteins involved in these signaling pathways. However, recent studies have implied that lncRNAs can be broadly induced by DNA damage and regulate DNA repair processes by various mechanisms. In this paper, we focus on recent advances in the identification and functional characterization of novel lncRNAs participating in DNA double strand break repair.
Collapse
|
15
|
Qiu Z, Oleinick NL, Zhang J. ATR/CHK1 inhibitors and cancer therapy. Radiother Oncol 2017; 126:450-464. [PMID: 29054375 DOI: 10.1016/j.radonc.2017.09.043] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 02/06/2023]
Abstract
The cell cycle checkpoint proteins ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR) and its major downstream effector checkpoint kinase 1 (CHK1) prevent the entry of cells with damaged or incompletely replicated DNA into mitosis when the cells are challenged by DNA damaging agents, such as radiation therapy (RT) or chemotherapeutic drugs, that are the major modalities to treat cancer. This regulation is particularly evident in cells with a defective G1 checkpoint, a common feature of cancer cells, due to p53 mutations. In addition, ATR and/or CHK1 suppress replication stress (RS) by inhibiting excess origin firing, particularly in cells with activated oncogenes. Those functions of ATR/CHK1 make them ideal therapeutic targets. ATR/CHK1 inhibitors have been developed and are currently used either as single agents or paired with radiotherapy or a variety of genotoxic chemotherapies in preclinical and clinical studies. Here, we review the status of the development of ATR and CHK1 inhibitors. We also discuss the potential mechanisms by which ATR and CHK1 inhibition induces cell killing in the presence or absence of exogenous DNA damaging agents, such as RT and chemotherapeutic agents. Lastly, we discuss synthetic lethality interactions between the inhibition of ATR/CHK1 and defects in other DNA damage response (DDR) pathways/genes.
Collapse
Affiliation(s)
- Zhaojun Qiu
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - Nancy L Oleinick
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, USA
| | - Junran Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, USA.
| |
Collapse
|
16
|
Sakakibara K, Sato T, Kufe DW, VonHoff DD, Kawabe T. CBP501 induces immunogenic tumor cell death and CD8 T cell infiltration into tumors in combination with platinum, and increases the efficacy of immune checkpoint inhibitors against tumors in mice. Oncotarget 2017; 8:78277-78288. [PMID: 29108228 PMCID: PMC5663279 DOI: 10.18632/oncotarget.20968] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/26/2017] [Indexed: 12/22/2022] Open
Abstract
CBP501, a calmodulin-binding peptide, is an anti-cancer drug candidate and functions as an enhancer of platinum uptake into cancer cells. Here we show that CBP501 promotes immunogenic cell death (ICD) in combination with platinum agents. CBP501 enhanced a clinically relevant low dose of cisplatin (CDDP) in vitro as evidenced by upregulation of ICD markers, including cell surface calreticulin exposure and release of high-mobility group protein box-1. Synergistic induction of ICD by CDDP plus CBP501 as compared to CDDP alone was confirmed in the well-established vaccination assay. Furthermore, cotreatment of CDDP plus CBP501 significantly reduced the tumor growth and upregulated the percentage of tumor infiltrating CD8+ T cell in vivo. Importantly, the antitumor effect of CDDP plus CBP501 was significantly reduced by anti-CD8 antibody treatment. Based on this novel effect of CBP501, we analyzed the combination treatment with immune checkpoint inhibitors in vivo. Mice treated with CBP501 in combination with CDDP and anti-PD-1 or anti-PD-L1 showed an additive antitumor effect. These results support the conclusion that CBP501 enhances CDDP-induced ICD in vitro and in vivo. The findings also support the further clinical development of the CBP501 for enhancing the antitumor activity of immune checkpoint inhibitors in combination with CDDP.
Collapse
Affiliation(s)
| | | | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel D VonHoff
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | | |
Collapse
|
17
|
Mine N, Yamamoto S, Saito N, Sato T, Sakakibara K, Kufe DW, VonHoff DD, Kawabe T. CBP501 suppresses macrophage induced cancer stem cell like features and metastases. Oncotarget 2017; 8:64015-64031. [PMID: 28969049 PMCID: PMC5609981 DOI: 10.18632/oncotarget.19292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023] Open
Abstract
CBP501 is an anti-cancer drug candidate which has been shown to increase cis-diamminedichloro-platinum (II) (CDDP) uptake into cancer cell through calmodulin (CaM) inhibition. However, the effects of CBP501 on the cells in the tumor microenvironment have not been addressed. Here, we investigated new aspects of the potential anti-tumor mechanism of action of CBP501 by examining its effects on the macrophages. Macrophages contribute to cancer-related inflammation and sequential production of cytokines such as IL-6 and TNF-α which cause various biological processes that promote tumor initiation, growth and metastasis (1). These processes include the epithelial to mesenchymal transition (EMT) and cancer stem cell (CSC) formation, which are well-known, key events for metastasis. The present work demonstrates that CBP501 suppresses lipopolysaccharide (LPS)-induced production of IL-6, IL-10 and TNF-α by macrophages. CBP501 also suppressed formation of the tumor spheroids by culturing with conditioned medium from the LPS-stimulated macrophage cell line RAW264.7. Moreover, CBP501 suppressed expression of ABCG2, a marker for CSCs, by inhibiting the interaction between cancer cells expressing VCAM-1 and macrophages expressing VLA-4. Consistently with these results, CBP501 in vivo suppressed metastases of a tumor cell line, 4T1, one which is insensitive to combination treatment of CBP501 and CDDP in vitro. Taken together, these results offer potential new, unanticipated advantages of CBP501 treatment in anti-tumor therapy through a mechanism that entails the suppression of interactions between macrophages and cancer cells with suppression of sequential CSC-like cell formation in the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel D VonHoff
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | | |
Collapse
|
18
|
Beebe-Dimmer JL, Fryzek JP, Yee CL, Dalvi TB, Garabrant DH, Schwartz AG, Gadgeel S. Mesothelioma in the United States: a Surveillance, Epidemiology, and End Results (SEER)-Medicare investigation of treatment patterns and overall survival. Clin Epidemiol 2016; 8:743-750. [PMID: 27822122 PMCID: PMC5087771 DOI: 10.2147/clep.s105396] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Mesothelioma is a rare malignancy typically associated with exposure to asbestos and poor survival. The purpose of this investigation was to describe mesothelioma patient characteristics, treatment patterns, and overall survival (OS) utilizing the National Cancer Institute's Surveillance, Epidemiology, and End Results-Medicare database. MATERIALS AND METHODS Patients in this study were diagnosed with malignant mesothelioma of the pleura or peritoneum between January 1, 2005 and December 31, 2009 with follow-up for survival through December 31, 2010. We examined both patient and tumor characteristics at time of diagnosis and subsequent treatment patterns (surgery, radiation, and chemotherapy). Among patients treated with chemotherapy, we determined chemotherapy regimen and OS by line of therapy. RESULTS Of the 1,625 patients considered eligible for this investigation, the median age at diagnosis was 78 years. Nearly a third of patients (30%) had surgery as part of their treatment and 45% were given chemotherapy. The median OS was 8 months (range 1-69 months). Among chemotherapy patients, the most commonly (67%) prescribed regimen for first-line therapy was cisplatin or carboplatin (Ca/Ci) combined with pemetrexed (Pe). Among those prescribed Ca/Ci + Pe as first-line therapy, retreatment with Ca/Ci + Pe (28%) or treatment with gemcitabine (30%) were the most common second-line therapies. Median OS for those receiving first-line chemotherapy was 7 months, and among those receiving second-line therapy median OS was extended an additional 5 months. CONCLUSION Irrespective of surgical resection, mesothelioma patients receiving some form of chemotherapy survived longer than patients who did not, with an additional survival benefit among those patients receiving multimodal treatment.
Collapse
Affiliation(s)
- Jennifer L Beebe-Dimmer
- Department of Oncology, Wayne State University School of Medicine; Barbara Ann Karmanos Cancer Institute, Detroit
| | | | - Cecilia L Yee
- Department of Oncology, Wayne State University School of Medicine; Barbara Ann Karmanos Cancer Institute, Detroit
| | | | | | - Ann G Schwartz
- Department of Oncology, Wayne State University School of Medicine; Barbara Ann Karmanos Cancer Institute, Detroit
| | - Shirish Gadgeel
- Department of Oncology, Wayne State University School of Medicine; Barbara Ann Karmanos Cancer Institute, Detroit
| |
Collapse
|
19
|
Hylebos M, Van Camp G, van Meerbeeck JP, Op de Beeck K. The Genetic Landscape of Malignant Pleural Mesothelioma: Results from Massively Parallel Sequencing. J Thorac Oncol 2016; 11:1615-26. [PMID: 27282309 DOI: 10.1016/j.jtho.2016.05.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/27/2016] [Accepted: 05/22/2016] [Indexed: 12/18/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare yet aggressive tumor that is causally associated with-mostly professional-asbestos exposure. Given the long latency between exposure and disease, and because asbestos is still being used, MPM will remain a global health issue for decades to come. Notwithstanding the increasing incidence of MPM and the fact that patients with MPM face a poor prognosis, currently available treatment options are limited. To enable the development of novel targeted therapies, identification of the genetic alterations underlying MPM will be crucial. The first studies reporting on the genomic background of MPM identified recurrent somatic mutations in a number of tumor suppressor genes (i.e., cyclin-dependent kinase inhibitor 2A gene [CDKN2A], neurofibromin 2 (merlin) gene [NF2], and BRCA1 associated protein 1 gene [BAP1]). More recently, massively parallel sequencing strategies have been used and have provided a more genome-wide view on the genetic landscape of MPM. This review summarizes their results, describing alterations that cluster mainly in four pathways: the tumor protein p53/DNA repair, cell cycle, mitogen-activated protein kinase, and phosphoinisitide 3-kinase (PI3K)/AKT pathways. As these pathways are important during tumor development, they provide interesting candidates for targeting with novel drugs.
Collapse
Affiliation(s)
- Marieke Hylebos
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Center for Oncological Research, University of Antwerp, Antwerp, Belgium.
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Jan P van Meerbeeck
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium; Thoracic Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
20
|
Cheng S, Xu Y, Shi Z, Lin Y, Hoang CD, Zhang X. Overexpression of micro ribonucleic acid-591 inhibits cell proliferation and invasion of malignant pleural mesothelioma cells. Thorac Cancer 2016; 7:340-7. [PMID: 27148420 PMCID: PMC4846623 DOI: 10.1111/1759-7714.12336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/21/2015] [Indexed: 11/28/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is an aggressive cancer refractory to current therapies. Reduced expression of micro ribonucleic acid (miR)‐591 in a range of cancer types has suggested it is a potent tumor suppressor, and overexpression has been shown to inhibit tumor cell growth. The role of miR‐591 in MPM is largely unknown. Methods miR‐591 was over‐expressed in vitro using micro RNA mimics in three MPM cell lines (H513, H2052, H2373), and effects on tumor cell growth, proliferation, invasion, and target gene expression were assessed. Results miR‐591 mimic was introduced into MPM cell lines to overexpress this microRNA. The cellular growth, proliferation, and invasive capability was significantly inhibited after overexpression of miR‐591. Growth inhibition caused by miR‐591 correlated with upregulation of p21 and Bax. Reduced invasive capability correlated with downregulation of matrix metalloproteinase‐2 and transforming growth factor‐β1. Conclusion miR‐591 is a potent tumor suppressor in MPM. Overexpression of miR‐591 may represent a novel therapeutic approach for MPM.
Collapse
Affiliation(s)
- Shizhao Cheng
- Tianjin Medical University Tianjin China; Department of Thoracic Surgery Tianjin Chest Hospital Tianjin China
| | - Yue Xu
- Division of Thoracic Surgery Department of Cardiothoracic Surgery Stanford University School of Medicine Stanford California USA
| | - Zhenliang Shi
- Department of Thoracic Surgery Tianjin Chest Hospital Tianjin China
| | - Yongbin Lin
- State Key Laboratory of Oncology in Southern China Department of Thoracic Surgery Sun Yat-Sen University Cancer Center Guangzhou China
| | - Chuong D Hoang
- Division of Thoracic Surgery Department of Cardiothoracic Surgery Stanford University School of Medicine Stanford California USA
| | - Xun Zhang
- Department of Thoracic Surgery Tianjin Chest Hospital Tianjin China
| |
Collapse
|
21
|
Manic G, Obrist F, Sistigu A, Vitale I. Trial Watch: Targeting ATM-CHK2 and ATR-CHK1 pathways for anticancer therapy. Mol Cell Oncol 2015; 2:e1012976. [PMID: 27308506 PMCID: PMC4905354 DOI: 10.1080/23723556.2015.1012976] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/25/2015] [Accepted: 01/26/2015] [Indexed: 02/08/2023]
Abstract
The ataxia telangiectasia mutated serine/threonine kinase (ATM)/checkpoint kinase 2 (CHEK2, best known as CHK2) and the ATM and Rad3-related serine/threonine kinase (ATR)/CHEK1 (best known as CHK1) cascades are the 2 major signaling pathways driving the DNA damage response (DDR), a network of processes crucial for the preservation of genomic stability that act as a barrier against tumorigenesis and tumor progression. Mutations and/or deletions of ATM and/or CHK2 are frequently found in tumors and predispose to cancer development. In contrast, the ATR-CHK1 pathway is often upregulated in neoplasms and is believed to promote tumor growth, although some evidence indicates that ATR and CHK1 may also behave as haploinsufficient oncosuppressors, at least in a specific genetic background. Inactivation of the ATM-CHK2 and ATR-CHK1 pathways efficiently sensitizes malignant cells to radiotherapy and chemotherapy. Moreover, ATR and CHK1 inhibitors selectively kill tumor cells that present high levels of replication stress, have a deficiency in p53 (or other DDR players), or upregulate the ATR-CHK1 module. Despite promising preclinical results, the clinical activity of ATM, ATR, CHK1, and CHK2 inhibitors, alone or in combination with other therapeutics, has not yet been fully demonstrated. In this Trial Watch, we give an overview of the roles of the ATM-CHK2 and ATR-CHK1 pathways in cancer initiation and progression, and summarize the results of clinical studies aimed at assessing the safety and therapeutic profile of regimens based on inhibitors of ATR and CHK1, the only 2 classes of compounds that have so far entered clinics.
Collapse
Affiliation(s)
| | - Florine Obrist
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | | | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- Department of Biology, University of Rome “TorVergata”; Rome, Italy
| |
Collapse
|
22
|
Stahel R, Weder W, Felley-Bosco E, Petrausch U, Curioni-Fontecedro A, Schmitt-Opitz I, Peters S. Searching for targets for the systemic therapy of mesothelioma. Ann Oncol 2015; 26:1649-60. [DOI: 10.1093/annonc/mdv101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/12/2015] [Indexed: 12/19/2022] Open
|
23
|
The clinicopathological characteristics with long-term outcomes in malignant mesothelioma. Med Oncol 2014; 31:232. [DOI: 10.1007/s12032-014-0232-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
|