1
|
Khan F, Elsori D, Verma M, Pandey S, Obaidur Rab S, Siddiqui S, Alabdallah NM, Saeed M, Pandey P. Unraveling the intricate relationship between lipid metabolism and oncogenic signaling pathways. Front Cell Dev Biol 2024; 12:1399065. [PMID: 38933330 PMCID: PMC11199418 DOI: 10.3389/fcell.2024.1399065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Lipids, the primary constituents of the cell membrane, play essential roles in nearly all cellular functions, such as cell-cell recognition, signaling transduction, and energy provision. Lipid metabolism is necessary for the maintenance of life since it regulates the balance between the processes of synthesis and breakdown. Increasing evidence suggests that cancer cells exhibit abnormal lipid metabolism, significantly affecting their malignant characteristics, including self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. Prominent oncogenic signaling pathways that modulate metabolic gene expression and elevate metabolic enzyme activity include phosphoinositide 3-kinase (PI3K)/AKT, MAPK, NF-kB, Wnt, Notch, and Hippo pathway. Conversely, when metabolic processes are not regulated, they can lead to malfunctions in cellular signal transduction pathways. This, in turn, enables uncontrolled cancer cell growth by providing the necessary energy, building blocks, and redox potentials. Therefore, targeting lipid metabolism-associated oncogenic signaling pathways could be an effective therapeutic approach to decrease cancer incidence and promote survival. This review sheds light on the interactions between lipid reprogramming and signaling pathways in cancer. Exploring lipid metabolism as a target could provide a promising approach for creating anticancer treatments by identifying metabolic inhibitors. Additionally, we have also provided an overview of the drugs targeting lipid metabolism in cancer in this review.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, University of Hail, Haʼil, Saudi Arabia
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Haʼil, Saudi Arabia
| | - Pratibha Pandey
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
2
|
Rosell R, Jantus-Lewintre E, Cao P, Cai X, Xing B, Ito M, Gomez-Vazquez JL, Marco-Jordán M, Calabuig-Fariñas S, Cardona AF, Codony-Servat J, Gonzalez J, València-Clua K, Aguilar A, Pedraz-Valdunciel C, Dantes Z, Jain A, Chandan S, Molina-Vila MA, Arrieta O, Ferrero M, Camps C, González-Cao M. KRAS-mutant non-small cell lung cancer (NSCLC) therapy based on tepotinib and omeprazole combination. Cell Commun Signal 2024; 22:324. [PMID: 38867255 PMCID: PMC11167791 DOI: 10.1186/s12964-024-01667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND KRAS-mutant non-small cell lung cancer (NSCLC) shows a relatively low response rate to chemotherapy, immunotherapy and KRAS-G12C selective inhibitors, leading to short median progression-free survival, and overall survival. The MET receptor tyrosine kinase (c-MET), the cognate receptor of hepatocyte growth factor (HGF), was reported to be overexpressed in KRAS-mutant lung cancer cells leading to tumor-growth in anchorage-independent conditions. METHODS Cell viability assay and synergy analysis were carried out in native, sotorasib and trametinib-resistant KRAS-mutant NSCLC cell lines. Colony formation assays and Western blot analysis were also performed. RNA isolation from tumors of KRAS-mutant NSCLC patients was performed and KRAS and MET mRNA expression was determined by real-time RT-qPCR. In vivo studies were conducted in NSCLC (NCI-H358) cell-derived tumor xenograft model. RESULTS Our research has shown promising activity of omeprazole, a V-ATPase-driven proton pump inhibitor with potential anti-cancer properties, in combination with the MET inhibitor tepotinib in KRAS-mutant G12C and non-G12C NSCLC cell lines, as well as in G12C inhibitor (AMG510, sotorasib) and MEK inhibitor (trametinib)-resistant cell lines. Moreover, in a xenograft mouse model, combination of omeprazole plus tepotinib caused tumor growth regression. We observed that the combination of these two drugs downregulates phosphorylation of the glycolytic enzyme enolase 1 (ENO1) and the low-density lipoprotein receptor-related protein (LRP) 5/6 in the H358 KRAS G12C cell line, but not in the H358 sotorasib resistant, indicating that the effect of the combination could be independent of ENO1. In addition, we examined the probability of recurrence-free survival and overall survival in 40 early lung adenocarcinoma patients with KRAS G12C mutation stratified by KRAS and MET mRNA levels. Significant differences were observed in recurrence-free survival according to high levels of KRAS mRNA expression. Hazard ratio (HR) of recurrence-free survival was 7.291 (p = 0.014) for high levels of KRAS mRNA expression and 3.742 (p = 0.052) for high MET mRNA expression. CONCLUSIONS We posit that the combination of the V-ATPase inhibitor omeprazole plus tepotinib warrants further assessment in KRAS-mutant G12C and non G12C cell lines, including those resistant to the covalent KRAS G12C inhibitors.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Barcelona, Spain.
- IOR, Hospital Quiron-Dexeus Barcelona, Barcelona, Spain.
- Laboratory of Molecular Biology, Germans Trias i Pujol Health Sciences Institute and Hospital (IGTP), Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain.
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain.
- Trial Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
- Department of Biotechnology, Universitat Politècnica de València, Camí de Vera s/n, Valencia, 46022, Spain.
- Joint Unit: Nanomedicine, Centro Investigación Príncipe Felipe-Universitat Politècnica de Valencia, Valencia, Spain.
| | - Peng Cao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou Peoples Hospital, Quzhou, China.
- Shandong Academy of Chinese Medicine, Jinan, China.
| | - Xueting Cai
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Baojuan Xing
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Masaoki Ito
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Jose Luis Gomez-Vazquez
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Barcelona, Spain
- Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Trial Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Department of Pathology, Universitat de Valéncia, Valencia, Spain
| | - Andrés Felipe Cardona
- Institute of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center - CTIC, Bogotá, Colombia
| | - Jordi Codony-Servat
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Barcelona, Spain
- Pangaea Oncology, Hospital Quiron-Dexeus Barcelona, Barcelona, Spain
| | - Jessica Gonzalez
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Barcelona, Spain
| | | | | | | | | | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | - S Chandan
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Oscar Arrieta
- National Institute of Cancerology (INCAN), Mexico City, Mexico
| | - Macarena Ferrero
- Trial Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Carlos Camps
- Trial Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Medical Oncology Department, General University Hospital of Valencia, Valencia, Spain
| | | |
Collapse
|
3
|
Terry AR, Hay N. Emerging targets in lipid metabolism for cancer therapy. Trends Pharmacol Sci 2024; 45:537-551. [PMID: 38762377 PMCID: PMC11162322 DOI: 10.1016/j.tips.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/20/2024]
Abstract
Cancer cells perturb lipid metabolic pathways for a variety of pro-tumorigenic functions, and deregulated cellular metabolism is a hallmark of cancer cells. Although alterations in lipid metabolism in cancer cells have been appreciated for over 20 years, there are no FDA-approved cancer treatments that target lipid-related pathways. Recent advances pertaining to cancer cell fatty acid synthesis (FAS), desaturation, and uptake, microenvironmental and dietary lipids, and lipid metabolism of tumor-infiltrating immune cells have illuminated promising clinical applications for targeting lipid metabolism. This review highlights emerging pathways and targets for tumor lipid metabolism that may soon impact clinical treatment.
Collapse
Affiliation(s)
- Alexander R Terry
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA.
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
4
|
Rosell R, Codony-Servat J, González J, Santarpia M, Jain A, Shivamallu C, Wang Y, Giménez-Capitán A, Molina-Vila MA, Nilsson J, González-Cao M. KRAS G12C-mutant driven non-small cell lung cancer (NSCLC). Crit Rev Oncol Hematol 2024; 195:104228. [PMID: 38072173 DOI: 10.1016/j.critrevonc.2023.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024] Open
Abstract
KRAS G12C mutations in non-small cell lung cancer (NSCLC) partially respond to KRAS G12C covalent inhibitors. However, early adaptive resistance occurs due to rewiring of signaling pathways, activating receptor tyrosine kinases, primarily EGFR, but also MET and ligands. Evidence indicates that treatment with KRAS G12C inhibitors (sotorasib) triggers the MRAS:SHOC2:PP1C trimeric complex. Activation of MRAS occurs from alterations in the Scribble and Hippo-dependent pathways, leading to YAP activation. Other mechanisms that involve STAT3 signaling are intertwined with the activation of MRAS. The high-resolution MRAS:SHOC2:PP1C crystallization structure allows in silico analysis for drug development. Activation of MRAS:SHOC2:PP1C is primarily Scribble-driven and downregulated by HUWE1. The reactivation of the MRAS complex is carried out by valosin containing protein (VCP). Exploring these pathways as therapeutic targets and their impact on different chemotherapeutic agents (carboplatin, paclitaxel) is crucial. Comutations in STK11/LKB1 often co-occur with KRAS G12C, jeopardizing the effect of immune checkpoint (anti-PD1/PDL1) inhibitors.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain; IOR, Hospital Quiron-Dexeus, Barcelona, Spain.
| | | | - Jessica González
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Italy
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Yu Wang
- Genfleet Therapeutics, Shanghai, China
| | | | | | - Jonas Nilsson
- Department Radiation Sciences, Oncology, Umeå University, Sweden
| | | |
Collapse
|
5
|
Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K, Yang JL. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J Hematol Oncol 2023; 16:103. [PMID: 37700339 PMCID: PMC10498649 DOI: 10.1186/s13045-023-01498-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Lipid metabolic reprogramming is an emerging hallmark of cancer. In order to sustain uncontrolled proliferation and survive in unfavorable environments that lack oxygen and nutrients, tumor cells undergo metabolic transformations to exploit various ways of acquiring lipid and increasing lipid oxidation. In addition, stromal cells and immune cells in the tumor microenvironment also undergo lipid metabolic reprogramming, which further affects tumor functional phenotypes and immune responses. Given that lipid metabolism plays a critical role in supporting cancer progression and remodeling the tumor microenvironment, targeting the lipid metabolism pathway could provide a novel approach to cancer treatment. This review seeks to: (1) clarify the overall landscape and mechanisms of lipid metabolic reprogramming in cancer, (2) summarize the lipid metabolic landscapes within stromal cells and immune cells in the tumor microenvironment, and clarify their roles in tumor progression, and (3) summarize potential therapeutic targets for lipid metabolism, and highlight the potential for combining such approaches with other anti-tumor therapies to provide new therapeutic opportunities for cancer patients.
Collapse
Affiliation(s)
- Hao-Ran Jin
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zi-Jing Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Jia Xi
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bi-Han Xia
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Deng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China.
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Jin-Lin Yang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China.
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Guo MZ, Marrone KA, Spira A, Rosner S. Adagrasib: a novel inhibitor for KRASG12C-mutated non-small-cell lung cancer. Future Oncol 2023. [PMID: 37133216 DOI: 10.2217/fon-2022-1106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Adagrasib is a recently US FDA-approved novel KRASG12C targeted therapy with clinical efficacy in patients with advanced, pretreated KRASG12C-mutated non-small-cell lung cancer. KRYSTAL-I reported an objective response rate of 42.9% with median duration of response of 8.5 months. Treatment-related adverse events were primarily gastrointestinal and occurred in 97.4% of patients, with grade 3+ treatment-related adverse events occurring in 44.8% of patients. This review details the preclinical and clinical data for adagrasib in the treatment of non-small-cell lung cancer. We also outline practical clinical administration guidelines for this novel therapy, including management of toxicities. Finally, we discuss the implications of resistance mechanisms, summarize other KRASG12C inhibitors currently in development and outline future directions for adagrasib-based combination therapies.
Collapse
Affiliation(s)
- Matthew Z Guo
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Kristen A Marrone
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Alexander Spira
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Virginia Cancer Specialists Research Institute, Fairfax, VA, USA
- US Oncology Research, The Woodlands, TX, USA
- NEXT Oncology, San Antonio, TX, USA
| | - Samuel Rosner
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| |
Collapse
|
7
|
Li A, Li X, Zou J, Zhuo X, Chen S, Chai X, Gai C, Xu W, Zhao Q, Zou Y. SOS1-inspired hydrocarbon-stapled peptide as a pan-Ras inhibitor. Bioorg Chem 2023; 135:106500. [PMID: 37003134 DOI: 10.1016/j.bioorg.2023.106500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Blocking the interaction between Ras and Son of Sevenless homolog 1 (SOS1) has been an attractive therapeutic strategy for treating cancers involving oncogenic Ras mutations. K-Ras mutation is the most common in Ras-driven cancers, accounting for 86%, with N-Ras mutation and H-Ras mutation accounting for 11% and 3%, respectively. Here, we report the design and synthesis of a series of hydrocarbon-stapled peptides to mimic the alpha-helix of SOS1 as pan-Ras inhibitors. Among these stapled peptides, SSOSH-5 was identified to maintain a well-constrained alpha-helical structure and bind to H-Ras with high affinity. SSOSH-5 was furthermore validated to bind with Ras similarly to the parent linear peptide through structural modeling analysis. This optimized stapled peptide was proven to be capable of effectively inhibiting the proliferation of pan-Ras-mutated cancer cells and inducing apoptosis in a dose-dependent manner by modulating downstream kinase signaling. Of note, SSOSH-5 exhibited a high capability of crossing cell membranes and strong proteolytic resistance. We demonstrated that the peptide stapling strategy is a feasible approach for developing peptide-based pan-Ras inhibitors. Furthermore, we expect that SSOSH-5 can be further characterized and optimized for the treatment of Ras-driven cancers.
Collapse
Affiliation(s)
- Anpeng Li
- School of Pharmacy, Naval Medical University, Shanghai, PR China; 92805 Military Hospital, Qingdao, PR China
| | - Xiang Li
- School of Pharmacy, Naval Medical University, Shanghai, PR China
| | - Jihua Zou
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, PR China
| | - Xiaobin Zhuo
- School of Pharmacy, Naval Medical University, Shanghai, PR China
| | - Shuai Chen
- School of Pharmacy, Naval Medical University, Shanghai, PR China
| | - Xiaoyun Chai
- School of Pharmacy, Naval Medical University, Shanghai, PR China
| | - Conghao Gai
- School of Pharmacy, Naval Medical University, Shanghai, PR China
| | - Weiheng Xu
- School of Pharmacy, Naval Medical University, Shanghai, PR China.
| | - Qingjie Zhao
- School of Pharmacy, Naval Medical University, Shanghai, PR China.
| | - Yan Zou
- School of Pharmacy, Naval Medical University, Shanghai, PR China.
| |
Collapse
|
8
|
Shen J, Huang J, Huang Y, Chen Y, Li J, Luo P, Zhang Q, Qiu Y, Wang L, Jiang H, Ma S, Chen X. Anlotinib suppresses lung adenocarcinoma growth via inhibiting FASN-mediated lipid metabolism. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1337. [PMID: 36660682 PMCID: PMC9843377 DOI: 10.21037/atm-22-5438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022]
Abstract
Background Anlotinib, a vascular endothelial growth factor receptor (VEGFR) inhibitor, has been widely used in advanced lung cancer patients, but the intrinsic mechanism of cancer cell elimination is not fully disclosed. In this study, we reported that anlotinib suppressed lung adenocarcinoma (LUAD) growth through inhibiting fatty acid synthase (FASN)-mediated lipid metabolism. Methods To investigate the underlying mechanisms of anlotinib, an A549 cell line-derived xenograft model was constructed and a proteomics technique was employed to screen potential markers. Gas chromatography-mass spectrometry (GC-MS) profiling of medium-long chain fatty acid and neutral lipid droplet fluorescence staining were employed to detect lipid metabolism in cancer cells. Subsequently, the effects of anlotinib on FASN expression were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. Short hairpin RNA (shRNA) knockdown of FASN was used to assess the role of FASN in the antitumor effect of anlotinib. A patient-derived xenograft (PDX) model was established to validate the efficacy of anlotinib in the patient and IHC staining of FASN was examined. Results Our data revealed that anlotinib significantly decreased the expression of proteins related to lipid metabolism. GC-MS profiling of medium-long chain fatty acid and neutral lipid droplet fluorescence staining validated that anlotinib could disturb the fatty acid metabolism in cancer cells, especially de novo lipogenesis. Mechanically, the messenger RNA (mRNA) and protein of FASN were down-regulated by anlotinib in A549 cells and FASN knockdown could diminish the antitumor effect of anlotinib in vitro. Remarkable tumor shrinkage by anlotinib was further shown in a patient with multiple-line treatment failure, and FASN reduction was evidenced in the corresponding patient-derived xenograft (PDX) model. Conclusions Anlotinib could inhibit the growth of LUAD through FASN-mediated lipid metabolism. Our findings provide new insights into the antitumor mechanism of anlotinib in lung adenocarcinoma.
Collapse
Affiliation(s)
- Juan Shen
- Department of Thoracic Oncology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China;,Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Huang
- Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Huang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yidan Chen
- Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiawei Li
- Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qianyun Zhang
- Department of Oncology, Liyang People’s Hospital, Liyang, China
| | - Yao Qiu
- Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Jiang
- Department of Thoracic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenglin Ma
- Department of Thoracic Oncology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China;,Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China;,Cancer Center, Zhejiang University, Hangzhou, China
| | - Xueqin Chen
- Department of Thoracic Oncology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China;,Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China;,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Nie Y, Feng F, Luo W, Sanders AJ, Zhang Y, Liang J, Chen C, Feng W, Gu W, Liao W, Wang W, Chen J, Zhang L, Jiang WG, Li J. Overexpressed transient receptor potential vanilloid 1 (TRPV1) in lung adenocarcinoma harbours a new opportunity for therapeutic targeting. Cancer Gene Ther 2022; 29:1405-1417. [PMID: 35354949 PMCID: PMC9576597 DOI: 10.1038/s41417-022-00459-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
The specific biological function of transient receptor potential vanilloid 1 (TRPV1) in pathogenesis of lung adenocarcinoma (LUAD) remains unclear. In this study, TRPV1 expression in tumor tissues, primary cells and cell lines of LUAD, as well as the mechanism mediating its hyperexpression were systematically studied. Multiple models and techniques were adopted to elucidate the relationship between TRPV1 hyperexpression and tumor recurrence and metastasis. Results showed that TRPV1 expression was increased in tumor tissues and primary tumor cells of LUAD patients. The increased expression was associated with worse overall survival outcome and raised HIF1α levels. TRPV1 expression in A549 and NCI-H292 cells was increased after pretreatment with cigarette smoke extract or spermine NONOate. Moreover, A549 cells with TRPV1 overexpression has enhanced tumor growth rates in subcutaneous grafted tumor models, and increased intrapulmonary metastasis after tail vein infusion in nude BALB/c nude mice. Mechanistically, TRPV1 overexpression in A549 cells promoted HIF1α expression and nuclear translocation by promoting CREB phosphorylation and activation of NOS1-NO pathway, ultimately leading to accelerated cell proliferation and stronger invasiveness. In addition, based on photothermal effects, CuS-TRPV1 mAb effectively targeted and induced apoptosis of TRPV1-A549 cells both in vivo and in vitro, thereby mitigating tumor growth and metastasis induced by xenotransplantation of TRPV1-A549 cells. In conclusion, TRPV1 hyperexpression in LUAD is a risk factor for tumor progression and is involved in proliferation and migration of tumor cells through activation of HIF1α. Our study also attempted a new strategy inhibiting the recurrence and metastasis of LUAD: by CuS-TRPV1 mAb precisely kill TRPV1 hyperexpression cells through photothermal effects.
Collapse
Affiliation(s)
- Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-sen University Foshan Hospital, Foshan, 528000, PR China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Fenglan Feng
- State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Wei Luo
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-sen University Foshan Hospital, Foshan, 528000, PR China
| | | | - Yidi Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jiaming Liang
- State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Cheng Chen
- State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Weineng Feng
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-sen University Foshan Hospital, Foshan, 528000, PR China
| | - Weiquan Gu
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-sen University Foshan Hospital, Foshan, 528000, PR China
| | - Weiping Liao
- Foshan Fourth People's Hospital, Foshan, 528000, PR China
| | - Wei Wang
- Foshan Fourth People's Hospital, Foshan, 528000, PR China
| | - Jinfeng Chen
- Peking University Cancer Hospital and Beijing Cancer Institute, Department of Thoracic Surgery, Fucheng Road, Haidian District, Beijing, China
| | - Lijian Zhang
- Peking University Cancer Hospital and Beijing Cancer Institute, Department of Thoracic Surgery, Fucheng Road, Haidian District, Beijing, China
| | - Wen G Jiang
- CCMRC, Cardiff University School of Medicine, Cardiff, UK
| | - Jin Li
- State Key Laboratory of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, PR China.
| |
Collapse
|
10
|
Icard P, Simula L, Fournel L, Leroy K, Lupo A, Damotte D, Charpentier MC, Durdux C, Loi M, Schussler O, Chassagnon G, Coquerel A, Lincet H, De Pauw V, Alifano M. The strategic roles of four enzymes in the interconnection between metabolism and oncogene activation in non-small cell lung cancer: Therapeutic implications. Drug Resist Updat 2022; 63:100852. [PMID: 35849943 DOI: 10.1016/j.drup.2022.100852] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NSCLC is the leading cause of cancer mortality and represents a major challenge in cancer therapy. Intrinsic and acquired anticancer drug resistance are promoted by hypoxia and HIF-1α. Moreover, chemoresistance is sustained by the activation of key signaling pathways (such as RAS and its well-known downstream targets PI3K/AKT and MAPK) and several mutated oncogenes (including KRAS and EGFR among others). In this review, we highlight how these oncogenic factors are interconnected with cell metabolism (aerobic glycolysis, glutaminolysis and lipid synthesis). Also, we stress the key role of four metabolic enzymes (PFK1, dimeric-PKM2, GLS1 and ACLY), which promote the activation of these oncogenic pathways in a positive feedback loop. These four tenors orchestrating the coordination of metabolism and oncogenic pathways could be key druggable targets for specific inhibition. Since PFK1 appears as the first tenor of this orchestra, its inhibition (and/or that of its main activator PFK2/PFKFB3) could be an efficacious strategy against NSCLC. Citrate is a potent physiologic inhibitor of both PFK1 and PFKFB3, and NSCLC cells seem to maintain a low citrate level to sustain aerobic glycolysis and the PFK1/PI3K/EGFR axis. Awaiting the development of specific non-toxic inhibitors of PFK1 and PFK2/PFKFB3, we propose to test strategies increasing citrate levels in NSCLC tumors to disrupt this interconnection. This could be attempted by evaluating inhibitors of the citrate-consuming enzyme ACLY and/or by direct administration of citrate at high doses. In preclinical models, this "citrate strategy" efficiently inhibits PFK1/PFK2, HIF-1α, and IGFR/PI3K/AKT axes. It also blocks tumor growth in RAS-driven lung cancer models, reversing dedifferentiation, promoting T lymphocytes tumor infiltration, and increasing sensitivity to cytotoxic drugs.
Collapse
Affiliation(s)
- Philippe Icard
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U1086, 14000 Caen, France.
| | - Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, Paris University, Paris 75014, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1124, Cellular Homeostasis and Cancer, University of Paris, Paris, France
| | - Karen Leroy
- Department of Genomic Medicine and Cancers, Georges Pompidou European Hospital, APHP, Paris, France
| | - Audrey Lupo
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Diane Damotte
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | | | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Mauro Loi
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Olivier Schussler
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | | | - Antoine Coquerel
- INSERM U1075, COMETE " Mobilités: Attention, Orientation, Chronobiologie", Université Caen, France
| | - Hubert Lincet
- ISPB, Faculté de Pharmacie, Lyon, France, Université Lyon 1, Lyon, France; INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
| | - Vincent De Pauw
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| |
Collapse
|
11
|
Baldelli E, El Gazzah E, Moran JC, Hodge KA, Manojlovic Z, Bassiouni R, Carpten JD, Ludovini V, Baglivo S, Crinò L, Bianconi F, Dong T, Loffredo J, Petricoin EF, Pierobon M. Wild-Type KRAS Allele Effects on Druggable Targets in KRAS Mutant Lung Adenocarcinomas. Genes (Basel) 2021; 12:genes12091402. [PMID: 34573384 PMCID: PMC8467269 DOI: 10.3390/genes12091402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
KRAS mutations are one of the most common oncogenic drivers in non-small cell lung cancer (NSCLC) and in lung adenocarcinomas in particular. Development of therapeutics targeting KRAS has been incredibly challenging, prompting indirect inhibition of downstream targets such as MEK and ERK. Such inhibitors, unfortunately, come with limited clinical efficacy, and therefore the demand for developing novel therapeutic strategies remains an urgent need for these patients. Exploring the influence of wild-type (WT) KRAS on druggable targets can uncover new vulnerabilities for the treatment of KRAS mutant lung adenocarcinomas. Using commercially available KRAS mutant lung adenocarcinoma cell lines, we explored the influence of WT KRAS on signaling networks and druggable targets. Expression and/or activation of 183 signaling proteins, most of which are targets of FDA-approved drugs, were captured by reverse-phase protein microarray (RPPA). Selected findings were validated on a cohort of 23 surgical biospecimens using the RPPA. Kinase-driven signatures associated with the presence of the KRAS WT allele were detected along the MAPK and AKT/mTOR signaling pathway and alterations of cell cycle regulators. FoxM1 emerged as a potential vulnerability of tumors retaining the KRAS WT allele both in cell lines and in the clinical samples. Our findings suggest that loss of WT KRAS impacts on signaling events and druggable targets in KRAS mutant lung adenocarcinomas.
Collapse
Affiliation(s)
- Elisa Baldelli
- Center for Applied Proteomics & Molecular Medicine, George Mason University, Manassas, VA 20110, USA; (E.B.); (E.E.G.); (J.C.M.); (K.A.H.); (T.D.); (J.L.); (E.F.P.)
| | - Emna El Gazzah
- Center for Applied Proteomics & Molecular Medicine, George Mason University, Manassas, VA 20110, USA; (E.B.); (E.E.G.); (J.C.M.); (K.A.H.); (T.D.); (J.L.); (E.F.P.)
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - John Conor Moran
- Center for Applied Proteomics & Molecular Medicine, George Mason University, Manassas, VA 20110, USA; (E.B.); (E.E.G.); (J.C.M.); (K.A.H.); (T.D.); (J.L.); (E.F.P.)
| | - Kimberley A. Hodge
- Center for Applied Proteomics & Molecular Medicine, George Mason University, Manassas, VA 20110, USA; (E.B.); (E.E.G.); (J.C.M.); (K.A.H.); (T.D.); (J.L.); (E.F.P.)
| | - Zarko Manojlovic
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (Z.M.); (R.B.); (J.D.C.)
| | - Rania Bassiouni
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (Z.M.); (R.B.); (J.D.C.)
| | - John D. Carpten
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (Z.M.); (R.B.); (J.D.C.)
| | - Vienna Ludovini
- Division of Medical Oncology, S. Maria della Misericordia Hospital, 06156 Perugia, Italy; (V.L.); (S.B.)
| | - Sara Baglivo
- Division of Medical Oncology, S. Maria della Misericordia Hospital, 06156 Perugia, Italy; (V.L.); (S.B.)
| | - Lucio Crinò
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | | | - Ting Dong
- Center for Applied Proteomics & Molecular Medicine, George Mason University, Manassas, VA 20110, USA; (E.B.); (E.E.G.); (J.C.M.); (K.A.H.); (T.D.); (J.L.); (E.F.P.)
| | - Jeremy Loffredo
- Center for Applied Proteomics & Molecular Medicine, George Mason University, Manassas, VA 20110, USA; (E.B.); (E.E.G.); (J.C.M.); (K.A.H.); (T.D.); (J.L.); (E.F.P.)
| | - Emanuel F. Petricoin
- Center for Applied Proteomics & Molecular Medicine, George Mason University, Manassas, VA 20110, USA; (E.B.); (E.E.G.); (J.C.M.); (K.A.H.); (T.D.); (J.L.); (E.F.P.)
| | - Mariaelena Pierobon
- Center for Applied Proteomics & Molecular Medicine, George Mason University, Manassas, VA 20110, USA; (E.B.); (E.E.G.); (J.C.M.); (K.A.H.); (T.D.); (J.L.); (E.F.P.)
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA
- Correspondence: ; Tel.: +1-703-993-9839
| |
Collapse
|
12
|
What Is New in Biomarker Testing at Diagnosis of Advanced Non-Squamous Non-Small Cell Lung Carcinoma? Implications for Cytology and Liquid Biopsy. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2020015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The discovery and clinical validation of biomarkers predictive of the response of non-squamous non-small-cell lung carcinomas (NS-NSCLC) to therapeutic strategies continue to provide new data. The evaluation of novel treatments is based on molecular analyses aimed at determining their efficacy. These tests are increasing in number, but the tissue specimens are smaller and smaller and/or can have few tumor cells. Indeed, in addition to tissue samples, complementary cytological and/or blood samples can also give access to these biomarkers. To date, it is recommended and necessary to look for the status of five genomic molecular biomarkers (EGFR, ALK, ROS1, BRAFV600, NTRK) and of a protein biomarker (PD-L1). However, the short- and more or less long-term emergence of new targeted treatments of genomic alterations on RET and MET, but also on others’ genomic alteration, notably on KRAS, HER2, NRG1, SMARCA4, and NUT, have made cellular and blood samples essential for molecular testing. The aim of this review is to present the interest in using cytological and/or liquid biopsies as complementary biological material, or as an alternative to tissue specimens, for detection at diagnosis of new predictive biomarkers of NS-NSCLC.
Collapse
|
13
|
He C, Li Y, Zhang R, Chen J, Feng X, Duan Y. Low CFB expression is independently associated with poor overall and disease-free survival in patients with lung adenocarcinoma. Oncol Lett 2021; 21:478. [PMID: 33968194 PMCID: PMC8100962 DOI: 10.3892/ol.2021.12739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/16/2021] [Indexed: 12/30/2022] Open
Abstract
Complement factor B (CFB) serves a pivotal role in the alternative signaling pathway of the complement system and exerts a key role in the labelling of target particles, resulting from effective clearance of the target. The present study aimed to investigate the association between low expression levels of CFB and the clinical features and survival status of patients with lung adenocarcinoma (LUAD). Patient data were based on RNA-sequencing and clinical data from The Cancer Genome Atlas database. All patients were divided into two groups based on the median expression of CFB. Kaplan-Meier curve and univariate Cox regression analyses were used to investigate the association between CFB and survival status. Gene set enrichment analysis was used to examine the effects of CFB expression on signaling pathway impairment. Furthermore, reverse transcription-quantitative PCR (RT-qPCR) and western blotting were used to verify the relative expression levels of CFB in LUAD tissues. The data revealed that residual tumor classification, Karnofsky performance score and cancer stage were associated with overall survival, and that Karnofsky performance score and stage were associated with disease-free survival. The results demonstrated that high expression levels of CFB were associated with increased patient overall and disease-free survival according to both continuous and categorical models. The results of multivariate analysis identified that high expression levels of CFB were associated with increased overall and disease-free survival according to both the continuous model [hazard ratio (HR), 0.48; 95% confidence interval (95% CI), 0.25-0.93; P=0.029 for overall survival; HR, 0.29; 95% CI, 0.15-0.59; P=0.001 for disease-free survival] and the categorical model (HR, 0.46; 95% CI, 0.22-0.93; P=0.031 for overall survival; HR, 0.25; 95% CI, 0.12-0.55; P=0.001 for disease-free survival) after adjusting for corresponding covariates (residual tumour classification, Karnofsky performance score and stage). Furthermore, the results of both RT-qPCR and western blotting indicated that the relative mRNA and protein expression levels of CFB in lung tumor tissues were downregulated compared with those in adjacent non-tumor tissues. Collectively, the present results suggested that CFB expression was an independent predictor of overall and disease-free survival in patients with LUAD.
Collapse
Affiliation(s)
- Chenglu He
- Yunnan Key Laboratory of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Yunnan Institute of Laboratory Diagnosis, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Ya Li
- Yunnan Key Laboratory of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Yunnan Institute of Laboratory Diagnosis, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Ruixian Zhang
- Department of Environment-Related Health, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan 650034, P.R. China
| | - Jing Chen
- Health Management Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xingxing Feng
- Department of Clinical Laboratory, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Yong Duan
- Yunnan Key Laboratory of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Yunnan Institute of Laboratory Diagnosis, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|