1
|
Christopoulos P, Herster F, Hoffknecht P, Falk M, Tiemann M, Kopp HG, Althoff A, Stammberger A, Laack E. Activity of afatinib in patients with NSCLC harboring novel uncommon EGFR mutations with or without co-mutations: a case report. Front Oncol 2024; 14:1347742. [PMID: 38769948 PMCID: PMC11103604 DOI: 10.3389/fonc.2024.1347742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) represent first-line standard of care in unresectable EGFR mutation-positive (EGFRm+) non-small cell lung cancer (NSCLC). However, 10-20% of patients with EGFRm+ NSCLC have uncommon EGFR variants, defined as mutations other than L858R substitutions or exon 19 deletions. NSCLC harboring uncommon EGFR mutations may demonstrate lower sensitivity to targeted agents than NSCLC with L858R or exon 19 deletion mutations. Prospective clinical trial data in patients with NSCLC uncommon EGFR mutations are lacking. Afatinib is a second-generation TKI and the only Food and Drug Administration-approved drug for some of the more prevalent uncommon EGFR mutations. We present a series of seven case reports describing clinical outcomes in afatinib-treated patients with NSCLC harboring a diverse range of extremely rare mutations with or without co-mutations affecting other genes. EGFR alterations included compound mutations, P-loop αC-helix compressing mutations, and novel substitution mutations. We also present a case with NSCLC harboring a novel EGFR::CCDC6 gene fusion. Overall, the patients responded well to afatinib, including radiologic partial responses in six patients during treatment. Responses were durable for three patients. The cases presented are in line with a growing body of clinical and preclinical evidence that indicating that NSCLC with various uncommon EGFR mutations, with or without co-mutations, may be sensitive to afatinib.
Collapse
Affiliation(s)
- Petros Christopoulos
- Department of Oncology, Thoraxklinik and National Center for Tumor Diseases at Heidelberg University Hospital, Heidelberg, Germany
- Thoracic Oncology, Translational Lung Research Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Franziska Herster
- Robert Bosch Center for Tumor Diseases (RBCT), Robert Bosch Hospital, Stuttgart, Germany
| | - Petra Hoffknecht
- Lungenzentrum Osnabrueck, Franziskus-Hospital Harderberg, Georgsmarienhütte, Germany
| | - Markus Falk
- Lung Cancer Network NOWEL.org, Oldenburg, Germany
- Molecular Pathology, Institute of Hematopathology Hamburg, Hamburg, Germany
| | - Markus Tiemann
- Lung Cancer Network NOWEL.org, Oldenburg, Germany
- Molecular Pathology, Institute of Hematopathology Hamburg, Hamburg, Germany
| | - Hans-Georg Kopp
- Robert Bosch Center for Tumor Diseases (RBCT), Robert Bosch Hospital, Stuttgart, Germany
| | - Andre Althoff
- Department of Pulmonology, Thoraxzentrum Offenbach, Sana Klinikum Offenbach, Offenbach, Germany
| | - Anja Stammberger
- Oncology, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | | |
Collapse
|
2
|
Seker-Cin H, Tay TKY, Kazdal D, Kluck K, Ball M, Neumann O, Winter H, Herth F, Heußel CP, Savai R, Schirmacher P, Thomas M, Budczies J, Allgäuer M, Christopoulos P, Stenzinger A, Volckmar AL. Analysis of rare fusions in NSCLC: Genomic architecture and clinical implications. Lung Cancer 2023; 184:107317. [PMID: 37586177 DOI: 10.1016/j.lungcan.2023.107317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVES Molecular diagnosis for targeted therapies has been improved significantly in non-small-cell lung cancer (NSCLC) patients in recent years. Here we report on the prevalence of rare fusions in NSCLC and dissect their genomic architecture and potential clinical implications. MATERIALS AND METHODS Overall, n = 5554 NSCLC patients underwent next-generation sequencing (NGS) for combined detection of oncogenic mutations and fusions either at primary diagnosis (n = 5246) or after therapy resistance (n = 308). Panels of different sizes were employed with closed amplicon-based, or open assays, i.e. anchored multiplex PCR (AMP) and hybrid capture-based, for detection of translocations, including "rare" fusions, defined as those beyond ALK, ROS1, RET and <0.5 % frequency in NSCLC. RESULTS Rare fusions involving EGFR, MET, HER2, BRAF and other potentially actionable oncogenes were detected in 0.5% (n = 26) of therapy-naive and 2% (n = 6) TKI-treated tumors. Detection was increased using open assays and/or larger panels, especially those covering >25 genes, by approximately 1-2% (p = 0.001 for both). Patient characteristics (age, gender, smoking, TP53 co-mutations (56%), or mean tumor mutational burden (TMB) (4.8 mut/Mb)) showed no association with presence of rare fusions. Non-functional alterations, i.e. out-of-frame or lacking kinase domains, comprised one-third of detected rare fusions and were significantly associated with simultaneous presence of classical oncogenic drivers, e.g. EGFR or KRAS mutations (p < 0.001), or use of larger panels (frequency of non-functional among the detected rare fusions 57% for 25+ gene- vs. 12% for smaller panels, p < 0.001). As many rare fusions were identified before availability of targeted therapy, mean survival for therapy-naïve patients was 23.8 months, comparable with wild-type tumors. CONCLUSION Approximately 1-2% of advanced NSCLC harbor rare fusions, which are potentially actionable and may support diagnosis. Routine adoption of broad NGS assays capable to identify exact fusion points and potentially retained protein domains can increase the yield of therapeutically relevant molecular information in advanced NSCLC.
Collapse
Affiliation(s)
- Huriye Seker-Cin
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy Kwang Yong Tay
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Department of Anatomical Pathology, Department of Molecular Pathology, Singapore General Hospital, Singapore
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Germany
| | - Klaus Kluck
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Ball
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Olaf Neumann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hauke Winter
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Germany; Department of Thoracic Oncology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Herth
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Germany; Department of Pulmonology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Claus-Peter Heußel
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Germany; Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Rajkumar Savai
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Center for Personalized Medicine Heidelberg (ZPM), Heidelberg, Germany
| | - Michael Thomas
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Germany; Department of Thoracic Oncology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Germany; Center for Personalized Medicine Heidelberg (ZPM), Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Petros Christopoulos
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Germany; Department of Thoracic Oncology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Germany.
| | - Anna-Lena Volckmar
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
3
|
Christopoulos P, Schlenk R, Kazdal D, Blasi M, Lennerz J, Shah R, Budczies J, Malek N, Fröhling S, Rosenquist R, Schirmacher P, Bozorgmehr F, Kuon J, Reck M, Thomas M, Stenzinger A. Real-world data for precision cancer medicine-A European perspective. Genes Chromosomes Cancer 2023. [PMID: 36852573 DOI: 10.1002/gcc.23135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023] Open
Abstract
Leveraging real-world data (RWD) for drug access is necessary to overcome a key challenge of modern precision oncology: tackling numerous low-prevalence oncogenic mutations across cancers. Withholding a potentially active medication in patients with rare mutations for the sake of control chemotherapy or "best" supportive care is neither practicable nor ethically justifiable anymore, particularly as RWD could meanwhile be used instead, according to scientific principles outlined by the US Food and Drug Administration, European Medicines Agency and other stakeholders. However, practical implementation varies, with occasionally opposite recommendations based on the same evidence in different countries. In the face of growing need for precision drugs, more transparency of evaluation, a priori availability of guidance for the academia and industry, as well as a harmonized framework for health technology assessment across the European Union (EU) are imperative. These could in turn trigger infrastructural changes in national and pan-European registries, cancer management guidelines (e.g., frequency of routine radiologic restaging, inclusion of patient-reported outcomes), and the health data space, to ensure conformity with declared standards and facilitate extraction of RWD sets (including patient-level data) suitable for approval and pricing with minimal effort. For an EU-wide unification of precision cancer medicine, collective negotiation of drug supply contracts and funding solidarity would additionally be required to handle the financial burden. According to experience from pivotal European programs, off-label use could potentially also be harmonized across EU-states to accelerate availability of novel drugs, streamline collection of valuable RWD, and mitigate related costs through wider partnerships with pharmaceutical companies.
Collapse
Affiliation(s)
- Petros Christopoulos
- Department of Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.,German Center for Lung Research (DZL), Gießen, Germany.,Centers for Personalized Medicine (ZPM), Germany
| | - Richard Schlenk
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.,NCT Trial Center, National Center of Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Kazdal
- German Center for Lung Research (DZL), Gießen, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Miriam Blasi
- Department of Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Jochen Lennerz
- Machachussets General Hospital, Harvard University, Boston, USA
| | - Rajiv Shah
- Department of Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,German Center for Lung Research (DZL), Gießen, Germany
| | - Jan Budczies
- Centers for Personalized Medicine (ZPM), Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nisar Malek
- Centers for Personalized Medicine (ZPM), Germany.,Department of Gastroenterology, Tübingen University Hospital, Tübingen, Germany
| | - Stefan Fröhling
- Centers for Personalized Medicine (ZPM), Germany.,Department of Translational Medical Oncology, National Center for Tumor Diseases, Heidelberg, Germany.,German Cancer Consortium (DKTK), Germany
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Peter Schirmacher
- Centers for Personalized Medicine (ZPM), Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Germany
| | - Farastuk Bozorgmehr
- Department of Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,German Center for Lung Research (DZL), Gießen, Germany
| | - Jonas Kuon
- Department of Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,German Center for Lung Research (DZL), Gießen, Germany.,Department of Oncology, Lungenklinik Löwenstein, Löwenstein, Germany
| | - Martin Reck
- German Center for Lung Research (DZL), Gießen, Germany.,Department of Thoracic Oncology, Lungenclinic Großhansdorf, Großhansdorf, Germany
| | - Michael Thomas
- Department of Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.,German Center for Lung Research (DZL), Gießen, Germany
| | - Albrecht Stenzinger
- German Center for Lung Research (DZL), Gießen, Germany.,Centers for Personalized Medicine (ZPM), Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Germany
| |
Collapse
|
4
|
Gunderwala A, Cope N, Wang Z. Mechanism and inhibition of BRAF kinase. Curr Opin Chem Biol 2022; 71:102205. [PMID: 36067564 PMCID: PMC10396080 DOI: 10.1016/j.cbpa.2022.102205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023]
Abstract
The role of BRAF in tumor initiation has been established, however, the precise mechanism of autoinhibition has only been illustrated recently by several structural studies. These structures uncovered the basis by which the regulatory domains engage in regulating the activity of BRAF kinase domain, which lead to a more complete picture of the regulation cycle of RAF kinases. Small molecule BRAF inhibitors developed specifically to target BRAFV600E have proven effective at inhibiting the most dominant BRAF mutant in melanomas, but are less potent against other BRAF mutants in RAS-driven diseases due to paradoxical activation of the MAPK pathway. A variety of new generation inhibitors that do not show paradoxical activation have been developed. Alternatively, efforts have begun to develop inhibitors targeting the dimer interface of BRAF. A deeper understanding of BRAF regulation together with more diverse BRAF inhibitors will be beneficial for drug development in RAF or RASdriven cancers.
Collapse
Affiliation(s)
- Amber Gunderwala
- Department of Chemistry & Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA
| | - Nicholas Cope
- Department of Chemistry & Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA
| | - Zhihong Wang
- Department of Chemistry & Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA.
| |
Collapse
|
5
|
Testa U, Pelosi E, Castelli G. Molecular charcterization of lung adenocarcinoma combining whole exome sequencing, copy number analysis and gene expression profiling. Expert Rev Mol Diagn 2021; 22:77-100. [PMID: 34894979 DOI: 10.1080/14737159.2022.2017774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Lung cancer is the leading cause of cancer mortality worldwide; lung adenocarcinoma (LUAD) corresponds to about 40% of lung cancers. LUAD is a genetically heterogeneous disease and the definition of this heterogeneity is of fundamental importance for prognosis and treatment. AREAS COVERED Based on primary literature, this review provides an updated analysis of multiomics studies based on the study of mutation profiling, copy number alterations and gene expression allowing for definition of molecular subgroups, prognostic factors based on molecular biomarkers, and identification of therapeutic targets. The authors sum up by providing the reader with their expert opinion on the potentialities of multiomics analysis of LUADs. EXPERT OPINION A detailed and comprehensive study of the co-occurring genetic abnormalities characterizing different LUAD subsets represents a fundamental tool for a better understanding of the disease heterogeneity and for the identification of subgroups of patients responding or resistant to targeted treatments and for the discovery of new therapeutic targets. It is expected that a comprehensive characterization of LUADs may provide a fundamental contribution to improve the survival of LUAD patients.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
6
|
Buglioni S, Marino M. Pitfalls in Molecular Testing and the Added Value of the Cancer Research Biomedical Community. J Thorac Oncol 2021; 16:1976-1978. [PMID: 34809799 DOI: 10.1016/j.jtho.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 01/20/2023]
Affiliation(s)
- Simonetta Buglioni
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mirella Marino
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
7
|
Hofman P. EGFR Status Assessment for Better Care of Early Stage Non-Small Cell Lung Carcinoma: What Is Changing in the Daily Practice of Pathologists? Cells 2021; 10:2157. [PMID: 34440926 PMCID: PMC8392580 DOI: 10.3390/cells10082157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
The recent emergence of novel neoadjuvant and/or adjuvant therapies for early stage (I-IIIA) non-small cell lung carcinoma (NSCLC), mainly tyrosine kinase inhibitors (TKIs) targeting EGFR mutations and immunotherapy or chemo-immunotherapy, has suddenly required the evaluation of biomarkers predictive of the efficacy of different treatments in these patients. Currently, the choice of one or another of these treatments mainly depends on the results of immunohistochemistry for PD-L1 and of the status of EGFR and ALK. This new development has led to the setup of different analyses for clinical and molecular pathology laboratories, which have had to rapidly integrate a number of new challenges into daily practice and to establish new organization for decision making. This review outlines the impact of the management of biological samples in laboratories and discusses perspectives for pathologists within the framework of EGFR TKIs in early stage NSCLC.
Collapse
Affiliation(s)
- Paul Hofman
- Laboratory of Clinical and Experimental Pathology, CHU Nice, FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06108 Nice, France; ; Tel.: +33-492-038-855; Fax: +33-492-8850
- CHU Nice, FHU OncoAge, Hospital-Integrated Biobank BB-0033-00025, Université Côte d’Azur, 06000 Nice, France
| |
Collapse
|
8
|
What Is New in Biomarker Testing at Diagnosis of Advanced Non-Squamous Non-Small Cell Lung Carcinoma? Implications for Cytology and Liquid Biopsy. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2020015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The discovery and clinical validation of biomarkers predictive of the response of non-squamous non-small-cell lung carcinomas (NS-NSCLC) to therapeutic strategies continue to provide new data. The evaluation of novel treatments is based on molecular analyses aimed at determining their efficacy. These tests are increasing in number, but the tissue specimens are smaller and smaller and/or can have few tumor cells. Indeed, in addition to tissue samples, complementary cytological and/or blood samples can also give access to these biomarkers. To date, it is recommended and necessary to look for the status of five genomic molecular biomarkers (EGFR, ALK, ROS1, BRAFV600, NTRK) and of a protein biomarker (PD-L1). However, the short- and more or less long-term emergence of new targeted treatments of genomic alterations on RET and MET, but also on others’ genomic alteration, notably on KRAS, HER2, NRG1, SMARCA4, and NUT, have made cellular and blood samples essential for molecular testing. The aim of this review is to present the interest in using cytological and/or liquid biopsies as complementary biological material, or as an alternative to tissue specimens, for detection at diagnosis of new predictive biomarkers of NS-NSCLC.
Collapse
|