1
|
Chang PH, Lee CH, Wu TMH, Yeh KY, Wang HM, Huang WK, Chan SC, Chou WC, Kuan FC, Kuo HC, Kuo YC, Hu CC, Hsieh JCH. Association of early changes of circulating cancer stem-like cells with survival among patients with metastatic breast cancer. Ther Adv Med Oncol 2022; 14:17588359221110182. [PMID: 35860832 PMCID: PMC9290096 DOI: 10.1177/17588359221110182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background: This study aimed to investigate the role of circulating tumor cells (CTCs) and circulating cancer stem-like cells (cCSCs) before and after one cycle of chemotherapy and assessed the effects of early changes in CTCs and cCSCs on the outcomes of patients with metastatic breast cancer. Methods: Patients with stage IV invasive ductal carcinoma of the breast who received first-line chemotherapy between April 2014 and January 2016 were enrolled. CTCs and cCSCs were measured before the first cycle of chemotherapy (baseline) and on day 21, before the second cycle of chemotherapy commenced; a negative selection strategy and flow cytometry protocol were employed. Results: CTC and cCSC counts declined in 68.8 and 45.5% of patients, respectively. Declines in CTCs and cCSCs following the first chemotherapy cycle were associated with superior chemotherapy responses, longer progression-free survival (PFS), and longer overall survival (OS). An early decline in cCSCs remained an independent prognostic indicator for OS and PFS in multivariate analysis. Conclusions: A cCSC decline after one cycle of chemotherapy for metastatic breast cancer is predictive of a superior chemotherapy response and longer PFS and OS, implying that cCSC dynamic monitoring may be helpful in early prediction of treatment response and prognosis.
Collapse
Affiliation(s)
- Pei-Hung Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Keelung City
| | - Chun-Hui Lee
- College of Medicine, Chang Gung University, Taoyuan City
| | - Tyler Min-Hsien Wu
- Circulating Tumour Cell Lab, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan City
| | - Kun-Yun Yeh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Keelung City
| | - Hung-Ming Wang
- College of Medicine, Chang Gung University, Taoyuan City
| | - Wen-Kuan Huang
- College of Medicine, Chang Gung University, Taoyuan City
| | - Sheng-Chieh Chan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien City
| | - Wen-Chi Chou
- College of Medicine, Chang Gung University, Taoyuan City
| | - Feng-Che Kuan
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Puzi City
| | - Hsuan-Chih Kuo
- College of Medicine, Chang Gung University, Taoyuan City
| | - Yung-Chia Kuo
- College of Medicine, Chang Gung University, Taoyuan City
| | - Ching-Chih Hu
- Division of Hepatogastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Keelung City
| | - Jason Chia-Hsun Hsieh
- College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan City 333
| |
Collapse
|
2
|
Wu M, Huang Y, Zhou Y, Zhao H, Lan Y, Yu Z, Jia C, Cong H, Zhao J. The Discovery of Novel Circulating Cancer-Related Cells in Circulation Poses New Challenges to Microfluidic Devices for Enrichment and Detection. SMALL METHODS 2022; 6:e2200226. [PMID: 35595707 DOI: 10.1002/smtd.202200226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Circulating tumor cells (CTCs) enumeration has been widely used as a surrogate predictive marker for early diagnoses, the evaluation of chemotherapy efficacy, and cancer prognosis. Microfluidic technologies for CTCs enrichment and detection have been developed and commercialized as automation platforms. Currently, in addition to CTCs, some new types of circulating cancer-related cells (e.g., CCSCs, CTECs, CAMLs, and heterotypic CTC clusters) in circulation are also reported to be correlated to cancer diagnosis, metastasis, or prognosis. And they widely differ from the conventional CTCs in positive markers, cellular morphology, or size, which presents a new technological challenge to microfluidic devices that use affinity-based capture methods or size-based filtration methods for CTCs detection. This review focuses on the biological and physical properties as well as clinical significance of the novel circulating cancer-related cells, and discusses the challenges of their discovery to microfluidic chip for enrichment. Finally, the current challenges of CTCs detection in clinical application and future opportunities are also discussed.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Huang
- Shanghai Normal University, Shanghai, 200030, China
| | - Yang Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuwei Lan
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Shukla SP, Zhang H, Fang B, Minna JD, Gomika Udugamasooriya D. Unbiased peptoid cell screen identifies a peptoid targeting newly appeared cell surface vimentin on tumor transformed early lung cancer cells. Bioorg Med Chem 2022; 58:116673. [PMID: 35189561 PMCID: PMC9040685 DOI: 10.1016/j.bmc.2022.116673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 11/16/2022]
Abstract
To identify potential new reagents and biomarkers for early lung cancer detection we combined the use of a novel preclinical isogenic model of human lung epithelial cells comparing non-malignant cells with those transformed to full malignancy using defined oncogenic changes and our on-bead two color (red and green stained cells) (OBTC) peptoid combinatorial screening methodology. The preclinical model used normal parent lung epithelial cells (HBEC3-KT, labeled with green dye) and isogenic fully malignant transformed derivatives (labeled with a red dye) via the sequential introduction of key genetic alterations of p53 knockdown, oncogenic KRAS and overexpression of cMYC (HBEC3p53, KRAS, cMYC). Using the unbiased OBTC screening approach, we tested 100,000 different peptoids and identified only one (named JM3A) that bound to the surface of the HBEC3p53, KRAS, cMYC cells (red cells) but not HBEC3-KT cells (green cells). Using the JM3A peptoid and proteomics, we identified the protein bound as vimentin using multiple validation approaches. These all confirmed the cell surface expression of vimentin (CSV) on transformed (HBEC3p53, KRAS, cMYC) but not on untransformed (HBEC3-KT) cells. JM3A coupled with fluorophores was able to detect and stain cell surface vimentin on very early stage lung cancers but not normal lung epithelial cells in a fashion comparable to that using anti-vimentin antibodies. We conclude: using a combined isogenic preclinical model of lung cancer and two color screening of a large peptoid library, we have identified differential expression of cell surface vimentin (CSV) after malignant transformation of lung epithelial cells, and developed a new peptoid reagent (JM3A) for detection of CSV which works well in staining of early stage NSCLCs. This new, highly specific, easy to prepare, CSV detecting JM3A peptoid provides an important new reagent for identifying cancer cells in early stage tumors as well as a resource for detection and isolating of CSV expressing circulating tumor cells.
Collapse
Affiliation(s)
- Satya Prakash Shukla
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Haowen Zhang
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery - Research, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D Gomika Udugamasooriya
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA; Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX , USA.
| |
Collapse
|
4
|
Phiboonchaiyanan PP, Puthongking P, Chawjarean V, Harikarnpakdee S, Sukprasansap M, Chanvorachote P, Priprem A, Govitrapong P. Melatonin and its derivative disrupt cancer stem-like phenotypes of lung cancer cells via AKT downregulation. Clin Exp Pharmacol Physiol 2021; 48:1712-1723. [PMID: 34396568 DOI: 10.1111/1440-1681.13572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 12/27/2022]
Abstract
Cancer stem cells (CSCs), a small subpopulation of tumour cells, have properties of self-renewal and multipotency, which drive cancer progression and resistance to current treatments. Compounds potentially targeting CSCs have been recently developed. This study shows how melatonin, an endogenous hormone synthesised by the pineal gland, and its derivative suppress CSC-like phenotypes of human non-small cell lung cancer (NSCLC) cell lines, H460, H23, and A549. The effects of MLT and its derivative, acetyl melatonin (ACT), on CSC-like phenotypes were investigated using assays for anchorage-independent growth, three-dimensional spheroid formation, scratch wound healing ability, and CSC marker and upstream protein signalling expression. Enriched CSC spheroids were used to confirm the effect of both compounds on lung cancer cells. MLT and ACT inhibited CSC-like behaviours by suppression of colony and spheroid formation in NSCLC cell lines. Their effects on spheroid formation were confirmed in CSC-enriched H460 cells. CSC markers, CD133 and ALDH1A1, were depleted by both compounds. The behaviour and factors associated to epithelial-mesenchymal transition, as indicated by cell migration and the protein vimentin, were also decreased by MLT and ACT. Mechanistically, MLT and ACT decreased the expression of stemness proteins Oct-4, Nanog, and β-catenin by reducing active AKT (phosphorylated AKT). Suppression of the AKT pathway was not mediated through melatonin receptors. This study demonstrates a novel role, and its underlying mechanism, for MLT and its derivative ACT in suppression of CSC-like phenotypes in NSCLC cells, indicating that they are potential candidates for lung cancer treatment.
Collapse
Affiliation(s)
- Preeyaporn Plaimee Phiboonchaiyanan
- College of Pharmacy, Rangsit University, Pathumthani, Thailand
- Cosmeceutical Research, Development and Testing Center, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Ploenthip Puthongking
- Melatonin Research Group, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Verisa Chawjarean
- College of Pharmacy, Rangsit University, Pathumthani, Thailand
- Cosmeceutical Research, Development and Testing Center, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Saraporn Harikarnpakdee
- College of Pharmacy, Rangsit University, Pathumthani, Thailand
- Cosmeceutical Research, Development and Testing Center, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Aroonsri Priprem
- Faculty of Pharmacy, Mahasarakham University, Maha Sarakham, Thailand
| | | |
Collapse
|
5
|
Circulating Tumor Cells from Enumeration to Analysis: Current Challenges and Future Opportunities. Cancers (Basel) 2021; 13:cancers13112723. [PMID: 34072844 PMCID: PMC8198976 DOI: 10.3390/cancers13112723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary With estimated numbers of 1–10 per mL of blood, circulating tumor cells (CTCs) are extremely rare compared to white (a few million) or red (billions) blood cells. Given their critical role in metastasis, CTCs have enormous potential as a biomarker for cancer diagnosis, prognosis, and monitoring of treatment response. There are now efforts to characterize CTCs more precisely through molecular and functional analysis, expanding the CTC effort from one of diagnosis and prognosis to now include the use of CTCs to specifically target cancers and discover therapeutic solutions, establishing CTCs as critical in precision medicine. This article summarizes current knowledge about CTC isolation technologies and discusses the translational benefits of different types of downstream analysis approaches, including single-CTC analysis, ex vivo expansion of CTCs, and characterization of CTC-associated cells. Abstract Circulating tumor cells (CTCs) have been recognized as a major contributor to distant metastasis. Their unique role as metastatic seeds renders them a potential marker in the circulation for early cancer diagnosis and prognosis as well as monitoring of therapeutic response. In the past decade, researchers mainly focused on the development of isolation techniques for improving the recovery rate and purity of CTCs. These developed techniques have significantly increased the detection sensitivity and enumeration accuracy of CTCs. Currently, significant efforts have been made toward comprehensive molecular characterization, ex vivo expansion of CTCs, and understanding the interactions between CTCs and their associated cells (e.g., immune cells and stromal cells) in the circulation. In this review, we briefly summarize existing CTC isolation technologies and specifically focus on advances in downstream analysis of CTCs and their potential applications in precision medicine. We also discuss the current challenges and future opportunities in their clinical utilization.
Collapse
|