1
|
Awosika JA, Gulley JL, Pastor DM. Deficient Mismatch Repair and Microsatellite Instability in Solid Tumors. Int J Mol Sci 2025; 26:4394. [PMID: 40362635 PMCID: PMC12072705 DOI: 10.3390/ijms26094394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
The integrity of the genome is maintained by mismatch repair (MMR) proteins that recognize and repair base mismatches and insertion/deletion errors generated during DNA replication and recombination. A defective MMR system results in genome-wide instability and the progressive accumulation of mutations. Tumors exhibiting deficient MMR (dMMR) and/or high levels of microsatellite instability (termed "microsatellite instability high", or MSI-H) have been shown to possess fundamental differences in clinical, pathological, and molecular characteristics, distinguishing them from their "microsatellite stable" (MSS) counterparts. Molecularly, they are defined by a high mutational burden, genetic instability, and a distinctive immune profile. Their distinct genetic and immunological profiles have made dMMR/MSI-H tumors particularly amenable to treatment with immune checkpoint inhibitors (ICIs). The ongoing development of biomarker-driven therapies and the evaluation of novel combinations of immune-based therapies, with or without the use of conventional cytotoxic treatment regimens, continue to refine treatment strategies with the goals of maximizing therapeutic efficacy and survival outcomes in this distinct patient population. Moreover, the resultant knowledge of the mechanisms by which these features are suspected to render these tumors more responsive, overall, to immunotherapy may provide information regarding the potential optimization of this therapeutic approach in tumors with proficient MMR (pMMR)/MSS tumors.
Collapse
Affiliation(s)
- Joy A. Awosika
- Gastrointestinal Malignancies Section, Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James L. Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle M. Pastor
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Farrag MS, Abdelwahab HW, Abdellateef A, Anber N, Ellayeh MA, Hussein DT, Eldesoky AR, Sheta H. DNA mismatch repair (MMR) genes expression in lung cancer and its correlation with different clinicopathologic parameters. Sci Rep 2025; 15:885. [PMID: 39762286 PMCID: PMC11704133 DOI: 10.1038/s41598-024-83067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Lung cancer (LC) is a crucial rapidly developing disease. In Egypt, it is one of the five most frequent cancers. Little is known about the impact of deleted mismatch repair genes and its correlation to clinicopathological characteristics. This study evaluates immunohistochemical expression of the mismatch repair genes (PMS2), (MSH2), (MLH1) & (MSH6) & its correlation with clinicopathologic parameters & prognosis of LC. Age was higher with lost MLH1 & PMS2 but HTN was higher with lost four markers. Smoking was associated with expression of MLH1 & PMS2. A progressive course was associated with lost MSH2 & MSH6. Suprarenal metastasis was associated with lost all markers but bone metastasis was associated with lost MSH2 & MSH6. All the markers were significantly correlated with each other, with perfect correlations between MSH6 & MSH2 and between MLH & PMS2. Median overall survival among cases with lost markers was significantly lower than patients with preserved markers. We recommend evaluation of the four proteins as a biomarker that could guide LC therapy. In-depth biological research is imperative to elucidate the precise roles and mechanisms of these markers. This will advance management strategies and even guide immune checkpoint inhibitor therapy for LC.
Collapse
Affiliation(s)
- Mayada Saad Farrag
- Pathology Department, Port Said Faculty of Medicine, Port Said University, Port Said, Egypt.
| | | | - Amr Abdellateef
- Cardiothoracic Surgery Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nahla Anber
- Emergency Hospital, Mansour University, Mansoura, Egypt
| | | | - Dalia Tawfeek Hussein
- Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Faculty of Medicine, Tobruk University, Tobruk, Libya
| | - Ahmed Ramadan Eldesoky
- Clinical Oncology and Nuclear Medicine Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Heba Sheta
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Yao J, Lin X, Zhang X, Xie M, Ma X, Bao X, Song J, Liang Y, Wang Q, Xue X. Predictive biomarkers for immune checkpoint inhibitors therapy in lung cancer. Hum Vaccin Immunother 2024; 20:2406063. [PMID: 39415535 PMCID: PMC11487980 DOI: 10.1080/21645515.2024.2406063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 10/18/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed the treatment mode of lung cancer, extending the survival time of patients unprecedentedly. Once patients respond to ICIs, the median duration of response is usually longer than that achieved with cytotoxic or targeted drugs. Unfortunately, there is still a large proportion of lung cancer patients do not respond to ICI. Effective biomarkers are crucial for identifying lung cancer patients who can benefit from them. The first predictive biomarker is programmed death-ligand 1 (PD-L1), but its predictive value is limited to specific populations. With the development of single-cell sequencing and spatial imaging technologies, as well as the use of deep learning and artificial intelligence, the identification of predictive biomarkers has been greatly expanded. In this review, we will dissect the biomarkers used to predict ICIs efficacy in lung cancer from the tumor-immune microenvironment and host perspectives, and describe cutting-edge technologies to further identify biomarkers.
Collapse
Affiliation(s)
- Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinyu Bao
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Jialin Song
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qiqi Wang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
4
|
Zhang X, Cao J, Li X, Zhang Y, Yan W, Ding B, Hu J, Liu H, Chen X, Nie Y, Liu F, Lin N, Wang S. Comprehensive Analysis of the SUMO-related Signature: Implication for Diagnosis, Prognosis, and Immune Therapeutic Approaches in Cervical Cancer. Biochem Genet 2024; 62:4654-4678. [PMID: 38349439 DOI: 10.1007/s10528-024-10728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/30/2024] [Indexed: 11/29/2024]
Abstract
SUMOylation, an important post-translational protein modification, plays a critical role in cancer development and immune processes. This study aimed to construct diagnostic and prognostic models for cervical cancer (CC) using SUMOylation-related genes (SRGs) and explore their implications for novel clinical therapies. We analyzed the expression profiles of SRGs in CC patients and identified 15 SRGs associated with CC occurrence. After the subsequent qPCR verification of 20 cases of cancer and adjacent tissues, 13 of the 15 SRGs were differentially expressed in cancer tissues. Additionally, we identified molecular markers associated with the prognosis and recurrence of CC patients, based on SRGs. Next, a SUMOScore, based on SRG expression patterns, was generated to stratify patients into different subgroups. The SUMOScore showed significant associations with the tumor microenvironment, immune function features, immune checkpoint expression, and immune evasion score in CC patients, highlighting the strong connection between SUMOylation factors and immune processes. In terms of immune therapy, our analysis identified specific chemotherapy drugs with higher sensitivity in the subgroups characterized by high and low SUMOScore, indicating potential treatment options. Furthermore, we conducted drug sensitivity analysis to evaluate the response of different patient subgroups to conventional chemotherapy drugs. Our findings revealed enrichment of immune-related pathways in the low-risk subgroup identified by the prognostic model. In conclusion, this study presents diagnostic and prognostic models based on SRGs, accompanied by a comprehensive index derived from SRGs expression patterns. These findings offer valuable insights for CC diagnosis, prognosis, treatment, and immune-related analysis.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Jian Cao
- Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Xiuting Li
- School of Health Management and Basic Science, Jiangsu Health Vocational College, Nanjing, 210029, China
| | - Yan Zhang
- School of Medicine, Shihezi University, Xinjiang, 832003, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Bo Ding
- Department of Gynecology and Obstetrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Xue Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Yamei Nie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Fengying Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Ning Lin
- Jiangsu Institute of Planned Parenthood Research, Nanjing, 210036, China.
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.
| |
Collapse
|
5
|
He L, Li L. Case report: MSI-H, EGFR mutation, and ground-glass nodules as diffuse pulmonary hematogenous metastases. Front Immunol 2024; 15:1478205. [PMID: 39530096 PMCID: PMC11550958 DOI: 10.3389/fimmu.2024.1478205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Ground-glass nodules (GGNs) are generally considered an early stage of lung cancer. The imaging characteristics and curative efficacy of multiple GGNs as metastases remain unclear. Microsatellite instability-high (MSI-H) is a biomarker for immunotherapy. The therapeutic effect and prognosis for patients with MSI-H and Epidermal Growth Factor Receptor (EGFR)-sensitive mutation stays uncertain. Here, we report a case of a lung adenocarcinoma patient presenting with ground-glass metastases, MSI-H, and EGFR-sensitive mutation and provide clinical data on the efficacy and prognosis. We describe the predictive significance of carcinoembryonic antigen (CEA) for disease progression when there is inconsistency between treatment effectiveness and CEA changes.
Collapse
Affiliation(s)
- Liuer He
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Lin Li
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Rosca OC, Vele OE. Microsatellite Instability, Mismatch Repair, and Tumor Mutation Burden in Lung Cancer. Surg Pathol Clin 2024; 17:295-305. [PMID: 38692812 DOI: 10.1016/j.path.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Since US Food and Drug Administration approval of programmed death ligand 1 (PD-L1) as the first companion diagnostic for immune checkpoint inhibitors (ICIs) in non-small cell lung cancer, many patients have experienced increased overall survival. To improve selection of ICI responders versus nonresponders, microsatellite instability/mismatch repair deficiency (MSI/MMR) and tumor mutation burden (TMB) came into play. Clinical data show PD-L1, MSI/MMR, and TMB are independent predictive immunotherapy biomarkers. Harmonization of testing methodologies, optimization of assay design, and results analysis are ongoing. Future algorithms to determine immunotherapy eligibility might involve complementary use of current and novel biomarkers. Artificial intelligence could facilitate algorithm implementation to convert complex genetic data into recommendations for specific ICIs.
Collapse
Affiliation(s)
- Oana C Rosca
- Molecular Pathologist/Cytopathologist, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell; Department of Pathology and Laboratory Medicine, 2200 Northern Boulevard, Suite 104, Greenvale, NY 11548, USA.
| | - Oana E Vele
- Molecular Pathologist/Cytopathologist, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell; Department of Pathology and Laboratory Medicine, Lenox Hill Hospital, New York, NY 10075, USA
| |
Collapse
|
7
|
Choi J, Park KH, Kim YH, Sa JK, Sung HJ, Chen YW, Chen Z, Li C, Wen W, Zhang Q, Shu XO, Zheng W, Kim JS, Guo X. Large-Scale Cancer Genomic Analysis Reveals Significant Disparities between Microsatellite Instability and Tumor Mutational Burden. Cancer Epidemiol Biomarkers Prev 2024; 33:712-720. [PMID: 38393316 DOI: 10.1158/1055-9965.epi-23-1466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Microsatellite instability (MSI) and tumor mutational burden (TMB) are predictive biomarkers for pan-cancer immunotherapy. The interrelationship between MSI-high (MSI-H) and TMB-high (TMB-H) in human cancers and their predictive value for immunotherapy in lung cancer remain unclear. METHODS We analyzed somatic mutation data from the Genomics Evidence Neoplasia Information Exchange (n = 46,320) to determine the relationship between MSI-H and TMB-H in human cancers using adjusted multivariate regression models. Patient survival was examined using the Cox proportional hazards model. The association between MSI and genetic mutations was assessed. RESULTS Patients (31-89%) with MSI-H had TMB-low phenotypes across 22 cancer types. Colorectal and stomach cancers showed the strongest association between TMB and MSI. TMB-H patients with lung cancer who received immunotherapy exhibited significantly higher overall survival [HR, 0.61; 95% confidence interval (CI), 0.44-0.86] and progression-free survival (HR, 0.65; 95% CI, 0.47-0.91) compared to the TMB-low group; no significant benefit was observed in the MSI-H group. Patients with TMB and MSI phenotypes showed further improvement in overall survival and PFS. We identified several mutated genes associated with MSI-H phenotypes, including known mismatch repair genes and novel mutated genes, such as ARID1A and ARID1B. CONCLUSIONS Our results demonstrate that TMB-H and/or a combination of MSI-H can serve as biomarkers for immunotherapies in lung cancer. IMPACT These findings suggest that distinct or combined biomarkers should be considered for immunotherapy in human cancers because notable discrepancies exist between MSI-H and TMB-H across different cancer types.
Collapse
Affiliation(s)
- Jungyoon Choi
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Kyong Hwa Park
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yeul Hong Kim
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jason K Sa
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hwa Jung Sung
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Yu-Wei Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Chao Li
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Qingrun Zhang
- Department of Mathematics and Statistics, Alberta Children's Hospital Research Institute, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jung Sun Kim
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
8
|
Cani M, Novello S, Bironzo P. Mismatch Repair Deficiency in Lung Tumors: Adding a New Layer of Complexity on Pie Slices. J Thorac Oncol 2024; 19:363-365. [PMID: 38453321 DOI: 10.1016/j.jtho.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 03/09/2024]
Affiliation(s)
- Massimiliano Cani
- Oncology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy
| | - Silvia Novello
- Oncology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy.
| | - Paolo Bironzo
- Oncology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy
| |
Collapse
|
9
|
Yang SR, Gedvilaite E, Ptashkin R, Chang J, Ziegler J, Mata DA, Villafania LB, Nafa K, Hechtman JF, Benayed R, Zehir A, Benhamida J, Arcila ME, Mandelker D, Rudin CM, Paik PK, Drilon A, Schoenfeld AJ, Ladanyi M. Microsatellite Instability and Mismatch Repair Deficiency Define a Distinct Subset of Lung Cancers Characterized by Smoking Exposure, High Tumor Mutational Burden, and Recurrent Somatic MLH1 Inactivation. J Thorac Oncol 2024; 19:409-424. [PMID: 37838086 PMCID: PMC10939956 DOI: 10.1016/j.jtho.2023.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
INTRODUCTION Microsatellite instability (MSI) and mismatch repair (MMR) deficiency represent a distinct oncogenic process and predict response to immune checkpoint inhibitors (ICIs). The clinicopathologic features of MSI-high (MSI-H) and MMR deficiency (MMR-D) in lung cancers remain poorly characterized. METHODS MSI status from 5171 patients with NSCLC and 315 patients with SCLC was analyzed from targeted next-generation sequencing data using two validated bioinformatic pipelines. RESULTS MSI-H and MMR-D were identified in 21 patients with NSCLC (0.41%) and six patients with SCLC (1.9%). Notably, all patients with NSCLC had a positive smoking history, including 11 adenocarcinomas. Compared with microsatellite stable cases, MSI-H was associated with exceptionally high tumor mutational burden (37.4 versus 8.5 muts/Mb, p < 0.0001), MMR mutational signatures (43% versus 0%, p < 0.0001), and somatic biallelic alterations in MLH1 (52% versus 0%, p < 0.0001). Loss of MLH1 and PMS2 expression by immunohistochemistry was found in MLH1 altered and wild-type cases. Similarly, the majority of patients with MSI-H SCLC had evidence of MLH1 inactivation, including two with MLH1 promoter hypermethylation. A single patient with NSCLC with a somatic MSH2 mutation had Lynch syndrome as confirmed by the presence of a germline MSH2 mutation. Among patients with advanced MSI-H lung cancers treated with ICIs, durable clinical benefit was observed in three of eight patients with NSCLC and two of two patients with SCLC. In NSCLC, STK11, KEAP1, and JAK1 were mutated in nonresponders but wild type in responders. CONCLUSIONS We present a comprehensive clinicogenomic landscape of MSI-H lung cancers and reveal that MSI-H defines a rare subset of lung cancers associated with smoking, high tumor mutational burden, and MLH1 inactivation. Although durable clinical benefit to ICI was observed in some patients, the broad range of responses suggests that clinical activity may be modulated by co-mutational landscapes.
Collapse
Affiliation(s)
- Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Erika Gedvilaite
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ryan Ptashkin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason Chang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John Ziegler
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Douglas A Mata
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Liliana B Villafania
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Khedoudja Nafa
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jaclyn F Hechtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ryma Benayed
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmet Zehir
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jamal Benhamida
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria E Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul K Paik
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adam J Schoenfeld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
10
|
Yang M, Yu P, He Z, Deng J. Case report: Target and immunotherapy of a lung adenocarcinoma with enteric differentiation, EGFR mutation, and high microsatellite instability. Front Immunol 2024; 14:1266304. [PMID: 38332908 PMCID: PMC10850318 DOI: 10.3389/fimmu.2023.1266304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024] Open
Abstract
Background Pulmonary enteric adenocarcinoma (PEAC) is a rare histological subtype of non-small-cell lung cancer (NSCLC) with a predominant (>50%) enteric differentiation component. The frequency of high microsatellite instability (MSI-H) is very low in lung cancer. EGFR tyrosine kinase inhibitors and immunotherapy are standard treatment for NSCLC patients, but their effectiveness in lung adenocarcinoma with pulmonary enteric differentiation is unknown. Case presentation This report describes a 66-year-old man who was initially diagnosed with metastatic lung adenocarcinoma with EGFR mutation based on pleural fluid. A lung biopsy was obtained after 17 months of first-line icotinib treatment. Histological analysis of biopsy samples and endoscopic examination resulted in a diagnosis of adenocarcinoma with enteric differentiation. Next-generation sequencing of 1,021 genes showed EGFR E19del, T790M, and MSI-H, while immunohistochemical assay showed proficient expression of mismatch repair (MMR) proteins. Consequently, the patient was treated with osimertinib and had a progression-free survival (PFS) of 3 months. His treatment was changed to chemotherapy with/without bevacizumab for 6.5 months. Then, the patient was treated with one cycle of camrelizumab monotherapy and camrelizumab plus chemotherapy, respectively. The tumor continued to grow, and the patient suffered pneumonia, pulmonary fungal infections, and increased hemoptysis. He received gefitinib and everolimus and died 2 months later and had an overall survival of 30 months. Conclusion In summary, our case describes a rare pulmonary enteric adenocarcinoma with an EGFR-activating mutation and MSI-H, responding to an EGFR tyrosine kinase inhibitor and poorly benefiting from an immune checkpoint inhibitor.
Collapse
Affiliation(s)
- Meiling Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pengli Yu
- Department of Medicine, Geneplus Beijing, Beijing, China
| | - Zhiyi He
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingmin Deng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
11
|
Yuan T, Zhang S, He S, Ma Y, Chen J, Gu J. Bacterial lipopolysaccharide related genes signature as potential biomarker for prognosis and immune treatment in gastric cancer. Sci Rep 2023; 13:15916. [PMID: 37741901 PMCID: PMC10517958 DOI: 10.1038/s41598-023-43223-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
The composition of microbial microenvironment is an important factor affecting the development of tumor diseases. However, due to the limitations of current technological levels, we are still unable to fully study and elucidate the depth and breadth of the impact of microorganisms on tumors, especially whether microorganisms have an impact on cancer. Therefore, the purpose of this study is to conduct in-depth research on the role and mechanism of prostate microbiome in gastric cancer (GC) based on the related genes of bacterial lipopolysaccharide (LPS) by using bioinformatics methods. Through comparison in the Toxin Genomics Database (CTD), we can find and screen out the bacterial LPS related genes. In the study, Venn plots and lasso analysis were used to obtain differentially expressed LPS related hub genes (LRHG). Afterwards, in order to establish a prognostic risk score model and column chart in LRHG features, we used univariate and multivariate Cox regression analysis for modeling and composition. In addition, we also conducted in-depth research on the clinical role of immunotherapy with TMB, MSI, KRAS mutants, and TIDE scores. We screened 9 LRHGs in the database. We constructed a prognostic risk score and column chart based on LRHG, indicating that low risk scores have a protective effect on patients. We particularly found that low risk scores are beneficial for immunotherapy through TIDE score evaluation. Based on LPS related hub genes, we established a LRHG signature, which can help predict immunotherapy and prognosis for GC patients. Bacterial lipopolysaccharide related genes can also be biomarkers to predict progression free survival in GC patients.
Collapse
Affiliation(s)
- Tianyi Yuan
- Nantong Integrated Traditional Chinese and Western Medicine Hospital, Nantong, Jiangsu, China
| | - Siming Zhang
- Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Songnian He
- Nantong Integrated Traditional Chinese and Western Medicine Hospital, Nantong, Jiangsu, China
| | - Yijie Ma
- Nantong Integrated Traditional Chinese and Western Medicine Hospital, Nantong, Jiangsu, China
| | - Jianhong Chen
- Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Jue Gu
- Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
12
|
Hofman P. Implementation of the clinical practice of liquid biopsies for thoracic oncology the experience of the RespirERA university hospital institute (Nice, France). THE JOURNAL OF LIQUID BIOPSY 2023; 1:100004. [PMID: 40027288 PMCID: PMC11863941 DOI: 10.1016/j.jlb.2023.100004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 03/05/2025]
Abstract
According to international guidelines, it is mandatory to evaluate predictive biomarkers of targeted therapies and the response to immune check point inhibitors for patients with non-squamous non-small cell lung cancer (NS-NSCLC). For this purpose, a tissue sample is nowadays the gold standard, but biofluids, particularly peripheral blood, can be a complementary and sometimes an alternative approach to assess the status of different druggable genomic alterations of advanced NS-NSCLC. A liquid biopsy (LB) is an attractive approah for better treatment decision-making by thoracic oncologists for NSCLC patients in daily practice at both initial diagnosis and tumor progression. We describe the experience of a clinical and molecular pathology laboratory (LPCE, Nice, France) developing the use of in-house LB in thoracic oncology. Moreover, we report the changes in clinical care, the advantages, but also the possible constraints associated with implantation of LB in routine clinical practice.
Collapse
Affiliation(s)
- Paul Hofman
- Côte d’Azur University, IHU RespirERA, FHU OncoAge, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, Nice, France
- Côte d’Azur University, IRCAN, Inserm U1081, CNRS 7284, France
| |
Collapse
|