1
|
Xi Q, Chen Q, Ahmad W, Pan J, Zhao S, Xia Y, Ouyang Q, Chen Q. Quantitative analysis and visualization of chemical compositions during shrimp flesh deterioration using hyperspectral imaging: A comparative study of machine learning and deep learning models. Food Chem 2025; 481:143997. [PMID: 40174377 DOI: 10.1016/j.foodchem.2025.143997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/27/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
The current work explores hyperspectral imaging (HSI) to quantitatively identify changes in TVB-N and K value during shrimp flesh deterioration. The work developed low-level data fusion (LLF) and predictive models using both machine learning methods (PLS) and deep learning methods (CNN, LSTM, CNN-LSTM). Results indicate that deep learning methods show comparable performance due to their superior feature extraction and fitting capabilities, but traditional chemometric methods outperform deep learning models, achieving Rp2 = 0.9431 (TVB-N), and Rp2 = 0.9815 (K value). Subsequently, spatial distribution maps were generated based on the optimal predictive models to visualize the chemical composition changes in shrimp flesh. This approach allows for rapid, non-destructive prediction of spoilage-related changes. This technology can monitor shrimp quality in cold chain logistics, improve inventory management, and ensure seafood quality. Future research should optimize models for varied conditions and explore combining HSI method with other sensor technologies to enhance shrimp quality evaluation comprehensively and accurately.
Collapse
Affiliation(s)
- Qibing Xi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingmin Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Waqas Ahmad
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jing Pan
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Songguang Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yu Xia
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
2
|
Aarslev Jensen H, Hansen LT, Bøknæs N, Mejlholm O, Jacobsen C, Dalgaard P. Northern shrimp ( Pandalus borealis) - a review on biology, catch, processing, quality changes, shelf-life and product safety. Crit Rev Food Sci Nutr 2025:1-34. [PMID: 40411766 DOI: 10.1080/10408398.2025.2505241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2025]
Abstract
Pandalus borealis is a commercially important wild-caught shrimp species with more than 250,000 tons/year being processed into a wide range of products. This review discusses the biology of P. borealis in relation to catch, processing and characteristics of seafood products including sensory and safe shelf-life. Biochemical, chemical, physiochemical and microbial spoilage reactions are discussed to establish (i) indices of spoilage for instrumental shelf-life determination, (ii) kinetic models for shelf-life prediction and (iii) preservation procedures for shelf-life extension. Free amino acids in P. borealis confer a unique sweet taste to products and polyunsaturated fatty acids contribute to good nutritional properties. Spoilage of frozen P. borealis products is caused by oxidation of lipids and shelf-life can be markedly extended by glazing with brines containing antioxidants. Spoilage of chilled products is due to high concentrations of bacteria and their formation of volatile amines that can be used as indices of spoilage. Developed predictive growth models facilitate design of new brined shrimp recipes with low salt and high pH to maintain desirable nutritional and flavor properties, while also inhibiting growth of Listeria monocytogenes and Clostridium botulinum during chilled storage. Future research should focus on sustainable processing and optimal use of the entire animal as food.
Collapse
Affiliation(s)
- Hanne Aarslev Jensen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
- Royal Greenland Seafood A/S, Svenstrup J, Denmark
| | | | - Niels Bøknæs
- Royal Greenland Seafood A/S, Svenstrup J, Denmark
| | - Ole Mejlholm
- Royal Greenland Seafood A/S, Svenstrup J, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Paw Dalgaard
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Huang Z, Wang Q, Cao J, Zhou D, Li C. Mechanisms of polyphenols on quality control of aquatic products in storage: A review. Crit Rev Food Sci Nutr 2024; 64:6298-6317. [PMID: 36655433 DOI: 10.1080/10408398.2023.2167803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aquatic products are easily spoiled during storage due to oxidation, endogenous enzymes, and bacteria. At the same time, compared with synthetic antioxidants, based on the antibacterial and antioxidant mechanism of biological agents, the development of natural, nontoxic, low-temperature, better-effect green biological preservatives is more acceptable to consumers. The type and molecular structure of polyphenols affect their antioxidant and antibacterial effectiveness. This review will describe how they achieve their antioxidant and antibacterial effects. And the recent literature on the mechanism and application of polyphenols in the preservation of aquatic products was updated and summarized. The conclusion is that in aquatic products, polyphenols alleviate lipid oxidation, protein degradation and inhibit the growth and reproduction of microorganisms, so as to achieve the effect of storage quality control. And put forward suggestions on the application of the research results in aquatic products. We hope to provide theoretical support for better exploration of the application of polyphenols and aquatic product storage.
Collapse
Affiliation(s)
- Zhiliang Huang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qi Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Dayong Zhou
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Qian YF, Lin T, Xie J, Yang SP. Effect of modified atmosphere packaging with different gas mixtures on the texture and muscle proteins of Pacific white shrimp ( Litopenaeus vannamei) during cold storage. FOOD SCI TECHNOL INT 2023; 29:809-817. [PMID: 35996328 DOI: 10.1177/10820132221121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, the effect of modified atmosphere packaging with different gas mixtures on texture and muscle properties of Pacific white shrimp (Litopenaeus vannamei) during refrigerated storage was studied via texture profile, water holding capacity (WHC), protein properties (Ca2+-ATPase, TCA-soluble peptides, myofibrillar/sarcoplasmic protein content), and microbial counts. The results showed that the antibacterial effect of Modified atmosphere packaging (MAP) was correlated with the increase of CO2 with the presence of low level of O2. Though MAP without O2 had a higher whiteness value but also had higher bacterial counts and total volatile basic nitrogen (TVB-N) values compared with other MAP-groups. In general, a gas composition of 80% CO2 + 5%O2 + 15% N2 treatment had lowest microbial counts and reduced TVB-N values by 22.85% in comparison with the control on day 10. However, MAP was found to have a complicated impact on muscle protein and texture of shrimp. 60% CO2 + 5% O2 + 35% N2 and 40% CO2 + 5% O2 + 55% N2 had an advantage in maintaining springiness and the content of myofibrillar/sarcoplasmic proteins. The correlation analysis showed that WHC had stronger relationship with springiness, resilience, myofibrillar protein content. Therefore, regarding the texture and protein properties, the concentration of CO2 in MAP for Pacific white shrimp should not be higher than 60%.
Collapse
Affiliation(s)
- Yun-Fang Qian
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Ting Lin
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Sheng-Ping Yang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Zhao N, Zhang X, Zhang Z, Guo X, Ma R, Meng Y, Li Y. Effects of ellagic acid and ε-polylysine hydrochloride on the content of biogenic amines, volatile compounds and quality of salmon slices during chilled storage. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2023. [DOI: 10.1515/ijfe-2022-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Abstract
This study aimed to investigate effects of ellagic acid (EA) and ε-polylysine hydrochloride (ε-PL) on biogenic amines (BAs), volatile compounds and quality of salmon slices stored at 4 °C. The results showed that EA and ε-PL attenuated the production of BAs, retarded the increase of TVC, TVB-N and TBARS. Additionally, water mobility, texture properties of salmon slices were also stabilized by the EA and ε-PL. Volatile compounds including aldehydes, alcohols and hydrocarbons were identified and spoilage-related compounds reduced by the EA and ε-PL, which was related to the inhibition of bacterial, TVB-N and TBA growth by EA and ε-PL. The content of phencthylamine, putrescine, cadaverine, histamine and tyramine in EA-s-PL groups reduced by 46.53%, 54.1%, 26.42%, 31.98% and 45.37% compared to the control group at the end of storage, respectively. Therefore, EA and ε-PL can be applied for inhibiting the increase of BAs and delaying quality deterioration of salmon slices.
Collapse
Affiliation(s)
- Nan Zhao
- College of Food Science and Technology , Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products , Jinzhou 121013 , China
| | - Xinyuan Zhang
- College of Food Science and Technology , Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products , Jinzhou 121013 , China
| | - Zian Zhang
- College of Food Science and Technology , Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products , Jinzhou 121013 , China
| | - Xiaohua Guo
- Shandong Meijia Group Co., Ltd , Rizhao , Shandong 276815 , China
| | - Rui Ma
- Qinghai University , Xining 810016 , China
| | | | - Yingchang Li
- College of Food Science and Technology , Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products , Jinzhou 121013 , China
| |
Collapse
|
6
|
Sun K, Pan C, Chen S, Liu S, Hao S, Huang H, Wang D, Xiang H. Quality changes and indicator proteins of Litopenaeus vannamei based on label-free proteomics analysis during partial freezing storage. Curr Res Food Sci 2022; 6:100415. [PMID: 36569191 PMCID: PMC9772802 DOI: 10.1016/j.crfs.2022.100415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Litopenaeus vannamei are known to deteriorate in quality during low-temperature storage. This study demonstrated the potential protein indicators of partial freezing of stored shrimp by traditional quality parameters and label-free based proteomic techniques. The carbonyl content and myofibril fragmentation index (MFI) of shrimp increased from 0.56 ± 0.03 to 2.14 ± 0.03 nmol/mg and 13.09 ± 0.14 to 54.93 ± 0.96, respectively. Within the extension of storage, the trichloroacetic acid (TCA), cooking loss and whiteness significantly increased. A total of 240 proteins changed in abundance at 10, 20, and 30 days compared to fresh samples. Projectin, ribosomal protein and histone were potential biomarkers for protein denaturation and oxidation in shrimp muscle. Myosin heavy chain and glyceraldehyde-3-phosphate dehydrogenase corresponded with the degradation of muscle proteins. Myosin light chain, tubulin alpha chain, and heat shock protein correlated with tenderness and water holding capacity; meantime, malate dehydrogenase and hemocyanin can serve as color indicators. Further study of the properties of these indicator proteins can inform their exploitation as quality indicator proteins during partial freezing storage.
Collapse
Affiliation(s)
- Kangting Sun
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China,College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Chuang Pan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China,Corresponding author. Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China,Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, China,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China,Corresponding author. Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shuxian Hao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Hui Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Di Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| |
Collapse
|
7
|
Effects of Modified Atmosphere Packaging with Varied CO 2 and O 2 Concentrations on the Texture, Protein, and Odor Characteristics of Salmon during Cold Storage. Foods 2022; 11:foods11223560. [PMID: 36429151 PMCID: PMC9689085 DOI: 10.3390/foods11223560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
The effect of gas ratio on the growth of bacteria has been well demonstrated, but some adverse effects of modified atmosphere packaging (MAP) on seafoods have also been found. To provide a better understanding of the effects of CO2 and O2 concentrations (CO2 from 40% to 100% and O2 from 0% to 30%) in MAP on the texture and protein contents and odor characteristics of salmon during cold storage, the physiochemical, microbial, and odor indicators were compared with those without treatment (CK). Generally, MAP treatments hindered the increase of microbial counts, total volatile basic nitrogen, and TCA-soluble peptides, and decreased the water-holding capacity, hardness, springiness, and sarcoplasmic and myofibrillar protein contents. The results also indicated that 60%CO2/10%O2/30%N2 was optimal and decreased the total mesophilic bacterial counts by 2.8 log cfu/g in comparison with CK on day 12. In agreement, the concentration of CO2 of 60% showed the lowest myofibrillar protein degradation, and less subsequent loss of hardness. The electronic nose characteristics analysis indicated that 60%CO2/20%O2/20%N2 and 60%CO2/10%O2/30%N2 had the best effect to maintain the original odor profiles of salmon. The correlation analysis demonstrated that microbial growth had a strong relationship with myofibrillar and sarcoplasmic protein content. It can be concluded that 60%CO2/10%O2/30%N2 displayed the best effect to achieve the goal of preventing protein degradation and odor changes in salmon fillets.
Collapse
|
8
|
Laorenza Y, Chonhenchob V, Bumbudsanpharoke N, Jittanit W, Sae-tan S, Rachtanapun C, Chanput WP, Charoensiddhi S, Srisa A, Promhuad K, Wongphan P, Harnkarnsujarit N. Polymeric Packaging Applications for Seafood Products: Packaging-Deterioration Relevance, Technology and Trends. Polymers (Basel) 2022; 14:polym14183706. [PMID: 36145850 PMCID: PMC9504574 DOI: 10.3390/polym14183706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/17/2022] Open
Abstract
Seafood is a highly economical product worldwide. Primary modes of deterioration include autolysis, oxidation of protein and lipids, formation of biogenic amines and melanosis, and microbial deterioration. These post-harvest losses can be properly handled if the appropriate packaging technology has been applied. Therefore, it is necessary for packaging deterioration relevance to be clearly understood. This review demonstrates recent polymeric packaging technology for seafood products. Relationship between packaging and quality deterioration, including microbial growth and chemical and biochemical reactions, are discussed. Recent technology and trends in the development of seafood packaging are demonstrated by recent research articles and patents. Development of functional polymers for active packaging is the largest area for seafood applications. Intelligent packaging, modified atmosphere packaging, thermal insulator cartons, as well as the method of removing a fishy aroma have been widely developed and patented to solve the specific and comprehensive quality issues in seafood products. Many active antioxidant and antimicrobial compounds have been found and successfully incorporated with polymers to preserve the quality and monitor the fish freshness. A thermal insulator has also been developed for seafood packaging to preserve its freshness and avoid deterioration by microbial growth and enzymatic activity. Moreover, the enhanced biodegradable tray is also innovative as a single or bulk fish container for marketing and distribution. Accordingly, this review shows emerging polymeric packaging technology for seafood products and the relevance between packaging and seafood qualities.
Collapse
Affiliation(s)
- Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Vanee Chonhenchob
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nattinee Bumbudsanpharoke
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Weerachet Jittanit
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Sudathip Sae-tan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Chitsiri Rachtanapun
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Wasaporn Pretescille Chanput
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2-562-5045
| |
Collapse
|
9
|
In-Vitro Study on the Antibacterial and Antioxidant Activity of Four Commercial Essential Oils and In-Situ Evaluation of Their Effect on Quality Deterioration of Pacific White Shrimp (Litopenaeus vannamei) during Cold Storage. Foods 2022; 11:foods11162475. [PMID: 36010475 PMCID: PMC9407435 DOI: 10.3390/foods11162475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The antioxidant and antibacterial properties of four essential oils (oregano essential oil (OEO), tea tree essential oil (TTEO), wild orange essential oil (WOEO), and clove leaf essential oil (CLEO)) were determined. The in-vitro experiment indicated that CLEO had the highest total phenolic content and DPPH scavenging activity, and OEO displayed the highest antibacterial effect, so they were applied to maintain the quality of shrimp for further study. In-situ study, the total viable counts of shrimp were inhibited from 9.05 log CFU/g to 8.18 and 8.34 log CFU/g by 2% of OEO and CLEO treated alone on 10 d. The melanosis ratio was also retarded from 38.16% to 28.98% and 26.35% by the two essential oils. The inhibitory effects of OEO and CLEO on the increase of PPO activity, weight loss, and TCA-soluble peptides, and the decreasing tendency of whiteness, the contents of myofibrillar and sarcoplasmic proteins were also founded. The samples treated with 1% OEO + 1% CLEO had better quality than those treated alone. Therefore, the combination of OEO and CLEO had a synergistic effect, which displayed the highest efficiency to prevent the melanosis, bacterial growth, and protein hydrolysis of shrimp.
Collapse
|
10
|
Ding X, Cai S, Chen X, Wang L, Hong C, Liu G. Fabrication and Electrochemical Study of [(2,2′-bipy/P2Mo18)10] Multilayer Composite Film Modified Electrode for Electrocatalytic Detection of Tyrosinase in Penaeus vannamei. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
He Y, Xie Z, Xu Y, Zhao X, Zhao L, Yang H. Preservative effect of slightly acid electrolysed water ice generated by the developed sanitising unit on shrimp (Penaeus vannamei). Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Fang H, Zhuang Z, Huang L, Zhao W, Niu J. Dietary Klebsormidium sp. Supplementation Improves Growth Performance, Antioxidant and Anti-Inflammatory Status, Metabolism, and Mid-Intestine Morphology of Litopenaeus Vannamei. Front Nutr 2022; 9:857351. [PMID: 35634387 PMCID: PMC9136981 DOI: 10.3389/fnut.2022.857351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/07/2022] [Indexed: 11/14/2022] Open
Abstract
Filamentous microalga Klebsormidium sp. has huge potential to become a natural and healthy additive in aquatic feed since it contains various bioactive nutrients, such as linoleic acid (LA), carotenoids, and chlorophylls. Therefore, an eight-week feeding experiment was performed to evaluate the effects of dietary Klebsormidium sp. on the growth performance, antioxidant and anti-inflammatory status, metabolism, and mid-intestine morphology of Litopenaeus vannamei. Two isonitrogenous and isolipid diets supplemented with and without 5% Klebsormidium sp. were prepared. Results showed that L. vannamei fed with Klebsormidium sp. had better growth performance and feed utilization by optimizing mid-intestine morphology and improving the carbohydrate metabolism. In addition, Klebsormidium sp. also enhanced the antioxidant capacity of L. vannamei by downregulating antioxidant parameters (hepatopancreas T-SOD, hepatopancreas GSH-PX, hemolymph T-SOD, hemolymph MDA) and RNA expression levels of antioxidant genes (gsh-px and cat). Furthermore, the supplementations of dietary Klebsormidium sp. significantly improved hepatopancreas health by downregulating RNA expression levels of pro-inflammatory related genes (relish and rho). Therefore, a dose of 5% Klebsormidium sp. is recommended for the daily diet of L. vannamei to improve the growth performance, antioxidant and anti-inflammatory status, metabolism, and mid-intestine morphology of shrimp.
Collapse
Affiliation(s)
- HaoHang Fang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Institute of Marine Research, Bergen, Norway
| | - ZhenXiao Zhuang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - LuoDong Huang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wei Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wei Zhao
| | - Jin Niu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Jin Niu
| |
Collapse
|
13
|
Yi Z, Xie J. Comparative Proteomics Reveals the Spoilage-Related Factors of Shewanella putrefaciens Under Refrigerated Condition. Front Microbiol 2021; 12:740482. [PMID: 34925259 PMCID: PMC8678035 DOI: 10.3389/fmicb.2021.740482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Shewanella putrefaciens is a microorganism with strong spoilage potential for aquatic products. This study aimed to investigate the potential spoilage factors of S. putrefaciens by comparative proteomic analysis. The spoilage potential of two strains of S. putrefaciens (00A and 00B) isolated from chilled spoiled bigeye tuna was investigated. The results of total volatile basic nitrogen (TVB-N), trimethylamine (TMA) in fish inoculated with S. putrefaciens, extracellular protease activity of S. putrefaciens, and degradation of fish proteins indicated that the spoilage potential of S. putrefaciens 00A was much higher than that of 00B. Fish proteins are usually degraded by spoilage microorganism proteases into small molecular peptides and amino acids, which are subsequently degraded into spoilage metabolites in bacterial cells, leading to deterioration of fish quality. Thus, proteomic analysis of the extracellular and intracellular proteins of 00A vs. 00B was performed. The results indicated that the intracellular differentially expressed protein (IDEP) contained 243 upregulated proteins and 308 downregulated proteins, while 78 upregulated proteins and 4 downregulated proteins were found in the extracellular differentially expressed protein (EDEP). GO annotation revealed that IDEP and EDEP were mainly involved in cellular and metabolic processes. KEGG annotation results showed that the upregulated proteins in IDEP were mainly involved in sulfur metabolism, amino acid metabolism, and aminoacyl-tRNA biosynthesis, while downregulated proteins were related to propanoate metabolism. In contrast, EDEP of KEGG annotation was mainly involved in ribosomes, quorum sensing, and carbohydrate metabolism. Proteins associated with spoilage containing sulfur metabolism (sulfite reductase, sulfate adenylyltransferase, adenylyl-sulfate kinase), amino acid metabolism (biosynthetic arginine decarboxylase, histidine ammonia-lyase), trimethylamine metabolism (trimethylamine-N-oxide reductase), and extracellular proteins (ATP-dependent Clp protease proteolytic subunit) were identified as upregulated. These proteins may play a key role in the spoilage potential of S. putrefaciens. These findings would contribute to the identification of key spoilage factors and understanding of the spoilage mechanism of microorganisms.
Collapse
Affiliation(s)
- Zhengkai Yi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
- Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian, China
| |
Collapse
|
14
|
Lan W, Sun Y, Chen M, Li H, Ren Z, Lu Z, Xie J. Effects of pectin combined with plant essential oils on water migration, myofibrillar proteins and muscle tissue enzyme activity of vacuum packaged large yellow croaker (Pseudosciaena crocea) during ice storage. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Hu C, Xie J. The effect of multiple freeze–thaw cycles on protein oxidation and quality of
Trachurus murphyi. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Chunlin Hu
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| |
Collapse
|
16
|
Shiekh KA, Benjakul S, Gulzar S. Impact of pulsed electric field and vacuum impregnation with Chamuang leaf extract on quality changes in Pacific white shrimp packaged under modified atmosphere. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Zhang X, Lan W, Xie J. Combined citric acid and rosemary extract to maintain the quality of chilled Pacific white shrimp (
Litopenaeus vannamei
). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xi Zhang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Weiqing Lan
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| |
Collapse
|
18
|
Combined hurdle effects of pulsed electric field and vacuum impregnation of Chamuang leaf extract on quality and shelf-life of Pacific white shrimp subjected to high voltage cold atmospheric plasma. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Shiekh KA, Zhou P, Benjakul S. Combined effects of pulsed electric field, Chamuang leaf extract and cold plasma on quality and shelf-life of Litopenaeus vannamei. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Recent Developments in Seafood Packaging Technologies. Foods 2021; 10:foods10050940. [PMID: 33923022 PMCID: PMC8145365 DOI: 10.3390/foods10050940] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Seafood products are highly perishable, owing to their high water activity, close to neutral pH, and high content of unsaturated lipids and non-protein nitrogenous compounds. Thus, such products require immediate processing and/or packaging to retain their safety and quality. At the same time, consumers prefer fresh, minimally processed seafood products that maintain their initial quality properties. The present article aims to review the literature over the past decade on: (i) innovative, individual packaging technologies applied to extend the shelf life of fish and fishery products, (ii) the most common combinations of the above technologies applied as multiple hurdles to maximize the shelf life of seafood products, and (iii) the respective food packaging legislation. Packaging technologies covered include: Modified atmosphere packaging; vacuum packaging; vacuum skin packaging; active food packaging, including oxygen scavengers; carbon dioxide emitters; moisture regulators; antioxidant and antimicrobial packaging; intelligent packaging, including freshness indicators; time–temperature indicators and leakage indicators; retort pouch processing and edible films; coatings/biodegradable packaging, used individually or in combination for maximum preservation potential.
Collapse
|
21
|
Effect of high voltage cold atmospheric plasma processing on the quality and shelf-life of Pacific white shrimp treated with Chamuang leaf extract. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102435] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Xie W, Huang Y, Xiang Y, Xiong S, Manyande A, Du H. Insights into the Binding Mechanism of Polyphenols and Fish Myofibrillar Proteins Explored Using Multi-spectroscopic Methods. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02439-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Xie J, Wang Z, Wang S, Qian YF. Textural and quality changes of hairtail fillets (Trichiurus haumela) related with water distribution during simulated cold chain logistics. FOOD SCI TECHNOL INT 2019; 26:291-299. [DOI: 10.1177/1082013219888306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the total viable counts, sensory and physicochemical qualities (total volatile basic nitrogen, K-value, thiobarbituric acid reactive substances value, water holding capacity and texture parameters), as well as water distribution of fresh hairtail fish during simulated cold chain. The results showed that total volatile basic nitrogen, thiobarbituric acid reactive substances and K-values increased with the increasing time, while sensory scores, water holding capacity, hardness and elasticity decreased. The transverse relaxation time T2 data detected by low-field nuclear magnetic resonance also showed that T22 (trapped water) gradually decreased with the increasing time, while T23 (free water) increased. It was observed that the quality deterioration of the fish fillets developed more quickly when the samples suffered frequent temperature fluctuations than they stored at higher but stable temperatures. The changes of T22 and T23 of both the samples stored at stable and fluctuated temperatures showed good correlations with sensory, total volatile basic nitrogen and thiobarbituric acid reactive substances values (R2 > 0.9, p < 0.05). Therefore, low-field nuclear magnetic resonance technology can be a potential tool to monitor the quality changes of hairtail fish during cold chain logistics.
Collapse
Affiliation(s)
- Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Zun Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Shuo Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Yun-Fang Qian
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| |
Collapse
|
24
|
Jia S, Liu Y, Zhuang S, Sun X, Li Y, Hong H, Lv Y, Luo Y. Effect of ε-polylysine and ice storage on microbiota composition and quality of Pacific white shrimp (Litopenaeus vannamei) stored at 0 °C. Food Microbiol 2019; 83:27-35. [DOI: 10.1016/j.fm.2019.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/29/2022]
|
25
|
Evaluation of water dynamics and protein changes in bigeye tuna (Thunnus obesus) during cold storage. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.076] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Effect of Cell-Free Supernatant from Aeromonas sobria on the Spoilage of Shewanella putrefaciens in Pacific White Shrimp (Litopenaeus vannamei) with the Influence of Temperature Fluctuation. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of this study was to evaluate the effect of cell-free supernatant (CFS) from Aeromonas sobria on the growth and spoilage potential of Shewanella putrefaciens in Pacific white shrimp (Litopenaeus vannamei) during cold chain logistics, including transportation, retailing, and domestic storage. It was shown that the quality of shrimps deteriorated in the cold chain logistics over time. The temperature fluctuation during the experimental period favored the growth of S. putrefaciens, increased the total volatile basic nitrogen (TVB-N) and biogenic amine value, and decreased the sensory quality of shrimps. The application of CFS resulted in the decline on the growth of S. putrefaciens after the early stationary phase stored at a cold condition. It is concluded that the application of CFS can inhibit microbial growth and the spoilage potential of S. putrefaciens and offset the quality deterioration of shrimp exposed to temperature fluctuation during cold chain logistics.
Collapse
|
27
|
Liao X, Su Y, Liu D, Chen S, Hu Y, Ye X, Wang J, Ding T. Application of atmospheric cold plasma-activated water (PAW) ice for preservation of shrimps (Metapenaeus ensis). Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.026] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Qian Y, Yang S, Ye JX, Xie J. Effect of quercetin-containing preservatives and modified atmospheric packaging on the production of biogenic amines in Pacific white shrimp (Litopenaeus vannamei). AQUACULTURE AND FISHERIES 2018. [DOI: 10.1016/j.aaf.2018.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Qian Y, Ye J, Yang S, Lin Z, Cao W, Xie J. Evaluation of the spoilage potential ofShewanella putrefaciens,Aeromonas hydrophila, andAeromonas sobriaisolated from spoiled Pacific white shrimp (Litopenaeus vannamei) during cold storage. J Food Saf 2018. [DOI: 10.1111/jfs.12550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yun‐Fang Qian
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| | - Jing‐Xin Ye
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
| | - Sheng‐Ping Yang
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| | - Zu‐Quan Lin
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
| | - Wei Cao
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| |
Collapse
|
30
|
Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. Int J Food Microbiol 2018; 280:87-99. [PMID: 29478710 DOI: 10.1016/j.ijfoodmicro.2017.12.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 01/12/2023]
Abstract
Seafood comprising of both vertebrate and invertebrate aquatic organisms are nutritious, rich in omega-3 fatty acids, essential vitamins, proteins, minerals and form part of healthy diet. However, despite the health and nutritional benefits, seafood is highly perishable. Spoilage of seafood could be as a result of microbial activity, autolysis or chemical oxidation. Microbial activity constitutes more spoilage than others. Spoilage bacteria are commonly Gram negative and produce off odours and flavours in seafood as a result of their metabolic activities. Storage temperature, handling and packaging conditions affect microbial growth and thus the shelf-life of seafood. Due to the complexity of the microbial communities in seafood, culture dependent methods of detection may not be useful, hence the need for culture independent methods are necessary to understand the diversity of microbiota and spoilage process. Similarly, the volatile organic compounds released by spoilage bacteria are not fully understood in some seafood. This review therefore highlights current knowledge and understanding of seafood spoilage microbiota, volatile organic compounds, effects of storage temperature and packaging conditions on quality of seafood.
Collapse
|
31
|
Yang SP, Xie J, Qian YF. Determination of Spoilage Microbiota of Pacific White Shrimp During Ambient and Cold Storage Using Next-Generation Sequencing and Culture-Dependent Method. J Food Sci 2017; 82:1178-1183. [DOI: 10.1111/1750-3841.13705] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/05/2017] [Accepted: 03/09/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Sheng-Ping Yang
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation; College of Food Science & Technology; Shanghai Ocean Univ.; Shanghai 201306 P. R. China
| | - Jing Xie
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation; College of Food Science & Technology; Shanghai Ocean Univ.; Shanghai 201306 P. R. China
| | - Yun-Fang Qian
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation; College of Food Science & Technology; Shanghai Ocean Univ.; Shanghai 201306 P. R. China
| |
Collapse
|
32
|
Comparative evaluation on shelf life extension of MAP packed Litopenaeus vannamei shrimp treated with natural extracts. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Okpala COR, Bono G, Pipitone V, Vitale S, Cannizzaro L. Toward crustacean without chemicals: a descriptive analysis of consumer response using price comparisons. Food Nutr Res 2016; 60:30955. [PMID: 27799084 PMCID: PMC5088346 DOI: 10.3402/fnr.v60.30955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 11/26/2022] Open
Abstract
Background To date, there seems to be limited-to-zero emphasis about how consumers perceive crustacean products subject to either chemical and or non-chemical preservative treatments. In addition, studies that investigated price comparisons of crustacean products subject to either chemical or chemical-free preservative methods seem unreported. Objective This study focused on providing some foundational knowledge about how consumers perceive traditionally harvested crustaceans that are either chemical-treated and or free of chemicals, incorporating price comparisons using a descriptive approach. Design The study design employed a questionnaire approach via interview using a computer-assisted telephone system and sampled 1,540 participants across five key locations in Italy. To actualize consumer sensitivity, ‘price’ was the focus given its crucial role as a consumption barrier. Prior to this, variables such as demographic characteristics of participants, frequency of purchasing, quality attributes/factors that limit the consumption of crustaceans were equally considered. Results By price comparisons, consumers are likely to favor chemical-free (modified atmosphere packaging) crustacean products amid a price increase of up to 15%. But, a further price increase such as by 25% could markedly damage consumers’ feelings, which might lead to a considerable number opting out in favor of either chemical-treated or other seafood products. Comparing locations, the studied variables showed no statistical differences (p>0.05). On the contrary, the response weightings fluctuated across the studied categories. Both response weightings and coefficient of variation helped reveal more about how responses deviated per variable categories. Conclusions This study has revealed some foundational knowledge about how consumers perceive traditionally harvested crustaceans that were either chemical-treated or subject to chemical-free preservative up to price sensitivity using Italy as a reference case, which is applicable to other parts of the globe.
Collapse
Affiliation(s)
| | - Gioacchino Bono
- Istituto per l' Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Mazara del Vallo, Italy;
| | - Vito Pipitone
- Istituto per l' Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Mazara del Vallo, Italy
| | - Sergio Vitale
- Istituto per l' Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Mazara del Vallo, Italy
| | - Leonardo Cannizzaro
- Istituto per l' Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Mazara del Vallo, Italy
| |
Collapse
|
34
|
Effects of Fish Gelatin and Tea Polyphenol Coating on the Spoilage and Degradation of Myofibril in Fish Fillet During Cold Storage. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1798-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
DeWitt CAM, Oliveira ACM. Modified Atmosphere Systems and Shelf Life Extension of Fish and Fishery Products. Foods 2016; 5:E48. [PMID: 28231143 PMCID: PMC5302388 DOI: 10.3390/foods5030048] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/30/2016] [Accepted: 06/18/2016] [Indexed: 11/16/2022] Open
Abstract
This review aims at summarizing the findings of studies published over the past 15 years on the application of modified atmosphere (MA) systems for shelf life extension of fish and fishery products. This review highlights the importance of CO₂ in the preservation of seafood products, and underscores the benefits of combining MA technology with product storage in the superchilled temperature range. It is generally accepted that MA technology cannot improve product quality and should not be utilized as a substitute for good sanitation and strict temperature control. Benefits derived from application of MA, however, can significantly impact preservation of product quality and it subsequent shelf-life. For this reason, this review is the first of its kind to propose detailed handling and quality guidelines for fresh fish to realize the maximum benefit of MA technology.
Collapse
Affiliation(s)
- Christina A Mireles DeWitt
- OSU Seafood Research & Education Center Experiment Station, Department of Food Science and Technology, Oregon State University, Astoria, OR 97103, USA.
| | - Alexandra C M Oliveira
- BluWrap, 766 Harrison Street #102, San Francisco, CA 94107, USA.
- Kodiak Seafood and Marine Science Center, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 118 Trident Way, Kodiak, AK 99615, USA.
| |
Collapse
|