1
|
Lin H, Han R, Wu W. Glucans and applications in drug delivery. Carbohydr Polym 2024; 332:121904. [PMID: 38431411 DOI: 10.1016/j.carbpol.2024.121904] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glucan is a natural polysaccharide widely distributed in cereals and microorganisms that has various biological activities, including immunomodulatory, anti-infective, anti-inflammatory, and antitumor activities. In addition to wide applications in the broad fields of food, healthcare, and biomedicines, glucans hold promising potential as drug delivery carrier materials or ligands. Specifically, glucan microparticles or yeast cell wall particles are naturally enclosed vehicles with an interior cavity that can be exploited to carry and deliver drug payloads. The biological activities and targeting capacities of glucans depend largely on the recognition of glucan moieties by receptors such as dectin-1 and complement receptor 3, which are widely expressed on the cell membranes of mononuclear phagocytes, dendritic cells, neutrophils, and some lymphocytes. This review summarizes the chemical structures, sources, fundamental properties, extraction methods, and applications of these materials, with an emphasis on drug delivery. Glucans are utilized mainly as vaccine adjuvants, targeting ligands and as carrier materials for various drug entities. It is believed that glucans and glucan microparticles may be useful for the delivery of both small-molecule and macromolecular drugs, especially for potential treatment of immune-related diseases.
Collapse
Affiliation(s)
- Hewei Lin
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Rongze Han
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
2
|
Mykhalevych A, Polishchuk G, Nassar K, Osmak T, Buniowska-Olejnik M. β-Glucan as a Techno-Functional Ingredient in Dairy and Milk-Based Products-A Review. Molecules 2022; 27:6313. [PMID: 36234850 PMCID: PMC9573285 DOI: 10.3390/molecules27196313] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
The article systematizes information about the sources of β-glucan, its technological functions and practical aspects of its use in dairy and milk-based products. According to the analysis of scientific information, the main characteristics of β-glucan classifications were considered: the source of origin, chemical structure, and methods of obtention. It has been established that the most popular in the food technology of dairy products are β-glucans from oat and barley cereal, which exhibit pronounced technological functions in the composition of dairy products (gel formation, high moisture-binding capacity, increased yield of finished products, formation of texture, and original sensory indicators). The expediency of using β-glucan from yeast and mushrooms as a source of biologically active substances that ensure the functional orientation of the finished product has been revealed. For the first time, information on the use of β-glucan of various origins in the most common groups of dairy and milk-based products has been systematized. The analytical review has scientific and practical significance for scientists and specialists in the field of food production, in particular dairy products of increased nutritional value.
Collapse
Affiliation(s)
- Artur Mykhalevych
- Department of Milk and Dairy Products Technology, National University of Food Technologies, Volodymyrska St. 68, 01033 Kyiv, Ukraine
| | - Galyna Polishchuk
- Department of Milk and Dairy Products Technology, National University of Food Technologies, Volodymyrska St. 68, 01033 Kyiv, Ukraine
| | - Khaled Nassar
- Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Tetiana Osmak
- Department of Milk and Dairy Products Technology, National University of Food Technologies, Volodymyrska St. 68, 01033 Kyiv, Ukraine
| | - Magdalena Buniowska-Olejnik
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklinskiej 2D St., 35601 Rzeszow, Poland
| |
Collapse
|
3
|
Kurek MA, Moczkowska-Wyrwisz M, Wyrwisz J, Karp S. Development of Gluten-Free Muffins with β-Glucan and Pomegranate Powder Using Response Surface Methodology. Foods 2021; 10:foods10112551. [PMID: 34828832 PMCID: PMC8619912 DOI: 10.3390/foods10112551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
More consumers are being diagnosed with celiac disease or diseases in which wheat products should be avoided. For this reason, it is important to increase the range of gluten-free products available. In this study, it was decided to optimize the technology for the creation of a muffin with β-glucan (BG) and pomegranate (PG), while establishing water share (WT), using the response surface methodology. It was shown that β-glucan and water had the most significant influence on specific volume and moisture (p ≤ 0.001). However, the increase of hardness, color, and total phenolic content (TPC) was mainly influenced by the increase of pomegranate content (p ≤ 0.01 for harness and color and p ≤ 0.001 for TPC). Consumers accepted products high in β-glucan more than high in pomegranate. Optimization ended with a composition that included 1.89% BG, 9.51% PG, and 77.87% WT. There were no significant differences between the model and the experimental sample, apart from higher consumer acceptability.
Collapse
|
4
|
Bartkiene E, Bartkevics V, Pugajeva I, Borisova A, Zokaityte E, Lele V, Starkute V, Zavistanaviciute P, Klupsaite D, Zadeike D, Juodeikiene G. The Quality of Wheat Bread With Ultrasonicated and Fermented By-Products From Plant Drinks Production. Front Microbiol 2021; 12:652548. [PMID: 33815341 PMCID: PMC8009971 DOI: 10.3389/fmicb.2021.652548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/25/2021] [Indexed: 01/28/2023] Open
Abstract
During plant-based drinks production a significant amount of valuable by-products (BPs) is obtained. The valorization of BPs is beneficial for both the environment and the food industry. The direct incorporation of the fermented and/or ultrasonicated almond, coconut, and oat drinks production BPs in other food products, such as wheat bread (WB) could lead to the better nutritional value as well as quality of WB. Therefore, in this study, various quantities (5, 10, 15, and 20%) of differently treated [ultrasonicated (37 kHz) or fermented with Lacticaseibacillus casei LUHS210] almond, coconut, and oat drinks preparation BPs were used in wheat bread (WB) formulations. Microbiological and other quality parameters (acidity, color, specific volume, porosity, moisture content, overall acceptability) as well as bread texture hardness during the storage and acrylamide content in the WB were evaluated. Among the fermented samples, 12-h-fermented almond and oat, as well as 24-h-fermented coconut drinks preparation BPs (pH values of 2.94, 2.41, and 4.50, respectively; total enterobacteria and mold/yeast were not found) were selected for WB production. In most cases, the dough and bread quality parameters were significantly (p ≤ 0.05) influenced by the BPs used, the treatment of the BPs, and the quantity of the BPs. The highest overall acceptability of the WB prepared with 20% fermented almond drink preparation by-product (AP), 15% fermented oat drink preparation by-product (OP), and 15% ultrasonicated OP was established. After 96 h of storage, the lowest hardness (on average, 1.2 mJ) of the breads prepared with 5% fermented AP, coconut drink preparation by-product (CP), and OP and ultrasonicated CP was found. The lowest content of acrylamide in the WB prepared with OP was found (on average, 14.7 μg/kg). Finally, 15% fermented OP could be safely used for WB preparation because the prepared bread showed high overall acceptability, as well as low acrylamide content.
Collapse
Affiliation(s)
- Elena Bartkiene
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vadims Bartkevics
- Centre of Food Chemistry, University of Latvia, Riga, Latvia.,Institute of Food Safety, Animal Health and Environment "BIOR," Riga, Latvia
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment "BIOR," Riga, Latvia
| | - Anastasija Borisova
- Institute of Food Safety, Animal Health and Environment "BIOR," Riga, Latvia
| | - Egle Zokaityte
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vita Lele
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytaute Starkute
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Paulina Zavistanaviciute
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dovile Klupsaite
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Daiva Zadeike
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Grazina Juodeikiene
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
5
|
Meral H, Karaoğlu MM. The effect of the stale bread flour addition on flour and bread quality. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2019-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn this study, the effect of the flour, which was obtained from stale bread, on flour and bread quality was investigated. The bread that was staled at refrigerator for 7 days was prepared as whole and crumb, and was grinded to convert into flour. The staled whole and crumb bread flours were stored at −18 °C and used to replace 0, 15, 30 and 45% of wheat flour. Then microbiological and physicochemical properties of flours; physical, textural and sensory properties of bread obtained from these composite flours were investigated. We concluded that stale bread flour could be used for bread production at the level of 15%. If the total bread production and consumption is considered, this addition level could provide a significant amount of waste bread recycling each year.
Collapse
Affiliation(s)
- Hacer Meral
- Food Engineering Department, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Turkey
| | - M. Murat Karaoğlu
- Food Engineering Department, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
6
|
Kurek MA, Krzemińska A. Effect of modified atmosphere packaging on quality of bread with amaranth flour addition. FOOD SCI TECHNOL INT 2019; 26:44-52. [PMID: 31403831 DOI: 10.1177/1082013219864197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study of the effect of the modified atmosphere packaging on quality of the bread was done after replacing wheat flour with amaranth flour in replacement of wheat flour for 0, 5, 10 and 15% by weight. The bread was stored for one, three and seven days in the ATM, 100% N2 and 30% CO2. The study proved the 30% CO2 modified atmosphere to be the optimal storage condition. It allowed to preserve volume, water content and contributed at least to increase in hardness of bread, which with the addition of amaranth flour decreased. The colour of bread during storage was characterised by the increase in L* parameter and decrease in a* and b*. For the decreased storage time, the effect was opposite. The replacement by 5% of amaranth flour increased the polyphenol content and did not affect bread quality.
Collapse
Affiliation(s)
- Marcin A Kurek
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agnieszka Krzemińska
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Andrzej KM, Małgorzata M, Sabina K, Horbańczuk OK, Rodak E. Application of rich in β-glucan flours and preparations in bread baked from frozen dough. FOOD SCI TECHNOL INT 2019; 26:53-64. [PMID: 31403832 DOI: 10.1177/1082013219865379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aims to define the changes in the quality of bakery products depending on the β-glucan source and its contribution using bake-off technology. The examined bread was enriched with a 10% addition of oat flour, barley flour, oat fibre preparation, and barley fibre preparation. Bread was tested for rheological parameters, baking performance, hardness and springiness, water content, specific volume, porosity, crust and crumb colour, and β-glucan content. In the executed research, the adverse effect of this component on the formation of gluten network and hardness of the crumb was observed. In the double compression test, it was shown that the highest hardness on the day of baking was characterized by the bread with the addition of barley preparation. The fastest rate of staling was observed in the bread with additional barley flour that was affected by the highest amount of β-glucan. A significant decrease of the β-glucan level was also found during the technological bake-off process, which can be explained by the activity of enzymes.
Collapse
Affiliation(s)
- Kurek Marcin Andrzej
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| | - Moczkowska Małgorzata
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karp Sabina
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| | - Olaf K Horbańczuk
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewelina Rodak
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
8
|
KUREK MA, WYRWISZ J, BRZESKA M, MOCZKOWSKA M, KARP S, WIERZBICKA A. Effect of different beta-glucan preparation pretreatments on fortified bread quality. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/fst.06917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Kurek MA, Moczkowska M, Pieczykolan E, Sobieralska M. Barley β-d-glucan - modified starch complex as potential encapsulation agent for fish oil. Int J Biol Macromol 2018; 120:596-602. [PMID: 30165146 DOI: 10.1016/j.ijbiomac.2018.08.131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/12/2018] [Accepted: 08/25/2018] [Indexed: 02/02/2023]
Abstract
The aim of the study was to examine physicochemical characteristics of fish oil microcapsules produced at different temperatures and estimate the optimal ratio of BG, CS and spray drying temperature. Only the interaction between spray drying and β-d-glucan content played a significant role in influencing the encapsulation efficiency and spray drying itself (p ≤ 0.001 and p ≤ 0.05). Temperature played a significant role in increasing particle size as well, but the coefficient for this parameter was lower (0.179). The observed differences in particle size of microcapsules could be caused by the differences in glass transition temperature of the polymers (β-d-glucan and modified starch) used as wall material. It could be seen that the lowest TBARS content was observed when the β-d-glucan in the wall material was at relatively high level (85%) with moderate temperature applied (154 °C) - 0.56 mg of malonaldehyde/kg of powder. The highest amount of EPA was present in the sample with 50% share of β-d-glucan and spray dried in 150 °C (10.22 ± 0.24). After examination of all runs of the experiment, we have made optimization study to obtain the wall material composition and spray drying temperature values which will be most appropriate for fish oil encapsulation.
Collapse
Affiliation(s)
- Marcin Andrzej Kurek
- Department of Technique and Food Development, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| | - Małgorzata Moczkowska
- Department of Technique and Food Development, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Ewelina Pieczykolan
- Department of Technique and Food Development, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Małgorzata Sobieralska
- Department of Technique and Food Development, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| |
Collapse
|
10
|
Adinda Putri D, Sofia Murtini E. POTENSI EDAMAME SEBAGAI PENGGANTI KUNING TELUR DALAM PEMBUATAN DONAT MENGANDUNG KENTANG. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2017. [DOI: 10.6066/jtip.2017.28.2.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|