1
|
Kumar N, Upadhyay A, Shukla S, Bajpai VK, Kieliszek M, Yadav A, Kumaravel V. Next generation edible nanoformulations for improving post-harvest shelf-life of citrus fruits. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2024; 18:1825-1856. [DOI: 10.1007/s11694-023-02287-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/13/2023] [Indexed: 05/14/2025]
Abstract
AbstractCitrus is one of the most widely grown fruits globally, because of its remarkable organoleptic features, nutritional content and bioactive ingredients. Microbial spoilage and other factors such as physiological disorder, mechanical and physical damage, and fruit senescence are the major factors of postharvest loss to citrus industry. The postharvest losses in citrus are directly have negative impcats on the economy, environment and healths due to production of carbon emission gases. The fungal pathogens such as Penicillium digitatum, Penicillium italicum and Geotrichum candidum are the major cause of postharvest spoilage in citrus fruits. These pathogens produce different mycotoxins such as citrinin, patulin, and tremorgenic. These mycotoxins are secondary metabolites of molds; they employ toxic effects on the healths. The acuteness of mytoxin on toxicity is dependings on the extent exposure, age and nutritional status of individual. The toxicity of mytoxins are directly related to the food safety and health concern including damage DNA, kidney damage, mutation in RNA/DNA, growth impairment in childs and immune system etc. Several attempts have been made to extend the shelf-life of citrus fruits by controlling physiological decay and fungal growth which has got limited success. In recent years, nanotechnology has emerged as a new strategy for shelf life prevention of citrus fruits. The biopolymer based nano-formulations functionalized with active compounds have shown promising results in maintaining the postharvest quality attributes of fruits and vegetables by retarding the moisture loss and oxidation. This review exclusively discloses the postharvest losses in citrus fruits and their causes. In addition, the use of biopolymer based nanoformulations functionalized with active agents and their developing technologies have been also discussed briefly. The effects of nano-formulation technologies on the postharvest shelf life of citrus is also described.The finding of this review also suggest that the natural biopolymers and bioactive compounds can be used for developing nanoformulations for extending the shelf-life of citrus fruits by minimizing the fungal growth and as an alternatives of fungicides.
Collapse
|
2
|
Chen Y, Wang J, Rao Z, Hu J, Wang Q, Sun Y, Lei X, Zhao J, Zeng K, Xu Z, Ming J. Study on the stability and oral bioavailability of curcumin loaded (-)-epigallocatechin-3-gallate/poly(N-vinylpyrrolidone) nanoparticles based on hydrogen bonding-driven self-assembly. Food Chem 2022; 378:132091. [PMID: 35032808 DOI: 10.1016/j.foodchem.2022.132091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
The biological activity and absorption of curcumin (Cur) is limited in application due to its low water solubility, poorstabilityand rapid metabolism. In this work, Cur loaded (-)-epigallocatechin-3-gallate (EGCG)/poly(N-vinylpyrrolidone) (PVP) nanoparticles (CEP-NPs) was successfully fabricated via self-assembly driven by hydrogen bonding, providing with desirable Cur-loading efficiency, high stability, strong antioxidant capacity, and pH-triggered intestinal targeted release properties. Molecular dynamics simulations further indicated the Cur was coated with EGCG and PVP in CEP-NPs and high acid prolonged release property was attribute to low ionization degree of EGCG. Besides, the enhanced intestinal absorption of Cur was related to inhibition of Cur metabolism by EGCG, enhancement of cellular uptake and higher Caco-2 monolayer permeation. Pharmacokinetic study showed that the oral bioavailability presented nearly 12-fold increment. Therefore, this study provides a new horizon for improving the Cur utilization in food and pharmaceutical fields.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Jingting Wang
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhenan Rao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Junfeng Hu
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Qiming Wang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yueru Sun
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
3
|
Development of pH-responsive antioxidant soy protein isolate films incorporated with cellulose nanocrystals and curcumin nanocapsules to monitor shrimp freshness. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106893] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
4
|
Yu S, Wei Z, Xiao H, Mohamed H, Xu S, Yang X, Ren X, Li L, Song Y. Effect of mono- and double-layer polysaccharide surface coating on the physical stability of nanoliposomes under various environments. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
D'Almeida CTDS, Mameri H, Menezes NDS, de Carvalho CWP, Queiroz VAV, Cameron LC, Morel MH, Takeiti CY, Ferreira MSL. Effect of extrusion and turmeric addition on phenolic compounds and kafirin properties in tannin and tannin-free sorghum. Food Res Int 2021; 149:110663. [PMID: 34600665 DOI: 10.1016/j.foodres.2021.110663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022]
Abstract
Sorghum is a potential substitute for corn/wheat in cereal-based extruded products. Despite agronomic advantages and its rich diversity of phenolic compounds, sorghum kafirins group together and form complex with tannins, leading to a low digestibility. Phenolic content/profile by UPLC-ESI-QTOF-MSE and kafirins polymerization by SE-HPLC were evaluated in wholemeal sorghum extrudates; tannin-rich (#SC319) and tannin-free (#BRS330) genotypes with/without turmeric powder. Total phenolic, proantocyanidin and flavonoid contents were strongly correlated with antioxidant capacity (r > 0.9, p < 0.05). Extrusion increased free (+60%) and decreased bound phenolics (-40%) in #SC319, but reduced both (-40%; -90%, respectively) in #BRS330, which presented lower abundance after extrusion. Turmeric addition did not significantly impact antioxidant activity, phenolic content and profile and kafirins profile. Tannins presence/absence impacted phenolic profiles and polymerization of kafirins which appears related to the thermoplastic process. The extrusion improved proteins solubility and can positively enhance their digestibility (phenolic compounds-proteins interactions), making more accessible to proteolysis in sorghum extrudates.
Collapse
Affiliation(s)
- Carolina Thomaz Dos Santos D'Almeida
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Brazil
| | - Hamza Mameri
- INRAE, Université de Montpellier, Montpellier SupAgro, CIRAD, UMR 1208 IATE, Montpellier, France
| | | | | | | | - L C Cameron
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Brazil
| | - Marie-Hélène Morel
- INRAE, Université de Montpellier, Montpellier SupAgro, CIRAD, UMR 1208 IATE, Montpellier, France
| | | | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Brazil.
| |
Collapse
|
6
|
Golchinfar Z, Tabibiazar M, Abdi F, Taghvimi A, Roufegarinejad L. Effect of resveratrol and curcumin on formation of N‐Carboxymethyl lysine and its intracellular oxidative stress. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zahra Golchinfar
- Student Research Committee Tabriz University of Medical Science Tabriz Iran
- Faculty of Nutrition and Food Science Tabriz University of Medical Science Tabriz Iran
| | - Mahnaz Tabibiazar
- Faculty of Nutrition and Food Science Tabriz University of Medical Science Tabriz Iran
| | - Fardin Abdi
- Student Research Committee Tabriz University of Medical Science Tabriz Iran
- Faculty of Nutrition and Food Science Tabriz University of Medical Science Tabriz Iran
| | - Arezou Taghvimi
- Biotechnology Research Centre Tabriz University of Medical Science Tabriz Iran
| | - Leila Roufegarinejad
- Department of Food Science and Technology Tabriz Branch Islamic Azad University Tabriz Iran
| |
Collapse
|
7
|
Meena S, Gote S, Prasad W, Khamrui K. Storage stability of spray dried curcumin encapsulate prepared using a blend of whey protein, maltodextrin, and gum Arabic. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sunil Meena
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal India
| | - Shubham Gote
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal India
| | - Writdhama Prasad
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal India
| | - Kaushik Khamrui
- Dairy Technology Division ICAR‐National Dairy Research Institute Karnal India
| |
Collapse
|
8
|
Sahani S, Sharma YC. Advancements in applications of nanotechnology in global food industry. Food Chem 2020; 342:128318. [PMID: 33189478 DOI: 10.1016/j.foodchem.2020.128318] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/23/2022]
Abstract
Nanotechnology has several applications in food industry and it significantly helps in characterization, fabrication, and manipulation of nanostructures. The nanostructures improve the solubility of food ingredients in vivo, along with enhancement in their bioavailability and controlled release at the target site. These nanostructures also serve as anticaking agents, nano-additives, delivery systems for nutraceuticals, etc. Present study highlights different forms of nanoengineered structures applied in food nanotechnology to tune the characteristics of conventional food ingredients and their applications. Literature survey highlighted the application of various types of nanostructures in the food industry. The study focusses on recent advancements in preparation methods of nanostructures as food additives and packaging stuffs along with pros and cons of their application in food industry. The shortcomings associated to nanotechnology in food science have illustrated along with its tentative future perespective. The impact of eco-toxicity due to application of nanostructures has also been discussed based on recent observations. This can suppressed by the application of bioedible polymers instead of synthetic polymers.
Collapse
Affiliation(s)
- Shalini Sahani
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India
| | - Yogesh Chandra Sharma
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India.
| |
Collapse
|
9
|
Nanosystems in Edible Coatings: A Novel Strategy for Food Preservation. Int J Mol Sci 2018; 19:ijms19030705. [PMID: 29494548 PMCID: PMC5877566 DOI: 10.3390/ijms19030705] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/28/2018] [Accepted: 02/24/2018] [Indexed: 11/17/2022] Open
Abstract
Currently, nanotechnology represents an important tool and an efficient option for extending the shelf life of foods. Reducing particle size to nanometric scale gives materials distinct and improved properties compared to larger systems. For food applications, this technology allows the incorporation of hydrophilic and lipophilic substances with antimicrobial and antioxidant properties that can be released during storage periods to increase the shelf life of diverse products, including whole and fresh-cut fruits and vegetables, nuts, seeds, and cheese, among others. Edible coatings are usually prepared with natural polymers that are non-toxic, economical, and readily available. Nanosystems, in contrast, may also be prepared with biodegradable synthetic polymers, and liquid and solid lipids at room temperature. In this review, recent developments in the use of such nanosystems as nanoparticles, nanotubes, nanocomposites, and nanoemulsions, are discussed critically. The use of polymers as the support matrix for nanodispersions to form edible coatings for food preservation is also analyzed, but the central purpose of the article is to describe available information on nanosystems and their use in different food substrates to help formulators in their work.
Collapse
|