1
|
Yang Z, Liu H, Ma C, Pema Y, Li Y, Fang W. Suitability of unmalted finger millet from China for beer brewing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40396360 DOI: 10.1002/jsfa.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/27/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND In the brewing sector, barley malt is frequently substituted with adjuncts. Nonetheless, it is essential to maintain consistent quality in the beer to satisfy consumer expectations. This study presents the first detailed investigation into the effects of incorporating finger millets from China, varying in color (light brown, medium brown, and dark brown) and quantity (10-30%), on the properties of wort and basic parameters, antioxidant capacities, volatiles, and sensory properties of beer. RESULTS The wort made from finger millets in various colors (10%) showed increased extract and Ca content and decreased free amino nitrogen when compared to all-malt wort. In addition, increased color, 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity, Fe reducing antioxidant power, Ca content and reduced pH, viscosity, alcohol levels, and fermentation degree were observed in finger millet beers compared to the control (100% Pilsner malt). As the proportion of finger millet (light brown) addition increased, the trend became more pronounced. The incorporation of finger millet (light brown) resulted in an elevation of esters, whereas the integration of finger millets (medium brown or dark brown) caused an increase in higher alcohols and a decline in esters. Furthermore, the alternative added beer (20% finger millet, light brown) exhibited an acceptable sensory profile. CONCLUSION The use of finger millet from China shows promising results for its potential use in brewing. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengfei Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hui Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chao Ma
- Tibet Plateau Institute of Biology, Lhasa, Tibet, China
| | - Yangzom Pema
- Tibet Plateau Institute of Biology, Lhasa, Tibet, China
| | - Yi Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weiming Fang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Singla D, Malik T, Singh A, Thakur S, Kumar P. Advances in understanding wheat-related disorders: A comprehensive review on gluten-free products with emphasis on wheat allergy, celiac and non-celiac gluten sensitivity. FOOD CHEMISTRY ADVANCES 2024; 4:100627. [DOI: 10.1016/j.focha.2024.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Woldetsadik D, Sims DB, Garner MC, Hailu H. Metal(loid)s Profile of Four Traditional Ethiopian Teff Brands: Geographic Origin Discrimination. Biol Trace Elem Res 2024; 202:1305-1315. [PMID: 37369964 DOI: 10.1007/s12011-023-03736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Among the most renowned Ethiopian food crops, teff (Eragrostis tef (Zucc.)Trotter) is the most nutritious and gluten-free cereal. Because of the increase in demand for teff, it is necessary to establish geographic origin authentication of traditional teff brands based on multi-element fingerprint. For this purpose, a total of 60 teff samples were analysed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Accuracy of the laboratory procedure was verified by the analysis of rice flour standard reference material (NIST SRM 1568b). In this context, four traditional teff brands (Ada'a, Ginchi, Gojam and Tulu Bolo) were analytically characterized using multi-element fingerprint and further treated statistically using linear discriminant analysis (LDA). Due to obvious extrinsic Fe, Al and V contamination, these elements were excluded from the discriminant model. Five elements (Cu, Mo, Se, Sr, and Zn) significantly contributed to discriminate the geographical origin of white teff. On the other hand, Mn, Mo, Se and Sr were used as discriminant variables for brown teff. LDA revealed 90 and 100% correct classifications for white and brown teff, respectively. Overall, multi-element fingerprint coupled with LDA can be considered a suitable tool for geographic origin discrimination of traditional teff brands.
Collapse
Affiliation(s)
- Desta Woldetsadik
- Department of Soil and Water Resources Management, Wollo University, Dessie, Ethiopia.
| | | | | | - Hillette Hailu
- Department of Soil and Water Resources Management, Wollo University, Dessie, Ethiopia
| |
Collapse
|
4
|
Ledley AJ, Elias RJ, Cockburn DW. Impact of mashing protocol on the formation of fermentable sugars from millet in gluten-free brewing. Food Chem 2023; 405:134758. [PMID: 36334456 DOI: 10.1016/j.foodchem.2022.134758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022]
Abstract
The production of fermentable sugars (FS) in gluten-free (GF) brewing is hindered by the high starch gelatinization temperatures of GF malts and lower diastatic power compared to barley malt. Our previous work has demonstrated that starch gelatinization was the primary hurdle, and when decoupled from a single mash phase, high concentrations of FS could be produced. However, more research was required to improve the applicability of GF brewing. In this study, millet was used as a model GF malt demonstrating that despite the low α-amylase and β-amylase activities compared to barley malt ∼ 90 % of the FS (∼110 g/L) could be produced within 40 min. Limitations to enzyme extraction and separation due to coarse milling and lautering initially limited FS by ∼ 30 g/L, requiring additional processing or exogenous enzyme supplements that improved fermentable sugar generation by ∼ 20 g/L. Overall, millet is a promising brewing ingredient, provided appropriate mashing procedures are implemented.
Collapse
Affiliation(s)
- Andrew J Ledley
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ryan J Elias
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Darrell W Cockburn
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Gluten reduction in beer: Effect of sorghum:quinoa ratio and protein rest time on brewing parameters and consumer acceptability. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2022.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
Dabija A, Ciocan ME, Chetrariu A, Codină GG. Buckwheat and Amaranth as Raw Materials for Brewing, a Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:756. [PMID: 35336638 PMCID: PMC8954860 DOI: 10.3390/plants11060756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 05/08/2023]
Abstract
Globally, beer is considered the most-consumed low-alcohol beverage, it ranks third, after water and tea, in the top sales of these drinks. New types of beer are the result of the influence of several factors, including innovations in science and technology, changing requirements for food consumption of the population, competition between producers, promotion of food for health, flavor, and quality, the limited nature of traditional food resource raw materials, and the interest of producers in reducing production costs. Manufacturers are looking for new solutions for obtaining products that meet the requirements of consumers, authentic products of superior quality, with distinctive taste and aroma. This review proposes the use of two pseudocereals as raw materials in the manufacture of beer: buckwheat and amaranth, focusing on the characteristics that recommend them in this regard. Due to their functional and nutraceutical properties, these pseudocereals can improve the quality of beer-a finished product. Additionally, all types of beer obtained from these pseudocereals are recommended for diets with particular nutritional requirements, especially gluten-free diets. Researchers and producers will continue to improve and optimize the sensory and technological properties of the new types of beer obtained from these pseudocereals.
Collapse
Affiliation(s)
| | | | | | - Georgiana Gabriela Codină
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.D.); (M.E.C.); (A.C.)
| |
Collapse
|
7
|
C G DP, R V, N B, M TA. Influence of Pichia myanmarensis in fermentation to produce quinoa based non-alcoholic beer with enhanced antioxidant activity. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2021.103390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Alfeo V, De Francesco G, Sileoni V, Blangiforti S, Palmeri R, Aerts G, Perretti G, Todaro A. Physicochemical properties, sugar profile, and non-starch polysaccharides characterization of old wheat malt landraces. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Autochthonous Biological Resources for the Production of Regional Craft Beers: Exploring Possible Contributions of Cereals, Hops, Microbes, and Other Ingredients. Foods 2021; 10:foods10081831. [PMID: 34441608 PMCID: PMC8391379 DOI: 10.3390/foods10081831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 01/25/2023] Open
Abstract
Selected biological resources used as raw materials in beer production are important drivers of innovation and segmentation in the dynamic market of craft beers. Among these resources, local/regional ingredients have several benefits, such as strengthening the connection with territories, enhancing the added value of the final products, and reducing supply costs and environmental impacts. It is assumed that specific ingredients provide differences in flavours, aromas, and, more generally, sensory attributes of the final products. In particular, of interest are ingredients with features attributable and/or linked to a specific geographical origin. This review encompasses the potential contribution and exploitation of biodiversity in the main classes of beer inputs, such as cereals, hops, microbes, and adjuncts, with a specific emphasis on autochthonous biological resources, detailing the innovative paths already explored and documented in the scientific literature. This dissertation proposes an overview of the impact on beer quality for each raw material category, highlighting the benefits and limitations that influence its concrete applications and scale-up, from the field to the stain. The topics explored promote, in the sector of craft beers, trends already capitalised in the production of other alcoholic beverages, such as the preservation and revalorisation of minor and autochthonous varieties, the exploitation of yeast and bacteria strains isolated from specific sites/plant varieties, and the valorisation of the effects of peculiar terroirs on the quality of agricultural products. Finally, the examined tendencies contribute toward reducing the environmental impacts of craft beer manufacturing, and are in line with sustainable development of food systems, increasing the economic driver of biodiversity preservation.
Collapse
|
10
|
Cadenas R, Caballero I, Nimubona D, Blanco CA. Brewing with Starchy Adjuncts: Its Influence on the Sensory and Nutritional Properties of Beer. Foods 2021; 10:1726. [PMID: 34441504 PMCID: PMC8392023 DOI: 10.3390/foods10081726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
In brewing, the use of cereals (wheat, barley, maize, rice, sorghum, oats, rye or millet), pseudo-cereals (buckwheat, quinoa or amaranth) and tubers (sweet potato), as starch adjuncts, is being promoted for the production of a variety of high-quality beers, from sensory and nutritional points of view. The sensory properties of the obtained beer depend on the characteristics of each adjunct but also on the forms in which the adjunct is added: whole cereal, grits, malted, extruded grains, torrefied and syrup. Among these common forms, the extruded grains (maize or rice) produce a higher content of aroma compounds in beer. From a nutritional point of view, the use of non-conventional starch adjuncts, such as black rice, buckwheat or sweet potato, leads to an increase in the polyphenol content of the beer, and thus, its antioxidant capacity. Cereals such as maize, rice, sorghum or millet are the most promising for the production of gluten-free beers. A close relationship can be developed between the use of adjuncts in the beer industry and the use of commercial enzymes. Advances made by biotechnology to design new enzymes with different functionalities could be associated to a future increase in adjunct usage in brewing.
Collapse
Affiliation(s)
| | | | | | - Carlos A. Blanco
- Dpto. Ingeniería Agrícola y Forestal (Área de Tecnología de los Alimentos), E.T.S. Ingenierías Agrarias, Universidad de Valladolid, 34004 Palencia, Spain; (R.C.); (I.C.); (D.N.)
| |
Collapse
|
11
|
A Modified Brewing Procedure Informed by the Enzymatic Profiles of Gluten-Free Malts Significantly Improves Fermentable Sugar Generation in Gluten-Free Brewing. BEVERAGES 2021. [DOI: 10.3390/beverages7030053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mashing step underpins the brewing process, during which the endogenous amylolytic enzymes in the malt, chiefly β-amylase, α-amylase, and limit dextrinase, act concurrently to rapidly hydrolyze malt starch to fermentable sugars. With barley malts, the mashing step is relatively straightforward, due in part to malted barley’s high enzyme activity, enzyme thermostabilities, and gelatinization properties. However, barley beers also contain gluten and individuals with celiac disease or other gluten intolerances should avoid consuming these beers. Producing gluten-free beer from gluten-free malts is difficult, generally because gluten-free malts have lower enzyme activities. Strategies to produce gluten-free beers commonly rely on exogenous enzymes to perform the hydrolysis. In this study, it was determined that the pH optima of the enzymes from gluten-free malts correspond to regions already typically targeted for barley mashes, but that a lower mashing temperature was required as the enzymes exhibited low thermostability at common mashing temperatures. The ExGM decoction mashing procedure was developed to retain enzyme activity, but ensure starch gelatinization, and demonstrates a modified brewing procedure using gluten-free malts, or a combination of malts with sub-optimal enzyme profiles, that produces high fermentable sugar concentrations. This study demonstrates that gluten-free malts can produce high fermentable sugar concentrations without requiring enzyme supplementation.
Collapse
|
12
|
Puligundla P, Smogrovicova D, Mok C. Recent innovations in the production of selected specialty (non-traditional) beers. Folia Microbiol (Praha) 2021; 66:525-541. [PMID: 34097198 DOI: 10.1007/s12223-021-00881-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Customer demand for product diversity is the key driving force for innovations in the brewing industry. Specialty beers are regarded as a distinct group of beers different from two major types, lagers and ales, without established definitions or boundaries. Specialty beers, including low- to no-alcohol beer, low carbohydrate beer, gluten-free beer, sour beer, probiotic beer, and enriched beer, are exclusively brewed and developed keeping in mind their functionality, the health and wellbeing of the consumer, and emerging market trends. Compared with conventional beer-brewing, the production of specialty beers is technologically challenging and usually requires additional process steps, unique microorganisms, and special equipment, which in turn may incur additional costs. In addition, the maintenance of quality and stability of the products as well as consumer acceptability of the products are major challenges to successful commercialization. A harmonious integration of traditional brewing practices and modern technological approaches may hold potential for future developments. In the present review, latest developments in the fermentative production of selected specialty beers are discussed.
Collapse
Affiliation(s)
- Pradeep Puligundla
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Daniela Smogrovicova
- Institute of Biotechnology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Chulkyoon Mok
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| |
Collapse
|
13
|
Liu Y, Wang J, Bao C, Dong B, Cao Y. Characterization of a novel GH10 xylanase with a carbohydrate binding module from Aspergillus sulphureus and its synergistic hydrolysis activity with cellulase. Int J Biol Macromol 2021; 182:701-711. [PMID: 33862072 DOI: 10.1016/j.ijbiomac.2021.04.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022]
Abstract
A study was carried out to investigate the characterization of a novel Aspergillus sulphureus JCM01963 xylanase (AS-xyn10A) with a carbohydrate binding module (CBM) and its application in degrading alkali pretreated corncob, rapeseed meal and corn stover alone and in combination with a commercial cellulase. In this study, the 3D structure of AS-xyn10A, which contained a CBM at C-terminal. AS-xyn10A and its CBM-truncated variant (AS-xyn10A-dC) was codon-optimized and over-expressed in Komagaella phaffii X-33 (syn. Pichia pastoris) and characterized with optimal condition at 70 °C and pH 5.0, respectively. AS-xyn10A displayed high activity to xylan extracted from corn stover, corncob, and rapeseed meal. The concentration of hydrolyzed xylo-oligosaccharides (XOSs) reached 1592.26 μg/mL, 1149.92 μg/mL, and 621.86 μg/mL, respectively. Xylobiose was the main product (~70%) in the hydrolysis mixture. AS-xyn10A significantly synergized with cellulase to improve the hydrolysis efficiency of corn stover, corncob, and rapeseed meal to glucose. The degree of synergy (DS) was 1.32, 1.31, and 1.30, respectively. Simultaneously, XOSs hydrolyzed with AS-xyn10A and cellulase was improved by 46.48%, 66.13% and 141.45%, respectively. In addition, CBM variant decreased the yields of xylo-oligosaccharide and glucose in rapeseed meal degradation. This study provided a novel GH10 endo-xylanase, which has potential applications in hydrolysis of biomass.
Collapse
Affiliation(s)
- Yajing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Chengling Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
14
|
Ambra R, Pastore G, Lucchetti S. The Role of Bioactive Phenolic Compounds on the Impact of Beer on Health. Molecules 2021; 26:486. [PMID: 33477637 PMCID: PMC7831491 DOI: 10.3390/molecules26020486] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
This review reports recent knowledge on the role of ingredients (barley, hop and yeasts), including genetic factors, on the final yield of phenolic compounds in beer, and how these molecules generally affect resulting beer attributes, focusing mainly on new attempts at the enrichment of beer phenols, with fruits or cereals other than barley. An entire section is dedicated to health-related effects, analyzing the degree up to which studies, investigating phenols-related health effects of beer, have appropriately considered the contribution of alcohol (pure or spirits) intake. For such purpose, we searched Scopus.com for any kind of experimental model (in vitro, animal, human observational or intervention) using beer and considering phenols. Overall, data reported so far support the existence of the somehow additive or synergistic effects of phenols and ethanol present in beer. However, findings are inconclusive and thus deserve further animal and human studies.
Collapse
Affiliation(s)
- Roberto Ambra
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, 00178 Rome, Italy; (G.P.); (S.L.)
| | | | | |
Collapse
|
15
|
Yang D, Gao X. Progress of the use of alternatives to malt in the production of gluten-free beer. Crit Rev Food Sci Nutr 2020; 62:2820-2835. [PMID: 33325770 DOI: 10.1080/10408398.2020.1859458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Beer is the most widely consumed alcoholic drink in the world, but it is not suitable for patients who suffer from celiac disease (CD) because its main ingresdients, barley or wheat, contain gluten. Approximately 1% of the world's population is affected by CD, and the development of gluten-free beer is imperative. Gluten-free beers produced using alternative materials, such as rice, sorghum, maize, millet, oats, and pseudocereals (e.g., buckwheat, quinoa and Amaranth), are studied in this review that examines the effects of specific substitutions on the different characteristics of the final beer to ensure the appropriateness of their use. The use of alternatives to malt may affect the quality of gluten-free beer and result in some negative consequences. Accordingly, the influential factors are discussed in terms of the total substitution of malt with other grains in the production of beer. Research results have provided some new alternative solutions for the production of gluten-free beer, such as the use of malted grains to improve hydrolytic enzyme activity, the application of nonconventional mashing procedures involving the decoction method and extrusion cooking techniques to increase the extract yield, the use of exogenous enzymes and nitrogen supplements to improve the sugar and amino acid spectra necessary for yeast fermentation, and the application of combinations of alternative grains to improve the flavor, body and foam stability of gluten-free beers.
Collapse
Affiliation(s)
- Dongsheng Yang
- Department of Bioengineering, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Xuan Gao
- Department of Bioengineering, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| |
Collapse
|
16
|
Abstract
Celiac disease (CD) is an immune-mediated gluten-sensitive enteropathy. Currently, it affects around 1% of world population, but it is constantly growing. Celiac patients have to follow a strict gluten-free (GF) diet. Beer is one of the most consumed beverages worldwide, but it is not safe for people with CD. It has a gluten content usually above the safe threshold (20 ppm), determined by the official method for hydrolyzed foods (R5-competitive-ELISA). The demand on the market for GF beers is increasingly growing. This review aims to provide a comprehensive overview of different strategies to produce GF beer, highlighting strengths and weaknesses of each approach and taking into account technological and sensory issues. GF cereals or pseudocereals have poor brewing attitudes (if used as main raw material) and give the beer unusual flavour. Instead, enzymatic treatments allow traditional brewing process followed by gluten content reduction. A survey on 185 GF-producing breweries (both industrial and craft) from all over the world have been considered to assess which approach is most used. Beers brewed with GF cereals and pseudocereals (used in well-balanced proportions) are more common than gluten-removed (GR) beers, obtained by enzymatic treatment.
Collapse
|
17
|
Troilo A, De Francesco G, Marconi O, Sileoni V, Turchetti B, Perretti G. Low Carbohydrate Beers Produced by a Selected Yeast Strain from an Alternative Source. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2019. [DOI: 10.1080/03610470.2019.1682887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Antonio Troilo
- Department of Agricultural, Food and Environmental Sciences – DSAAA, University of Perugia, Perugia, Italy
| | | | - Ombretta Marconi
- Italian Brewing Research Centre – CERB, University of Perugia, Perugia, Italy
| | - Valeria Sileoni
- Department of Agricultural, Food and Environmental Sciences – DSAAA, University of Perugia, Perugia, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences – DSAAA, University of Perugia, Perugia, Italy
- Industrial Yeasts Collection DBVPG, University of Perugia, Perugia, Italy
| | - Giuseppe Perretti
- Department of Agricultural, Food and Environmental Sciences – DSAAA, University of Perugia, Perugia, Italy
| |
Collapse
|
18
|
Prestes DN, Spessato A, Talhamento A, Gularte MA, Schirmer MA, Vanier NL, Rombaldi CV. The addition of defatted rice bran to malted rice improves the quality of rice beer. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Ceccaroni D, Marconi O, Sileoni V, Wray E, Perretti G. Rice malting optimization for the production of top-fermented gluten-free beer. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2726-2734. [PMID: 30350474 DOI: 10.1002/jsfa.9440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/04/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND A safe method to obtain gluten-free beer led to the use of naturally gluten-free grains, such as rice, but the specific malting program for rice is long and requires a large amount of water, and the resulting beer showed a flat flavour profile. In this study, an optimization of the malting and brewing procedure is proposed to overcome the aforementioned issues. Different steeping conditions and kilning temperatures are considered, and a top-fermented beverage from rice malt is obtained for the first time. RESULTS The malting procedure has been optimized by assessing the use of short-time steeping as an alternate to long air rest to obtain sufficient moisture content in the green malt, saving water consumption. The malt obtained allowed a regular fermentation, as confirmed by the sensorial analysis, which did not reveal any off-flavours. The use of a top-fermenting yeast formed high content of higher alcohol and relatively low amount of esters. CONCLUSION This study confirms the potential of rice for the production of malt and beer. The optimized malting programme allowed water saving. The production of a top-fermented rice malt beer was a successful attempt to introduce a new flavoured product for consumption by individuals affected by coeliac disease. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dayana Ceccaroni
- University of Perugia, Department of Agricultural, Food and Environmental Science, via San Costanzo s.n.c., Perugia, Italy
- University of Perugia, Italian Brewing Research Centre, via San Costanzo s.n.c., Perugia, Italy
| | - Ombretta Marconi
- University of Perugia, Department of Agricultural, Food and Environmental Science, via San Costanzo s.n.c., Perugia, Italy
- University of Perugia, Italian Brewing Research Centre, via San Costanzo s.n.c., Perugia, Italy
| | - Valeria Sileoni
- University of Perugia, Department of Agricultural, Food and Environmental Science, via San Costanzo s.n.c., Perugia, Italy
- University of Perugia, Italian Brewing Research Centre, via San Costanzo s.n.c., Perugia, Italy
| | | | - Giuseppe Perretti
- University of Perugia, Department of Agricultural, Food and Environmental Science, via San Costanzo s.n.c., Perugia, Italy
- University of Perugia, Italian Brewing Research Centre, via San Costanzo s.n.c., Perugia, Italy
| |
Collapse
|
20
|
Niu C, Han Y, Wang J, Zheng F, Liu C, Li Y, Li Q. Malt derived proteins: Effect of protein Z on beer foam stability. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Buiatti S, Bertoli S, Passaghe P. Influence of gluten-free adjuncts on beer colloidal stability. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-3010-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Biochemical and Microbiological Changes during the Ivorian Sorghum Beer Deterioration at Different Storage Temperatures. BEVERAGES 2017. [DOI: 10.3390/beverages3030043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In order to extend shelf life of traditional sorghum beers, it is of importance to evaluate their spoilage characteristics. Therefore, the microbiological, biochemical, and sensory changes of the Ivorian sorghum beer tchapalo during storage at ambient temperature (28 to 30 °C) for four days and at 4 °C for six days were assessed. The aerobic mesophilic bacteria and the yeast counts remained stable during the storage time. However, variations were observed in the lactic acid bacteria and acetic acid bacteria counts. The deteriorating tchapalo acidity did not show significant variations. In contrast, the total soluble solids decreased at ambient temperature and remained stable at 4 °C. Lactic acid was a major compound during storage, and acetic acid was found at a detectable level of 1.26 mg/mL after the third day at ambient temperature. The ethanol contents increased significantly at ambient temperature after two days and then decreased but showed a fair decrease at 4 °C. Evaluating the beer’s appearance, odor, and taste, a panel considered the beers to be spoiled after two days when stored at 28 to 30 °C and after three days when stored at 4 °C.
Collapse
|