1
|
Kamani M, Karimi Torshizi MA, Shariatmadari F. Supplementation with Aspergillus fungi strain cultures on wheat bran on low-protein diets on performance, egg quality and blood characteristics of laying hens. Br Poult Sci 2025:1-10. [PMID: 40183648 DOI: 10.1080/00071668.2025.2479500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 02/23/2025] [Indexed: 04/05/2025]
Abstract
1. In the contemporary economic-industrial world, ensuring the quality of poultry products through the use of healthy birds and providing nutritious diets has gained particular importance. The objective of this experiment was to evaluate the optimisation of laying hens' diets by reducing dietary protein by 4.61% and replacing it with 1.5 g/kg fermented wheat bran using two strains of Aspergillus niger and two strains of Aspergillus oryzae.2. This study was conducted on 240 laying hens at 41 weeks of age over 16 weeks, organised into four treatments and two control groups. One of the control groups included a diet with normal protein (CH) and another group with 4.61% less protein (CL). Both control groups received 1.5 g/kg raw wheat bran with their diet. In contrast, the four experimental treatments (N0, N4, O3, O4) received a diet with 4.61% less protein and 1.5 g/kg fermented wheat bran by their respective fungal strains, including two strains of A. niger-50101 (N0) and 92 844 (N4) and two strains of A. oryzae-5163 (O3) and 5164 (O4).3. The highest free radical scavenging activity, iron ion regenerative power and anticoagulant activity were observed in the control group containing uncultivated bran (p<0.05). A significant reduction in phytate content and an increase in total phenolic compounds in the fermented bran extract N4 fungi were observed (p<0.05). Additionally, this group showed the lowest level of egg yolk oxidation, as indicated by the induced malondialdehyde reaction.4. The N0 treatment had the highest feed intake and antioxidant activity in blood serum compared to the other groups (p < 0.05). The O4 group had the highest egg mass and egg weight, as well as the lowest levels of triglycerides and oxidation in the egg yolk compared to the other groups (p < 0.05).5. This study showed that fermenting wheat bran with Aspergillus spp. could enhance its antioxidant properties, which in turn improves egg quality.
Collapse
Affiliation(s)
- M Kamani
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - M A Karimi Torshizi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - F Shariatmadari
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Pan C, Sheng C, Wang K, Zhang Y, Liu C, Zhang Z, Tao L, Lv Y, Gao F. Beeswax waste improves the mycelial growth, fruiting body yield, and quality of oyster mushrooms ( Pleurotus ostreatus). PeerJ 2024; 12:e18726. [PMID: 39703918 PMCID: PMC11657188 DOI: 10.7717/peerj.18726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Heilongjiang Province has the third largest bee population in China, producing over 2,000 tons of beeswax waste (BW) each year. Most of this BW is discarded or burned. Therefore, we urgently need to find sustainable applications of BW. Pleurotus ostreatus mushrooms, commonly referred to as oyster mushrooms, are cultivated for both food and medicine. The substrate used to grow P. ostreatus mushrooms often contains wheat bran as a nitrogen source. The goal of this study was to explore the feasibility of substituting this wheat bran with BW to cultivate P. ostreatus mushrooms. Five treatments were established, with BW making up 0%, 3%, 5%, 7%, and 9% of the total substrate, and the effects on the mycelial growth and development, biological efficiency (BE), and yield were evaluated along with changes in the chemical biomass composition of the fruiting bodies. Adding BW increased the number of days needed for primordia initiation and the number of days between flushes of P. ostreatus mushrooms. With increasing BW, the total fresh weight of P. ostreatus mushrooms first increased and then decreased. The 5% BW treatment resulted in the highest yield and biological efficiency (BE) of 1,478.96 ± 9.61 g bag-1 and 92.43 ± 0.60%, respectively, which exceeded the values of the control by 4.14% (control: 1,420.15 ± 9.53 g bag-1 and 88.76 ± 0.60%, respectively). The 5% BW treatment also resulted in the highest mushroom crude protein content (23.47 ± 0.18 g 100 g-1), which was 28.18% higher compared with the control (18.31 ± 0.05 g 100 g-1). The 9% BW treatment resulted in the highest crude polysaccharide content (10.33 ± 0.76 g 100 g-1), which was 2.42-fold that of the control (4.26 ± 0.30 g 100 g-1). This study suggests that BW could serve as an effective source of nitrogen to cultivate P. ostreatus. BW is a promising, cost-effective, and efficient additive to mushroom substrate, improving the yield and quality of P. ostreatus mushrooms while providing a sustainable use for an otherwise difficult to dispose of waste product.
Collapse
Affiliation(s)
- Chunlei Pan
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang, Heilongjiang, China
| | - Chunge Sheng
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang, Heilongjiang, China
| | - Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chunguang Liu
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang, Heilongjiang, China
| | - Zhihao Zhang
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang, Heilongjiang, China
| | - Liang Tao
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang, Heilongjiang, China
| | - Yang Lv
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang, Heilongjiang, China
| | - Fuchao Gao
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang, Heilongjiang, China
| |
Collapse
|
3
|
Barua RC, Coniglio RO, Molina MA, Díaz GV, Fonseca MI. Fungi as biotechnological allies: Exploring contributions of edible and medicinal mushrooms. J Food Sci 2024; 89:6888-6915. [PMID: 39349976 DOI: 10.1111/1750-3841.17390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 11/13/2024]
Abstract
Edible and medicinal mushrooms possess excellent nutritional properties due to their incredible versatility in growing on different substrates and producing extracellular enzymes with a wide range of specificity. These features make them excellent candidates for various biotechnological applications. In this context, biotechnological applications using edible and medicinal mushrooms can focus on the bioprocessing of agro-industrial wastes, an economical and environmentally friendly strategy. This review, based on recent original research and scientific reviews, highlights the versatility and potential of mushrooms in terms of sustainability and efficiency. We emphasized the biotechnological applications of edible and medicinal mushrooms and their enzymes including food production with high nutraceutical value by enhancing the quality and flavor of food industry products. Other biotechnological applications addressed in this review were cosmeceutical and biomedical development using mushroom extracts with bioactive compounds; wood pulp pretreatment processes in the pulp and paper industry; bioethanol production; and bioremediation for decontaminating soils and polluted effluents. These applications explain how edible and medicinal mushrooms have gained significance in biotechnology over the years, opening new avenues for innovation. The current tendency to study edible and medicinal mushrooms has gained the attention of researchers because these are still less known organisms becoming an attractive and natural source of novel bioactive compounds that could be integrated into a circular model production.
Collapse
Affiliation(s)
- R Celeste Barua
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnologpia Misiones "Dra. María Ebe Reca" (InBioMis), Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Romina O Coniglio
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnologpia Misiones "Dra. María Ebe Reca" (InBioMis), Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Melisa A Molina
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnologpia Misiones "Dra. María Ebe Reca" (InBioMis), Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Gabriela V Díaz
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnologpia Misiones "Dra. María Ebe Reca" (InBioMis), Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Maria I Fonseca
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnologpia Misiones "Dra. María Ebe Reca" (InBioMis), Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Li L, Cao X, Huang J, Zhang T, Wu Q, Xiang P, Shen C, Zou L, Li J, Li Q. Effect of Pleurotus eryngii mycelial fermentation on the composition and antioxidant properties of tartary buckwheat. Heliyon 2024; 10:e25980. [PMID: 38404826 PMCID: PMC10884446 DOI: 10.1016/j.heliyon.2024.e25980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
In this study, we investigated the effect of solid-state fermentation of Pleurotus eryngii on the composition and antioxidant activity of Tartary buckwheat (TB). Firstly, the solid-state fermentation of P. eryngii mycelium with buckwheat was carried out, and the fermentation process was explored. The results of the extraction process and method selection experiments showed that the percolation extraction method was superior to the other two methods. The results of extraction rate, active components and antioxidant activity measurements before and after fermentation of TB extract showed that the extraction rate increased about 1.7 times after fermentation. Total flavonoids, rutin and triterpene contents were increased after fermentation compared to control. Meanwhile, LC-MS results showed an increase in the content of the most important substances in the fermented TB extract and the incorporation of new components, such as oleanolic acid, ursolic acid, amino acids, and D-chiral inositol. The fermented TB extract showed stronger antioxidant activity, while the protein and amino acid contents increased by 1.93-fold and 1.94-fold, respectively. This research was the first to use P. eryngii to ferment TB and prepared a lyophilized powder that could be used directly using vacuum freeze-drying technology. Not only the use of solid-state fermentation technology advantages of edible fungi to achieve value-added buckwheat, but also to broaden the scope of TB applications. This study will provide ideas and directions for the development and application of edible mushroom fermentation technology and TB.
Collapse
Affiliation(s)
- Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xiaonian Cao
- Luzhou Laojiao Co. Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Caihong Shen
- Luzhou Laojiao Co. Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou, 646000, China
| |
Collapse
|
5
|
Datta R. Enzymatic degradation of cellulose in soil: A review. Heliyon 2024; 10:e24022. [PMID: 38234915 PMCID: PMC10792583 DOI: 10.1016/j.heliyon.2024.e24022] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cellulose degradation is a critical process in soil ecosystems, playing a vital role in nutrient cycling and organic matter decomposition. Enzymatic degradation of cellulosic biomass is the most sustainable and green method of producing liquid biofuel. It has gained intensive research interest with future perspective as the majority of terrestrial lignocellulose biomass has a great potential to be used as a source of bioenergy. However, the recalcitrant nature of lignocellulose limits its use as a source of energy. Noteworthy enough, enzymatic conversion of cellulose biomass could be a leading future technology. Fungal enzymes play a central role in cellulose degradation. Our understanding of fungal cellulases has substantially redirected in the past few years with the discovery of a new class of enzymes and Cellulosome. Efforts have been made from time to time to develop an economically viable method of cellulose degradation. This review provides insights into the current state of knowledge regarding cellulose degradation in soil and identifies areas where further research is needed.
Collapse
Affiliation(s)
- Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology. Mendel University In Brno, Czech Republic
| |
Collapse
|
6
|
Östbring K, Lager I, Chagas JCC, Ramin M, Ahlström C, Hultberg M. Use of oyster mushrooms (Pleurotus ostreatus) for increased circularity and valorization of rapeseed residues. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118742. [PMID: 37573696 DOI: 10.1016/j.jenvman.2023.118742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
In Europe, rapeseed is a common oilseed crop, resulting in the production of 20 million tons of rapeseed press cake yearly. This press cake can be further upcycled and a protein fraction can be extracted for food purposes, leaving de-proteinized fiber-rich residues. This study examined the use of these residues in the production of oyster mushrooms (Pleurotus ostreatus) and of the spent substrate as feed, since mushroom cultivation may improve the feed properties of substrate. In terms of mushroom production, the addition of rapeseed press residues was beneficial, giving significantly higher biological efficiency (BE = 93.1 ± 11.0%) compared with the control, sugar beet pulp substrate (70.0 ± 6.6%). This increase in productivity can most likely be explained by higher energy content in the substrate supplemented with lipid-rich rapeseed residues. Despite differences in BE between the substrates, high similarity was observed in lipid composition of the fruiting bodies (lipid profile dominated by linoleic acid (18:2), palmitic acid (16:0), and oleic acid (18:1)), and in protein and moisture content. After mushroom harvest, approximately 70% of the initial dry weight of both substrates remained as a possible feed source. Both substrates had significantly lower levels of carbohydrates and unchanged neutral detergent fiber content after mushroom harvest, and both gave lower in vitro digestibility, total gas production, and methane production. However, protein concentration differed between the substrates, with the highest concentration (15.8% of dry weight) found in spent substrate containing rapeseed press residues. The result of the present study suggests that the de-proteinized rapeseed press residue is a resource well-suited for use in the production of mushrooms and feed.
Collapse
Affiliation(s)
- Karolina Östbring
- Department of Food Technology Engineering and Nutrition, Lund University, P.O. Box 124, SE-221 00, Sweden
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, SE-234 56, Alnarp, Sweden
| | | | - Mohammad Ramin
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Cecilia Ahlström
- Department of Food Technology Engineering and Nutrition, Lund University, P.O. Box 124, SE-221 00, Sweden
| | - Malin Hultberg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Växtskyddsvägen 3, SE-234 56, Alnarp, Sweden.
| |
Collapse
|
7
|
Novela M, Pinto SC, Tembe A, Paulo E, Mabasso M, Gove A, Changule AP, Joaquim LA, Tseu R, dos Anjos F, Bila CG. Soybean oil addition to wheat bran-based diet improves laying hens' performance. Vet World 2023; 16:1572-1575. [PMID: 37621532 PMCID: PMC10446721 DOI: 10.14202/vetworld.2023.1572-1575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/16/2023] [Indexed: 08/26/2023] Open
Abstract
Background and Aim Wheat bran (WB) is used extensively in animal feed. Despite its nutritional value, its use is limited because of its high-fiber content. We evaluated the effect of soybean oil on laying hen performance with maize meal partly replaced by WB. Materials and Methods Thirty-six ISA Brown laying hens, 40 weeks old, were used in a completely randomized design in which laying hens were distributed in individual cages, with three replications of four birds and assigned to three treatments: T1 (basal diet), T2 (60% basal diet + 20% maize meal + 20% WB), and T3 (60% basal diet + 20% maize meal + 17.5% WB + 2.5% soybean oil). Results Compared with the control group (T1), replacing 20% of yellow maize with WB (T2) did not affect average live weight, egg laying rate, soft-shelled egg production, egg mass, feed conversion per dozen eggs, or laying hen viability (p > 0.05). When 20% of the maize meal was replaced with WB, feed intake and feed conversion per egg mass increased (p < 0.05). Furthermore, adding 2.5% soybean oil to feed containing WB improved laying hen performance by significantly reducing feed conversion per egg mass (p < 0.05). Conclusion Adding 2.5% soybean oil to diets containing WB instead of 17.5% yellow maize improved the feed conversion per egg mass performance of laying hens.
Collapse
Affiliation(s)
- Mariana Novela
- Section of Animal Pathology, Department of Animal and Public Health, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Sónia Carlitos Pinto
- Section of Animal Pathology, Department of Animal and Public Health, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Angélica Tembe
- Section of Animal Pathology, Department of Animal and Public Health, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Emmanuel Paulo
- Section of Animal Pathology, Department of Animal and Public Health, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Marcos Mabasso
- Department of Basic Sciences, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Albino Gove
- Section of Animal Pathology, Department of Animal and Public Health, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Abilio Paulo Changule
- Directorate of Animal Science, Agricultural Research Institute of Mozambique, Maputo, Mozambique
| | - Leonel António Joaquim
- Angónia Reseach Station, Agricultural Research Institute of Mozambique, Maputo, Mozambique
| | - Ramos Tseu
- Section of Animal Nutrition, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Filomena dos Anjos
- Section of Animal Nutrition, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Custódio Gabriel Bila
- Section of Animal Pathology, Department of Animal and Public Health, Faculty of Veterinary Medicine, Eduardo Mondlane University, Maputo, Mozambique
| |
Collapse
|
8
|
Lou H, Yang C, Gong Y, Li Y, Li Y, Tian S, Zhao Y, Zhao R. Edible fungi efficiently degrade aflatoxin B 1 in cereals and improve their nutritional composition by solid-state fermentation. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131139. [PMID: 36921416 DOI: 10.1016/j.jhazmat.2023.131139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Aflatoxin B1 (AFB1) is extremely harmful to human and livestock. Laccase, a green catalyst, has been shown to effectively degrade AFB1 and can be obtained from edible fungi. The objective of this study was to screen edible fungi with high laccase activity and determine their effects on the degradation of AFB1 in cereals and the nutritional composition of the cereals through solid-state fermentation. Results from plate assays confirmed that 51 of the 55 tested edible fungi could secrete laccase. Submerged fermentation results showed that 17 of the 51 edible fungi had maximum laccase activity exceeding 100 U/L. The growth of different edible fungi varied significantly in corn, rice and wheat. More importantly, 6 edible fungi with high laccase activity and good growth could efficiently degrade AFB1 in cereals. We found for the first time that Ganoderma sinense could not only secrete highly active laccase and efficiently degrade AFB1 in corn by 92.91%, but also improve the nutritional quality of corn. These findings reveal that solid-state fermentation of cereals with edible fungi is an environmentally friendly and efficient approach for degrading AFB1 in cereals and improving the nutritional composition of cereals.
Collapse
Affiliation(s)
- Haiwei Lou
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Department of Grain Science and Industry, Kansas State University, Manhattan 66506, USA
| | - Chuangming Yang
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Gong
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yang Li
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan 66506, USA
| | - Shuangqi Tian
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yu Zhao
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Renyong Zhao
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Wang B, Li G, Li L, Zhang M, Yang T, Xu Z, Qin T. Novel processing strategies to enhance the bioaccessibility and bioavailability of functional components in wheat bran. Crit Rev Food Sci Nutr 2022; 64:3044-3058. [PMID: 36190261 DOI: 10.1080/10408398.2022.2129582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary fiber, polysaccharides and phenols are the representative functional components in wheat bran, which have important nutritional properties and pharmacological effects. However, the most functional components in wheat bran exist in bound form with low bioaccessibility. This paper reviews these functional components, analyzes modification methods, and focuses on novel solid-state fermentation (SSF) strategies in the release of functional components. Mining efficient microbial resources from traditional fermented foods, exploring the law of material exchange between cell populations, and building a stable self-regulation co-culture system are expected to strengthen the SSF process. In addition, emerging biotechnology such as synthetic biology and genome editing are used to transform the mixed fermentation system. Furthermore, combined with the emerging physical-field pretreatment coupled with SSF strategies applied to the modification of wheat bran, which provides a theoretical basis for the high-value utilization of wheat bran and the development of related functional foods and drugs.
Collapse
Affiliation(s)
- Baoshi Wang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Guangyao Li
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Linbo Li
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingxia Zhang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Tianyou Yang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Tengfei Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS); Beijing Capital Agribusiness Future Biotechnology, Beijing, China
| |
Collapse
|
10
|
Fan L, Li L, Xu A, Huang J, Ma S. Impact of Fermented Wheat Bran Dietary Fiber Addition on Dough Rheological Properties and Noodle Quality. Front Nutr 2022; 9:952525. [PMID: 35873449 PMCID: PMC9301053 DOI: 10.3389/fnut.2022.952525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/01/2022] Open
Abstract
This study aimed to evaluate the effect of fermented wheat bran dietary fiber (FWBDF) on the rheological properties of the dough and the quality of noodles and to compare it with the effect of the unfermented WBDF (UWBDF). WBDF was fermented with Auricularia polytricha. The results showed that adding UWBDF/FWBDF increased the storage modulus G' and loss modulus G” of the dough, converted α-helices and β-turns into β-sheets and random coils, respectively, inhibited water flow, increased cooking loss, and decreased the maximum resistance in the noodles. The formed gluten network had a more random and rigid structure, resulting in the deterioration of the quality of noodles. Furthermore, the number of α-helices and the peak proportions of weakly bound water A22 increased but the number of β-sheets and cooking loss decreased in the FWBDF group compared with the UWBDF group. FWBDF (≤4%) improved the hardness of noodles, while UWBDF decreased it. These changes indicated that fermentation could reduce the destructive effects of WBDF on the quality of noodles, providing a new perspective on balancing dietary fiber-rich and high-quality foods.
Collapse
Affiliation(s)
- Ling Fan
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Li Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Anmin Xu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Jihong Huang
- Food and Pharmacy College, Xuchang University, Xuchang, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
- *Correspondence: Jihong Huang
| | - Sen Ma
- Food and Pharmacy College, Xuchang University, Xuchang, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
- Sen Ma
| |
Collapse
|
11
|
Saini S, Sharma KK. Fungal lignocellulolytic enzymes and lignocellulose: A critical review on their contribution to multiproduct biorefinery and global biofuel research. Int J Biol Macromol 2021; 193:2304-2319. [PMID: 34800524 DOI: 10.1016/j.ijbiomac.2021.11.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023]
Abstract
The continuous increase in the global energy demand has diminished fossil fuel reserves and elevated the risk of environmental deterioration and human health. Biorefinery processes involved in producing bio-based energy-enriched chemicals have paved way to meet the energy demands. Compared to the thermochemical processes, fungal system biorefinery processes seems to be a promising approach for lignocellulose conversion. It also offers an eco-friendly and energy-efficient route for biofuel generation. Essentially, ligninolytic white-rot fungi and their enzyme arsenals degrade the plant biomass into structural constituents with minimal by-products generation. Hemi- or cellulolytic enzymes from certain soft and brown-rot fungi are always favoured to hydrolyze complex polysaccharides into fermentable sugars and other value-added products. However, the cost of saccharifying enzymes remains the major limitation, which hinders their application in lignocellulosic biorefinery. In the past, research has been focused on the role of lignocellulolytic fungi in biofuel production; however, a cumulative study comprising the contribution of the lignocellulolytic enzymes in biorefinery technologies is still lagging. Therefore, the overarching goal of this review article is to discuss the major contribution of lignocellulolytic fungi and their enzyme arsenal in global biofuel research and multiproduct biorefinery.
Collapse
Affiliation(s)
- Sonu Saini
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
12
|
Javourez U, O'Donohue M, Hamelin L. Waste-to-nutrition: a review of current and emerging conversion pathways. Biotechnol Adv 2021; 53:107857. [PMID: 34699952 DOI: 10.1016/j.biotechadv.2021.107857] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022]
Abstract
Residual biomass is acknowledged as a key sustainable feedstock for the transition towards circular and low fossil carbon economies to supply whether energy, chemical, material and food products or services. The latter is receiving increasing attention, in particular in the perspective of decoupling nutrition from arable land demand. In order to provide a comprehensive overview of the technical possibilities to convert residual biomasses into edible ingredients, we reviewed over 950 scientific and industrial records documenting existing and emerging waste-to-nutrition pathways, involving over 150 different feedstocks here grouped under 10 umbrella categories: (i) wood-related residual biomass, (ii) primary crop residues, (iii) manure, (iv) food waste, (v) sludge and wastewater, (vi) green residual biomass, (vii) slaughterhouse by-products, (viii) agrifood co-products, (ix) C1 gases and (x) others. The review includes a detailed description of these pathways, as well as the processes they involve. As a result, we proposed four generic building blocks to systematize waste-to-nutrition conversion sequence patterns, namely enhancement, cracking, extraction and bioconversion. We further introduce a multidimensional representation of the biomasses suitability as potential as nutritional sources according to (i) their content in anti-nutritional compounds, (ii) their degree of structural complexity and (iii) their concentration of macro- and micronutrients. Finally, we suggest that the different pathways can be grouped into eight large families of approaches: (i) insect biorefinery, (ii) green biorefinery, (iii) lignocellulosic biorefinery, (iv) non-soluble protein recovery, (v) gas-intermediate biorefinery, (vi) liquid substrate alternative, (vii) solid-substrate fermentation and (viii) more-out-of-slaughterhouse by-products. The proposed framework aims to support future research in waste recovery and valorization within food systems, along with stimulating reflections on the improvement of resources' cascading use.
Collapse
Affiliation(s)
- U Javourez
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - M O'Donohue
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - L Hamelin
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
13
|
Stoffel F, Santana WDO, Fontana RC, Camassola M. Use of Pleurotus albidus mycoprotein flour to produce cookies: Evaluation of nutritional enrichment and biological activity. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Zięba P, Sękara A, Sułkowska-Ziaja K, Muszyńska B. Culinary and Medicinal Mushrooms: Insight into Growing Technologies. ACTA MYCOLOGICA 2021. [DOI: 10.5586/am.5526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Humans have used mushrooms from the beginning of their history. However, during the last few decades, the market demand for these fruiting bodies has increased significantly owing to the spread in the capabilities of culinary and pharmacological exploitation. Natural mushroom resources have become insufficient to meet the support needs. Therefore, traditional methods of extensive cultivation as well as modern technologies have been exploited to develop effective growing recommendations for dozens of economically important mushroom species. Mushrooms can decompose a wide range of organic materials, including organic waste. They play a fundamental role in nutrient cycling and exchange in the environment. The challenge is a proper substrate composition, including bio-fortified essential elements, and the application of growing conditions to enable a continuous supply of fruiting bodies of market quality and stabilized chemical composition. Many mushroom species are used for food preparation. Moreover, they are treated as functional foods, because they have health benefits beyond their nutritional value, and are used as natural medicines in many countries. Owing to the rapid development of mushroom farming, we reviewed the growing technologies used worldwide for mushroom species developed for food, processing, and pharmacological industries.
Collapse
|
15
|
Chuang WY, Hsieh YC, Lee TT. The Effects of Fungal Feed Additives in Animals: A Review. Animals (Basel) 2020; 10:E805. [PMID: 32384791 PMCID: PMC7278461 DOI: 10.3390/ani10050805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 01/01/2023] Open
Abstract
As probiotics, fungi enhance animal health and are suitable animal feed additives. In addition to brewing fungi, there are also edible and medicinal fungi. Common fungi utilized in feeding programs include Saccharomyces cerevisiae, Aspergillus oryzae, Pleurotus spp., Antrodia cinnamomea, and Cordyceps militaris. These fungi are rich in glucans, polysaccharides, polyphenols, triterpenes, ergosterol, adenosine, and laccases. These functional components play important roles in antioxidant, anti-inflammatory, anti-obesity, and immune system regulation. As such, fungal feed additives could be of potential use when breeding livestock. In previous studies, fungal feed additives enhanced body weight and egg production in poultry and improved the feed conversion rate. Several mycotoxins can be produced by hazardous fungi but fortunately, the cell walls constituents and enzymes of fungal probiotics can also act to decrease the toxicity of mycotoxins. Overall, fungal feed additives are of value, but their safety and usage must be studied further, including cost-benefit economic analyses.
Collapse
Affiliation(s)
- Wen Yang Chuang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (Y.C.H.)
| | - Yun Chen Hsieh
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (Y.C.H.)
| | - Tzu-Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (Y.C.H.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
16
|
A diet containing native or fermented wheat bran does not interfere with natural microbiota of laying hens. Animal 2020; 14:1147-1155. [PMID: 31937375 DOI: 10.1017/s1751731119003343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Wheat bran (WB) is an important side product of the milling industry and can serve as dietary fiber compound for monogastric animals. The aim of this study was to evaluate the influence of native or fermented WB on the gut physiology and microbiology of laying hens. To accomplish this, 24 laying hens were fed the following diets: conventional diet without WB; 15% native WB in the diet; 15% WB fermented with Pleurotus eryngii; and 15% WB fermented with P. eryngii and a lactic acid bacterial culture. Immediately after slaughtering, digesta samples were taken from the jejunum, ileum and cecum, respectively. Total DNA was extracted and subsequently investigated with 16S DNA amplicon sequencing. Neither native nor fermented WB supplementations negatively affected the feed conversion ratio, laying performance or the relative abundances and alpha-diversity of microbiota in the intestine. Effects of WB-based diets on gut morphology were only recognized in the jejunum (reduced villum height and mucosa thickness). Likewise, WB supplementation decreased the digestibility of DM and starch. Based on these findings, it was demonstrated that different WB variants are applicable without exerting practically negative consequences on performance or on gut microbiota. Fermentation improved the digestibility/retention of dietary fat and phosphorus. However, no further beneficial effects were observed. This study also allowed a more in-depth view on the laying hens' gut microbiome and its variation within the gut segments.
Collapse
|
17
|
Feng Y, Wang L, Khan A, Zhao R, Wei S, Jing X. Fermented wheat bran by xylanase-producing Bacillus cereus boosts the intestinal microflora of broiler chickens. Poult Sci 2020; 99:263-271. [PMID: 32416810 PMCID: PMC7587633 DOI: 10.3382/ps/pez482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Wheat bran, while a nutritious and economic feed ingredient, contents high levels of non-starch polysaccharides which entraps nutrients and interferes digestion and absorption. To study the influence of fermented wheat bran by xylanase-producing Bacillus cereus on growth performance and intestinal microflora of broiler chickens, a total of 180 broilers (21-day-old, mixed of male and female) were randomly divided into 3 treatments, with 6 replicates in each treatment and 10 broilers in each replicate: 1) control check (CK), corn-soybean meal-based diet; 2) wheat bran group (WB), 5% of the corn were replaced with wheat bran; and 3) fermented wheat bran group (FWB), 5% of the corn were replaced with fermented wheat bran. Growth performance was determined in the period of 21- to 42-day-old. Intestinal digestive enzyme activities and microbiota diversity were analyzed on day 42. No differences were observed on growth performance among treatments (P > 0.05). The activity of amylase in the duodenum of FWB was 1.56 times higher than CK (P < 0.05). The Chao1 index of microbiota in cecum of FWB increased 24.26% compared with CK (P < 0.01). The amount of Bifidobacteriaceae in cecum of WB was 29.1 times and 15.8 times higher than CK and FWB (P < 0.05) respectively. Principal co-ordinates analysis in cecum revealed the dissimilarity microbiota among treatments. In summary, the use of fermented wheat bran to partially replace corn (5%) in diets had no adverse effect on growth performance and triggered beneficial effects such as increasing duodenal amylase activity and intestinal microflora abundance in broiler chickens. These observations support that solid-state fermentation by xylanase-producing Bacillus cereus is feasible approach to pre-treat wheat bran for feedstuff industry.
Collapse
Affiliation(s)
- Yan Feng
- College of Life and Science, Shanxi Agricultural University, 030801, China.
| | - Lei Wang
- College of Life and Science, Shanxi Agricultural University, 030801, China
| | - Ajab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, 030801, China
| | - Rui Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, 030801, China
| | - Siang Wei
- College of Life and Science, Shanxi Agricultural University, 030801, China
| | - Xiaoyuan Jing
- College of Life and Science, Shanxi Agricultural University, 030801, China
| |
Collapse
|
18
|
Stoffel F, Santana WDO, Gregolon JGN, Kist TBL, Fontana RC, Camassola M. Production of edible mycoprotein using agroindustrial wastes: Influence on nutritional, chemical and biological properties. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Chemical features and bioactivity of grain flours colonized by macrofungi as a strategy for nutritional enrichment. Food Chem 2019; 297:124988. [DOI: 10.1016/j.foodchem.2019.124988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
|
20
|
Acosta-Estrada BA, Villela-Castrejón J, Perez-Carrillo E, Gómez-Sánchez CE, Gutiérrez-Uribe JA. Effects of solid-state fungi fermentation on phenolic content, antioxidant properties and fiber composition of lime cooked maize by-product (nejayote). J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Cellulase production by white-rot basidiomycetous fungi: solid-state versus submerged cultivation. Appl Microbiol Biotechnol 2018; 102:5827-5839. [PMID: 29766241 DOI: 10.1007/s00253-018-9072-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 10/16/2022]
Abstract
White-rot basidiomycetous (WRB) fungi are a group of wood-decaying fungi that are known to be endowed with the ability to secrete enzymes that can catalyze decomposition of a range of plant cell wall polysaccharides, including cellulose and lignin. Expression of these enzymes is induced by the substrate and the enzyme yields obtained depend on the growth of the fungi and thus the mode of cultivation. In order to exploit WRB fungi for local enzyme production for converting lignocellulosic materials in biorefinery processes, the fungi can principally be cultivated in either solid-state (SSC) or submerged cultivation (SmC) systems. In this review, we quantitatively assess the data available in the literature on cellulase production yields by WRB fungi cultivated by SSC or SmC. The review also assesses cellulolytic enzyme production rates and enzyme recovery when WRB fungi are cultivated on different biomass residues in SSC or SmC systems. Although some variation in cellulase production yields have been reported for certain substrates, the analysis convincingly shows that SmC is generally more efficient than SSC for obtaining high cellulase production yields and high cellulase production rates on the substrate used. However, the cultivation method also affects the enzyme activity profile obtained, and the resulting enzyme titers and significant dilution of the enzymes usually occurs in SmC. The review also highlights some future approaches, including sequential cultivations and co-cultivation of WRB fungi for improved enzyme expression, as well as on-site approaches for production of enzyme blends for industrial biomass conversion. The quantitative comparisons made have implications for selection of the most appropriate cultivation method for WRB fungi for attaining maximal cellulase production.
Collapse
|
22
|
Wanzenböck E, Schreiner M, Zitz U, Bleich B, Figl S, Kneifel W, Schedle K. A Combination of Wheat Bran and Vegetable Oils as Feedstuff in Laying Hens’ Diet: Impact on Egg Quality Parameters. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/as.2018.96047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|