1
|
Rakshit S, Roy T, Jana PC, Gupta K. A Comprehensive Review on the Importance of Sustainable Synthesized Coinage Metal Nanomaterials and Their Diverse Biomedical Applications. Biol Trace Elem Res 2024:10.1007/s12011-024-04361-8. [PMID: 39222235 DOI: 10.1007/s12011-024-04361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
From a historical perspective, coinage metals (CMNMs) are most renowned for their monetary, ornamental, and metallurgical merits; nevertheless, as nanotechnology's potential has only just come to light, their metal nanostructures and uses may be viewed as products of modern science. Notable characteristics of CMNMs include visual, electrical, chemical, and catalytic qualities that depend on shape and size. Due diligence on the creation and synthesis of CMNMs and their possible uses has been greatly promoted by these characteristics. This review focuses on solution-based methods and provides an overview of the latest developments in CMNMs and their bimetallic nanostructures. It discusses a range of synthetic techniques, including conventional procedures and more modern approaches used to enhance functionality by successfully manipulating the CMNMs nanostructure's size, shape, and composition. To help with the design of new nanostructures with improved capabilities in the future, this study offers a brief assessment of the difficulties and potential future directions of these intriguing metal nanostructures. This review focuses on mechanisms and factors influencing the synthesis process, green synthesis, and sustainable synthesis methods. It also discusses the wide range of biological domains in which CMNMs are applied, including antibacterial, antifungal, and anticancer. Researchers will therefore find the appropriateness of both synthesizing and using CMNMS keeping in mind the different levels of environmental effects.
Collapse
Affiliation(s)
- Soumen Rakshit
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Tamanna Roy
- Department of Microbiology, Bankura Sammilani Medical College and Hospital, Bankura, 722102, West Bengal, India
| | - Paresh Chandra Jana
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Kajal Gupta
- Department of Chemistry, Nistarini College, Purulia, 723101, West Bengal, India.
| |
Collapse
|
2
|
Pereira RN, Rodrigues R, Avelar Z, Leite AC, Leal R, Pereira RS, Vicente A. Electrical Fields in the Processing of Protein-Based Foods. Foods 2024; 13:577. [PMID: 38397554 PMCID: PMC10887823 DOI: 10.3390/foods13040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Electric field-based technologies offer interesting perspectives which include controlled heat dissipation (via the ohmic heating effect) and the influence of electrical variables (e.g., electroporation). These factors collectively provide an opportunity to modify the functional and technological properties of numerous food proteins, including ones from emergent plant- and microbial-based sources. Currently, numerous scientific studies are underway, contributing to the emerging body of knowledge about the effects on protein properties. In this review, "Electric Field Processing" acknowledges the broader range of technologies that fall under the umbrella of using the direct passage of electrical current in food material, giving particular focus to the ones that are industrially implemented. The structural and biological effects of electric field processing (thermal and non-thermal) on protein fractions from various sources will be addressed. For a more comprehensive contextualization of the significance of these effects, both conventional and alternative protein sources, along with their respective ingredients, will be introduced initially.
Collapse
Affiliation(s)
- Ricardo N. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Rui Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Zita Avelar
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Ana Catarina Leite
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Rita Leal
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Ricardo S. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - António Vicente
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Joeres E, Drusch S, Töpfl S, Juadjur A, Psathaki OE, Heinz V, Terjung N. Formation of amyloid fibrils from ovalbumin under Ohmic heating. Heliyon 2023; 9:e22061. [PMID: 38027889 PMCID: PMC10658388 DOI: 10.1016/j.heliyon.2023.e22061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Ohmic heating (OH) is an alternative sustainable heating technology that has demonstrated its potential to modify protein structures and aggregates. Furthermore, certain protein aggregates, namely amyloid fibrils (AF), are associated with an enhanced protein functionality, such as gelation. This study evaluates how Ohmic heating (OH) influences the formation of AF structures from ovalbumin source under two electric field strength levels, 8.5 to 10.5 and 24.0-31.0 V/cm, respectively. Hence, AF aggregate formation was assessed over holding times ranging from 30 to 1200 sunder various environmental conditions (3.45 and 67.95 mM NaCl, 80, 85 and 90 °C, pH = 7). AF were formed under all conditions. SDS-PAGE revealed that OH had a higher tendency to preserve native ovalbumin molecules. Furthermore, Congo Red and Thioflavin T stainings indicated that OH reduces the amount of AF structures. This finding was supported by FTIR measurements, which showed OH samples to contain lower amounts of beta-sheets. Field flow fractioning revealed smaller-sized aggregates or aggregate clusters occurred after OH treatment. In contrast, prolonged holding time or higher treatment temperatures increased ThT fluorescence, beta-sheet structures and aggregate as well as cluster sizes. Ionic strength was found to dominate the effects of electric field strength under different environmental conditions.
Collapse
Affiliation(s)
- Eike Joeres
- DIL – German Institute of Food Technologies (DIL e.V.), Professor-von-Klitzing-Str. 7, 49160, Quakenbrück, Germany
- Technical University of Berlin, Institute of Food Technology and Food Chemistry, Department of Food Technology and Food Material Science, Königin-Luise-Str. 22, 14195, Berlin, Germany
| | - Stephan Drusch
- Technical University of Berlin, Institute of Food Technology and Food Chemistry, Department of Food Technology and Food Material Science, Königin-Luise-Str. 22, 14195, Berlin, Germany
| | - Stefan Töpfl
- University of Applied Science Osnabrück, Department of Agricultural Science and Landscape Architecture, Oldenburger Landstr. 62, 49090, Osnabrück, Germany
| | - Andreas Juadjur
- DIL – German Institute of Food Technologies (DIL e.V.), Professor-von-Klitzing-Str. 7, 49160, Quakenbrück, Germany
| | | | - Volker Heinz
- DIL – German Institute of Food Technologies (DIL e.V.), Professor-von-Klitzing-Str. 7, 49160, Quakenbrück, Germany
| | - Nino Terjung
- DIL – German Institute of Food Technologies (DIL e.V.), Professor-von-Klitzing-Str. 7, 49160, Quakenbrück, Germany
| |
Collapse
|
4
|
Electric field-intensified chemical processes and reaction chemistry. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2022.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Samaranayake CP, Mok JH, Heskitt BF, Sastry SK. Nonthermal inactivation effects on oxidative enzymes in grape juice influenced by moderate electric fields: Effect of constant exposure electrical treatments combined with temperature. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Queirós M, Pereira G, Leite AC, Leal R, Rodrigues R, Teixeira JA, Pereira RN. Tunning pectinase activity under the effects of electric fields in the enhanced clarification of wine must. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1053013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
IntroductionPectinolytic enzymes are of great importance for the clarification process of “Vinho Verde” wine must, contributing to the reduction of haze development. During the last decade, a growing body of knowledge has been established about the effects of electric fields on the activation of important food enzymes. However, the influence of electrical parameters on catalytic activity is enzyme-dependent and should be evaluated on a case-by-case basis. This work describes, for the first time, the effects of electric fields and electrical frequency on the activity of pectinase (PEC) in the accelerated clarification of “Vinho Verde” must.MethodModerate electric fields (MEF) with intensities below 20 V/cm and at electrical frequencies ranging from 50 to 20 kHz were applied at temperatures between 15 and 35°C. Enzymatic activity was measured for 25 min, and the initial rate of reaction was determined by the coefficient of the linear plot of galacturonic acid (GAL) production as a function of time.ResultsThe results show that electrical frequency can increase enzymatic activity depending on temperature conditions; at 20°C and with electrical frequencies of 2 and 20 kHz, enzymatic activity increased by up to 40 and 20%, respectively, when compared with the control sample (without the application of MEF). Temperature dependence was evaluated through the Arrhenius equation, showing that energy of activation (Ea) can be reduced from 9.2 to 6.6 kJ/mol at sub-optimal temperatures for PEC activity when MEF is applied.DiscussionElectrical parameters, when combined with temperatures below 20°C, reduced pectin concentration in “Vinho Verde” wine must by up to 42% of its initial content. This emergent treatment can be integrated in relevant environmental conditions, presenting an opportunity to increase enzyme efficiency even in low-temperature conditions, which favors the winemaking process.
Collapse
|
7
|
Li D, Yu X, Wang P, Cui B, Xu E, Tao Y, Han Y. Effect of pre-gelatinization on α-amylase-catalyzed hydrolysis of corn starch under moderate electric field. Int J Biol Macromol 2022; 221:1335-1344. [PMID: 36087753 DOI: 10.1016/j.ijbiomac.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022]
Abstract
This study aimed to explore the roles of starch structure in α-amylase-catalyzed hydrolysis under moderate electric field (MEF). Corn starch was gelatinized by controlling the temperature procedure of rapid viscos-analysis, and then the pre-gelatinized starch (3.0 g) was treated by MEF (2.5 and 5 V/cm) in the presence of α-amylase (1.5 mL). Only a slight hydrolysis occurred for native starch, showing minor increases in reducing sugar content (RSC, ∼0.19 mg/mL), slight changes in granular and semicrystalline structure, and decreases in thermostability (the maximum decomposition temperature (Tmax) decreased from 322 to 300 °C). The densely-packed semicrystalline within starch granules was destroyed by pre-gelatinization, thus enhancing the hydrolysis and further decreasing the thermostability, presenting RSC values of 0.63-0.92 mg/mL and Tmax of 291-292 °C. Moreover, some special crystals were formed by IEF-induced orientation of hydrolyzed starch chains. Overall, these results confirmed that the semicrystalline structure of starch dominated in MEF-assisted hydrolysis, which could provide guidance for the application of electro-based techniques in starch modification.
Collapse
Affiliation(s)
- Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Xinhong Yu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong Province, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yongbin Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
8
|
Changes in the structural and catalytic characteristics of α-amylase under moderate electric field. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Response to "Non-thermal microwave effects: Conceptual and methodological problems". Food Chem 2022; 390:133216. [PMID: 35594767 DOI: 10.1016/j.foodchem.2022.133216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/12/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022]
Abstract
The objective of this response letter is to expose the reader of Food Chemistry to the most recent advances and discussions about non-thermal effects of microwaves on microorganisms and enzymes. Although these effects showed to be too subtle for any practical use in food processing, experimental and molecular dynamics studies bring evidences that electric fields at low frequencies or with high intensity can have non-thermal effects, such as activity changes in enzymes during ohmic processing or electroporation of cells in pulsed electric field processing. This brief review broadens the scope of this controversial topic to show that innovative experiments and simulations are collaborating with the advance of emerging electro technologies in food processing. .
Collapse
|
10
|
Samaranayake CP, Mok JH, Heskitt BF, Sastry SK. Nonthermal inactivation of polyphenol oxidase in apple juice influenced by moderate electric fields: Effects of periodic on-off and constant exposure electrical treatments. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Cokgezme OF, Icier F. Frequency and wave type effects on extractability of oleuropein from olive leaves by moderate electric field assisted extraction. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Cooking the Chicken Meat with Moderate Electric Field: Rheological Properties and Image Processing of Microstructure. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Effect of moderate electric field on glucoamylase-catalyzed hydrolysis of corn starch: Roles of electrophoretic and polarization effects. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Ferreira S, Machado L, Pereira RN, Vicente AA, Rodrigues RM. Unraveling the nature of ohmic heating effects in structural aspects of whey proteins – The impact of electrical and electrochemical effects. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Samaranayake CP, Sastry SK. Molecular dynamics evidence for nonthermal effects of electric fields on pectin methylesterase activity. Phys Chem Chem Phys 2021; 23:14422-14432. [PMID: 34180917 DOI: 10.1039/d0cp05950a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Experimental studies relevant to the nonthermal effects of electric fields on biological systems are emerging. However, these effects are poorly understood at the molecular level. The present study investigates pectin methylesterase, a cell wall modifying enzyme in plants, exposed to various electric field strengths. Molecular dynamics (MD) of the enzyme were studied with and without (thermal-only) electric field applications. The measurements were interpreted on the basis of equivalent energy input to gain insights into the effect of electric field treatment time at a constant temperature (50 °C). Results reveal that electric fields exert nonthermal effects on both local and global protein structure. In 1 μs simulations, the results show significant (P ≤ 0.05) shrinkage of the catalytic domain and shortening of enzyme-water hydrogen bond lifetime by a 50 V cm-1 electric field. Unwinding of the helical segments, altered intra- and intermolecular hydrogen bond patterns, and increased hydration are also caused by the 50 V cm-1 electric field. This study serves to understand the electric field influence on the functional role of proteins.
Collapse
Affiliation(s)
- Chaminda P Samaranayake
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, Ohio 43210, USA.
| | - Sudhir K Sastry
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, Ohio 43210, USA.
| |
Collapse
|
16
|
Influence of ohmic heating on the structural and immunoreactive properties of soybean proteins. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Negri Rodríguez LM, Arias R, Soteras T, Sancho A, Pesquero N, Rossetti L, Tacca H, Aimaretti N, Rojas Cervantes ML, Szerman N. Comparison of the quality attributes of carrot juice pasteurized by ohmic heating and conventional heat treatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Preparation of porous starch by α-amylase-catalyzed hydrolysis under a moderate electric field. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Rodrigues RM, Avelar Z, Machado L, Pereira RN, Vicente AA. Electric field effects on proteins - Novel perspectives on food and potential health implications. Food Res Int 2020; 137:109709. [PMID: 33233283 DOI: 10.1016/j.foodres.2020.109709] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/22/2020] [Accepted: 09/06/2020] [Indexed: 12/29/2022]
Abstract
Electric fields (EF) technologies have been establishing a solid position in emergent food processing and have seen as serious alternatives to traditional thermal processing. During the last decades, research has been devoted to elucidation of technological and safety issues but also fundamental aspects related with interaction of electric fields (EF) with important macromolecules, such as proteins. Proteins are building blocks for the development of functional networks that can encompass health benefits (i.e. nutritional and bioactive properties) but may be also linked with adverse effects such as neurodegenerative diseases (amyloid fibrils) and immunological responses. The biological function of a protein depends on its tridimensional structure/conformation, and latest research evidences that EF can promote disturbances on protein conformation, change their unfolding mechanisms, aggregation and interaction patterns. This review aims at bringing together these recent findings as well as providing novel perspectives about how EF can shape the behavior of proteins towards the development of innovative foods, aiming at consumers' health and wellbeing.
Collapse
Affiliation(s)
- Rui M Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Zita Avelar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Luís Machado
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Ricardo N Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - António A Vicente
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
20
|
Li D, Huang Y, Tao Y, Xu E, Zhang R, Han Y. Effect of metal salts on α-amylase-catalyzed hydrolysis of broken rice under a moderate electric field. Food Res Int 2020; 137:109707. [PMID: 33233281 DOI: 10.1016/j.foodres.2020.109707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 09/06/2020] [Indexed: 11/30/2022]
Abstract
This study aimed to evaluate the effects of metal salts on α-amylase-catalyzed hydrolysis of broken rice under a moderate electric field (MEF) by monitoring changes in hydrolysis efficiency, temperature, α-amylase activity, starch-metal ion interaction, and the structural and physicochemical properties of hydrolysates. Results showed that metal salts affected the hydrolysis mainly by altering α-amylase activity rather than by inducing thermal effect or interacting with starch. Reducing sugar content reached 125.0 g/L, while α-amylase activity increased by 18.16% when treated with 0.12 mmol/L Ca2+. Holes on hydrolysates treated with Ca2+ and Mg2+ were larger than those treated with Mn2+ and Cu2+. No M-O bond was formed after the hydrolysis. The crystallinity was slightly increased with the hydrolysis and the values for Ca2+- and Mg2+-treated samples were larger. The water and oil absorption capacity of the hydrolysate treated with Ca2+ was the highest. This study extended the knowledge of the roles of metal ions on MEF-assisted enzymatic hydrolysis and will contribute to the development of an innovative technology for starch modification.
Collapse
Affiliation(s)
- Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yi Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Rongguang Zhang
- Graduate Workstation of Nanjing Grain Group Co., Ltd., Nanjing 210012, Jiangsu Province, China
| | - Yongbin Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
21
|
Kubo MTK, Siguemoto ÉS, Funcia ES, Augusto PED, Curet S, Boillereaux L, Sastry SK, Gut JAW. Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: a critical review. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Gavahian M, Tiwari BK. Moderate electric fields and ohmic heating as promising fermentation tools. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Effect of Electric Field on Pectinesterase Inactivation During Orange Juice Pasteurization by Ohmic Heating. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02478-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Rodrigues RM, Avelar Z, Vicente AA, Petersen SB, Pereira RN. Influence of moderate electric fields in β-lactoglobulin thermal unfolding and interactions. Food Chem 2020; 304:125442. [DOI: 10.1016/j.foodchem.2019.125442] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022]
|
25
|
Fasolin L, Pereira R, Pinheiro A, Martins J, Andrade C, Ramos O, Vicente A. Emergent food proteins – Towards sustainability, health and innovation. Food Res Int 2019; 125:108586. [DOI: 10.1016/j.foodres.2019.108586] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
|
26
|
Gavahian M, Sastry S, Farhoosh R, Farahnaky A. Ohmic heating as a promising technique for extraction of herbal essential oils: Understanding mechanisms, recent findings, and associated challenges. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:227-273. [PMID: 32035597 DOI: 10.1016/bs.afnr.2019.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The applicability of ohmic heating, as a volumetric heating technique, has been explored in various sectors of the food industry. The use of ohmic heating for essential oil extraction is among its emerging applications. This chapter overviews the recent progress in this area of research, discusses the mechanisms involved in ohmic-based essential oil extraction processes, explains the effective process parameters, highlights their benefits, and explains the considerations to address the obstacles to industrial implementation. Ohmic-assisted hydrodistillation (OAHD) and ohmic-accelerated steam distillation (OASD) systems were proposed as alternatives to conventional hydrodistillation and steam distillation, respectively. These techniques have successfully extracted essential oils from several aromatic plants (e.g., thyme, peppermint, citronella, and lavender). Both OAHD and OASD possess a number of benefits, such as reducing the extraction time and energy consumption, compared to classical extraction methods. However, these techniques are in their infancy and further economic and upscaling studies are required for their industrial adaptation.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China.
| | - Sudhir Sastry
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH, United States
| | - Reza Farhoosh
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asgar Farahnaky
- School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Leite TS, Samaranayake CP, Sastry SK, Cristianini M. Polyphenol oxidase inactivation in viscous fluids by ohmic heating and conventional thermal processing. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thiago S. Leite
- Department of Food Technology (DTA)School of Food Engineering (FEA), University of Campinas (UNICAMP) Brazil
| | - Chaminda P. Samaranayake
- Department of FoodAgricultural and Biological Engineering Agri‐food Industry, (FABE), Ohio State University (OSU) Columbus Ohio
| | - Sudhir K. Sastry
- Department of FoodAgricultural and Biological Engineering Agri‐food Industry, (FABE), Ohio State University (OSU) Columbus Ohio
| | - Marcelo Cristianini
- Department of Food Technology (DTA)School of Food Engineering (FEA), University of Campinas (UNICAMP) Brazil
| |
Collapse
|
28
|
Rodrigues RM, Vicente AA, Petersen SB, Pereira RN. Electric field effects on β-lactoglobulin thermal unfolding as a function of pH – Impact on protein functionality. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Whey acerola-flavoured drink submitted Ohmic Heating: Bioactive compounds, antioxidant capacity, thermal behavior, water mobility, fatty acid profile and volatile compounds. Food Chem 2018; 263:81-88. [DOI: 10.1016/j.foodchem.2018.04.115] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 01/10/2023]
|
30
|
|