1
|
Teslić N, Pojić M, Stupar A, Mandić A, Mišan A, Pavlić B. PhInd database - Polyphenol content in Agri-food by-products and trends in extraction technologies: A critical review. Food Chem 2024; 458:140474. [PMID: 39043067 DOI: 10.1016/j.foodchem.2024.140474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
Sustainable Development Goal 12 and target 12.3 set by the United Nations aims to reduce"food waste" per capita global for 50% losses by 2030. Databases such as the PhInd could help us to achieve set goals via mapping the potential ways for valorization of polyphenols from the agri-food by-products and waste. Fruit by-products (73.2% of the PhInd entries) are the most studied sources of polyphenols and future studies might be more focused on vegetables. More than half (55.8%) of entries were evaluated polyphenols in samples created in laboratory. These samples could have significantly different composition from industrial samples. Solid-liquid extraction (53.5%) and solvents like water, ethanol and aqueous ethanol (51.5%) were the most often used for extraction of polyphenols. Green solvents as NADES (0.4%) are rarely used in studies and should be more explored.
Collapse
Affiliation(s)
- Nemanja Teslić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Milica Pojić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Alena Stupar
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Anamarija Mandić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Aleksandra Mišan
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Branimir Pavlić
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, BP, Serbia.
| |
Collapse
|
2
|
Galić E, Radić K, Golub N, Mlinar J, Čepo DV, Vinković T. Functionalization of selenium nanoparticles with olive polyphenols - impact on toxicity and antioxidative activity. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:617-631. [PMID: 38147478 DOI: 10.2478/acph-2023-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 12/28/2023]
Abstract
Selenium nanoparticles (SeNPs) represent novel selenium (Se) formulation characterized by improved biocompatibility and a wider therapeutic range in comparison to inorganic Se. The aim of this work was to investigate the possibilities of functionalization of SeNPs with olive pomace extract (OPE), rich in health-promoting polyphenols, and to obtain innovative forms of nutraceuticals. Cytotoxic and antioxidative activities of four types of SeNPs (polyvinylpyrrolidone stabilized (PVP SeNPs), polysorbate stabilized (PS SeNPs), polyvinylpyrrolidone stabilized and functionalized using OPE (f PVP SeNPs) and polysorbate stabilized and functionalized using OPE (f PS SeNPs) were investigated. SeNPs showed lower toxicity on human hepatocellular carcinoma (HepG2) and human colorectal adenocarcinoma (Caco2) cells compared to selenite. Functionalization with polyphenols significantly improved their direct antiradical (f PVP SeNPs: 24.4 ± 1.84 and f PS SeNPs: 30.9 ± 2.47 mg TE/mmol Se) and reducing properties (f PVP SeNPs: 50 ± 3.16 and f PS SeNPs: 53.6 ± 3.22 mg GAE/mmol) compared to non-functionalized SeNPs. The significant impact of tested SeNPs on intracellular antioxidative mechanisms has been observed and it was dependent on both cell type and physico-chemical properties of SeNPs, indicating the complexity of involved mechanisms.
Collapse
Affiliation(s)
- Emerik Galić
- 1Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek Croatia
- 2University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Kristina Radić
- 2University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Nikolina Golub
- 2University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Jakov Mlinar
- 2University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Dubravka Vitali Čepo
- 2University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Tomislav Vinković
- 1Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek Croatia
| |
Collapse
|
3
|
Vhangani LN, Van Wyk J. Inhibition of Browning in Apples Using Betacyclodextrin-Assisted Extracts of Green Rooibos ( Aspalathus linearis). Foods 2023; 12:foods12030602. [PMID: 36766132 PMCID: PMC9914553 DOI: 10.3390/foods12030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Green rooibos' bioactive compounds contribute greatly towards its antioxidant activity. The anti-browning activity of aqueous (GRE) and beta-cyclodextrin (β-GRE)-assisted extracts of green rooibos was investigated in canned apples. Freeze-dried extracts (GRE and β-GRE) obtained at 40 °C for 60 min were added in canned apples at 0.25 and 0.5% prior to heat processing and stored at 23 and 37 °C for 24 weeks. Lightness (L*), colour difference (DE*), furfural and hydroxymethyl furfural (HMF) were determined to establish the effect of extracts against non-enzymatic browning (NEB) development. The L* value decreased, whereas DE*, HMF and furfural increased with increased storage time and temperature. A higher inhibition was observed for samples stored at 23 °C, and storage at 37 °C reduced (p < 0.05) the inhibitory capacity of extracts. Greater inhibition against NEB development was reported for β-GRE 0.25 and 0.5 via the L* value (40.93-46.67%), β-GRE 0.25 for DE* (46.67%) and β-GRE 0.25 and 0.5 for HMF (59.55-67.33%). No differences (p > 0.05) were observed in furfural inhibition between all extracts, although inhibition was reported at 62.69-72.29%. Browning inhibition correlated with the reaction rate constant (k0) and activation energy (Ea), exhibiting a correlation coefficient of 0.925, 0.964, 0.932 and 0.754 for L*, DE*, HMF and furfural, respectively.
Collapse
|
4
|
Ultrasound-Assisted Extraction of Polyphenols from Olive Pomace: Scale Up from Laboratory to Pilot Scenario. Processes (Basel) 2022. [DOI: 10.3390/pr10122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Power ultrasound application has been proven to intensify the extraction of biocompounds from plant materials. In this work, the ultrasound-assisted extraction (UAE) of polyphenols from olive pomace (OP) has been studied at three different scales: laboratory (batch, 400 W, 0 barg), medium (continuous, 1000 W, 1.0 barg), and pilot (continuous, 2000 W, 1.0 barg) taking into consideration the influence of technological parameters: extraction time (s), solvent to solid ratio (mL/g), mixture pH, and acoustic parameters: amplitude (µm), intensity (W/cm2), and applied energy (Wh). A central composite design was used to optimize the UAE at laboratory scale (0.2 kg). The optimal conditions were: time: 490 s; ratio: 2.1 mL H2O/g OP; pH: 5.6 at an acoustic amplitude of 46 µm for a maximum extraction yield of 3.6 g GAE/L of extract. At medium scale (2.2 kg) the UAE was carried out using amplitudes from 41 to 57 µm. The effect of the pressure (1.0 barg) on the UAE was positive, in terms of higher extraction yield (2.9 g GAE/L) and faster extraction rates compared to the non-pressurized UAE (2.5 g GAE/L), however, the extraction yield was lower than the one observed at laboratory scale. At pilot scale (120 kg), the UAE involved different ultrasound constellations (booster + sonotrode) to deliver the ultrasound energy at different acoustic intensities from 23 to 57 W/cm2. The acoustic intensity (W/cm2) exerts an important effect on the extraction yield, and should be tailored to each process scale. The highest yield obtained at pilot-scale was 3.0 g GAE/L, and it was 58% higher than the one observed in the conventional extraction without ultrasound assistance (stirring and heating). In all tests, regardless of the scale, higher yields were observed between 80 and 85 °C. The application of this technology at the industrial scale to evaluate if the improvement of the extraction caused by the application of ultrasound could is still important when other operations like centrifugation, ultrafiltration, and reverse osmosis are included in the system and to evaluate its techno-economic feasibility.
Collapse
|
5
|
Abbasi-Parizad P, Scarafoni A, Pilu R, Scaglia B, De Nisi P, Adani F. The recovery from agro-industrial wastes provides different profiles of anti-inflammatory polyphenols for tailored applications. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.996562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Food and agro-industrial processing produce a great amount of side-stream and waste materials that are excellent sources of functional bioactive molecules such as phenolic compounds that recover them can be beneficial not only for food sustainability but also to human for many industrial applications such as flavor compounds and therapeutic applications such as antimicrobial and anti-inflammatory. The treatments and extraction techniques have major effects on the recovery of bioactive compounds. Along with the conventional extraction methods, numerous innovative techniques have been evolved and have been optimized to facilitate bioactive extraction more efficiently and sustainably. In this work, we have summarized the state-of-the-art technological approaches concerning novel extraction methods applied for five most produced crops in Italy; Grape Pomace (GP), Tomato Pomace (TP), Olive Pomace (OP), Citrus Pomace (CP), and Spent Coffee Grounds (SCG), presenting the extraction yield and the main class of phenolic classes, with the focus on their biological activity as an anti-inflammatory in vitro and in vivo studies via describing their molecular mechanism of action.
Collapse
|
6
|
Ultrasound-Assisted Extraction and the Encapsulation of Bioactive Components for Food Applications. Foods 2022; 11:foods11192973. [PMID: 36230050 PMCID: PMC9564298 DOI: 10.3390/foods11192973] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Various potential sources of bioactive components exist in nature which are fairly underutilized due to the lack of a scientific approach that can be sustainable as well as practically feasible. The recovery of bioactive compounds is a big challenge and its use in food industry to develop functional foods is a promising area of research. Various techniques are available for the extraction of these bioactives but due to their thermolabile nature, there is demand for nonthermal or green technologies which can lower the cost of operation and decrease operational time and energy consumption as compared to conventional methods. Ultrasound-assisted extraction (UAE) is gaining popularity due to its relative advantages over solvent extraction. Thereafter, ultrasonication as an encapsulating tool helps in protecting the core components against adverse food environmental conditions during processing and storage. The review mainly aims to discuss ultrasound technology, its applications, the fundamental principles of ultrasonic-assisted extraction and encapsulation, the parameters affecting them, and applications of ultrasound-assisted extraction and encapsulation in food systems. Additionally, future research areas are highlighted with an emphasis on the energy sustainability of the whole process.
Collapse
|
7
|
Galić E, Radić K, Golub N, Vitali Čepo D, Kalčec N, Vrček E, Vinković T. Utilization of Olive Pomace in Green Synthesis of Selenium Nanoparticles: Physico-Chemical Characterization, Bioaccessibility and Biocompatibility. Int J Mol Sci 2022; 23:ijms23169128. [PMID: 36012394 PMCID: PMC9409267 DOI: 10.3390/ijms23169128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Olive pomace extract (OPE) was investigated as a potential surface modifier for the development of the green synthesis process of selenium nanoparticles (SeNPs). In order to evaluate them as potential nutraceuticals, the obtained nanosystems were characterized in terms of size distribution, shape, zeta potential, stability in different media, gastrointestinal bioaccessibility and biocompatibility. Systems with a unimodal size distribution of spherical particles were obtained, with average diameters ranging from 53.3 nm to 181.7 nm, depending on the type of coating agent used and the presence of OPE in the reaction mixture. The nanosystems were significantly affected by the gastrointestinal conditions. Bioaccessibility ranged from 33.57% to 56.93% and it was significantly increased by functionalization of with OPE. Biocompatibility was investigated in the HepG2 and Caco2 cell models, proving that they had significantly lower toxicity in comparison to sodium selenite. Significant differences were observed in cellular responses depending on the type of cells used, indicating differences in the mechanisms of toxicity induced by SeNPs. The obtained results provide new insight into the possibilities for the utilization of valuable food-waste extracts in the sustainable development of nanonutraceuticals.
Collapse
Affiliation(s)
- Emerik Galić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Kristina Radić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikolina Golub
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Dubravka Vitali Čepo
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence:
| | - Nikolina Kalčec
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ena Vrček
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Vinković
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
8
|
Vhangani LN, Favre LC, Rolandelli G, Van Wyk J, del Pilar Buera M. Optimising the Polyphenolic Content and Antioxidant Activity of Green Rooibos ( Aspalathus linearis) Using Beta-Cyclodextrin Assisted Extraction. Molecules 2022; 27:molecules27113556. [PMID: 35684494 PMCID: PMC9182235 DOI: 10.3390/molecules27113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Antioxidant activity associated with green rooibos infusions is attributed to the activity of polyphenols, particularly aspalathin and nothofagin. This study aimed to optimise β-cyclodextrin (β-CD)-assisted extraction of crude green rooibos (CGRE) via total polyphenolic content (TPC) and antioxidant activity assays. Response surface methodology (RSM) permitted optimisation of β-CD concentration (0−15 mM), temperature (40−90 °C) and time (15−60 min). Optimal extraction conditions were: 15 mM β-CD: 40 °C: 60 min with a desirability of 0.985 yielding TPC of 398.25 mg GAE·g−1, metal chelation (MTC) of 93%, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging of 1689.7 µmol TE·g−1, ferric reducing antioxidant power (FRAP) of 2097.53 µmol AAE·g−1 and oxygen radical absorbance capacity (ORAC) of 11,162.82 TE·g−1. Aspalathin, hyperoside and orientin were the major flavonoids, with quercetin, luteolin and chrysoeriol detected in trace quantities. Differences (p < 0.05) between aqueous and β-CD assisted CGRE was only observed for aspalathin reporting the highest content of 172.25 mg·g−1 of dry matter for extracts produced at optimal extraction conditions. Positive, strong correlations between TPC and antioxidant assays were observed and exhibited regression coefficient (R2) between 0.929−0.978 at p < 0.001. These results demonstrated the capacity of β-CD in increasing polyphenol content of green rooibos.
Collapse
Affiliation(s)
- Lusani Norah Vhangani
- Department of Food Science & Technology, Cape Peninsula University of Technology, Bellville 7535, South Africa;
- Correspondence: ; Tel.: +27-21-953-8691
| | - Leonardo Cristian Favre
- CONICET—INTA, Instituto de Ciencia y Tecnología de los Sistemas Alimentarios Sustentables (ICyTeSAS), Las Cabañas y De Los Reseros s/n, 1686, Buenos Aires C1425FQB, Argentina;
- CONICET—Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina; (G.R.); (M.d.P.B.)
| | - Guido Rolandelli
- CONICET—Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina; (G.R.); (M.d.P.B.)
- Departamento de Industrias y Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Jessy Van Wyk
- Department of Food Science & Technology, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - María del Pilar Buera
- CONICET—Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina; (G.R.); (M.d.P.B.)
- Departamento de Industrias y Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
9
|
Zhang X, Su J, Wang X, Wang X, Liu R, Fu X, Li Y, Xue J, Li X, Zhang R, Chu X. Preparation and Properties of Cyclodextrin Inclusion Complexes of Hyperoside. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092761. [PMID: 35566111 PMCID: PMC9100073 DOI: 10.3390/molecules27092761] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023]
Abstract
In order to improve the aqueous solubility and enhance the bioavailability of Hyperoside (Hyp), three inclusion complexes (ICs) of Hyp with 2-hydroxypropyl-β-cyclodextrin (2H-β-CD), β-cyclodextrin (β-CD), and methyl-β-cyclodextrin (M-β-CD) were prepared using the ultrasonic method. The characterization of the inclusion complexes (ICs) was achieved using Fourier-transform infrared spectroscopy (FTIR), scanning electronic microscopy (SEM), X-ray powder diffraction (XRPD), thin-layer chromatography (TLC), and 1H nuclear magnetic resonance (1H NMR). The effects of the ICs on the solubility and antioxidant activity of Hyp were investigated. A Job’s plot revealed that the Hyp formed ICs with three kinds of cyclodextrin (CD), all at a 1:1 stoichiometric ratio. The FTIR, SEM, XRPD, TLC, and 1H NMR results confirmed the formation of inclusion complexes. The water solubility of the IC of Hyp with 2-hydroxypropyl-β-cyclodextrin was enhanced 9-fold compared to the solubility of the original Hyp. The antioxidant activity tests showed that the inclusion complexes had higher antioxidant activities compared to free Hyp in vitro and the H2O2–RAW264.7 cell model. Therefore, encapsulation with CDs can not only improve Hyp’s water solubility but can also enhance its biological activity, which provides useful information for the potential application of complexation with Hyp in a clinical context.
Collapse
Affiliation(s)
| | - Jianqing Su
- Correspondence: (J.S.); (X.C.); Tel.: +86-150-9503-9358 (J.S.); +86-150-2062-6235 (X.C.)
| | | | | | | | | | | | | | | | | | - Xiuling Chu
- Correspondence: (J.S.); (X.C.); Tel.: +86-150-9503-9358 (J.S.); +86-150-2062-6235 (X.C.)
| |
Collapse
|
10
|
Imeneo V, Romeo R, De Bruno A, Piscopo A. Green-sustainable extraction techniques for the recovery of antioxidant compounds from "citrus Limon" by-products. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:220-232. [PMID: 35277119 DOI: 10.1080/03601234.2022.2046993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, optimized techniques of conventional, ultrasound and microwave-assisted extraction were applied for the recovery of antioxidant compounds from lemon by-products (Citrus limon L). Specifically, the effect of solvent, temperature, microwave power, time and their interaction on the extraction was investigated. Among the tested solvents, the hydroalcoholic mixture (ethanol:water, 50:50) was the optimal one for all extraction techniques: in particular assisted by ultrasounds at 70 °C for 30 minutes (total phenolic content: 6.93 mg GAE g-1, total flavonoids: 2.07 mg CE g-1, ABTS assay: 18.36 µM TE g-1). Also, the other techniques allowed to obtain valuable extracts, although with relative lower amounts. The analyses of individual phenols revealed hesperidin and eriocitrin as the main compounds (respectively about 1650 and 1150 mg kg-1) after ultrasound assisted and conventional extraction. Results of this work can be useful to valorize an industrial by-product by sustainable techniques for the high-added value substances recovery.
Collapse
Affiliation(s)
- Valeria Imeneo
- Department of AGRARIA, University Mediterranea of Reggio Calabria, Vito, Reggio Calabria, Italy
| | - Rosa Romeo
- Department of AGRARIA, University Mediterranea of Reggio Calabria, Vito, Reggio Calabria, Italy
| | - Alessandra De Bruno
- Department of AGRARIA, University Mediterranea of Reggio Calabria, Vito, Reggio Calabria, Italy
| | - Amalia Piscopo
- Department of AGRARIA, University Mediterranea of Reggio Calabria, Vito, Reggio Calabria, Italy
| |
Collapse
|
11
|
Influence of genetic and interannual factors on bioactive compounds of olive pomace determined through a germplasm survey. Food Chem 2022; 378:132107. [PMID: 35032800 DOI: 10.1016/j.foodchem.2022.132107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
Olive mill wastes, generated in the extraction of virgin olive oil (VOO), are of important concern for the industry owing to the produced volume and polluting load, mainly associated with the presence of organic compounds. Among them, it is worth mentioning bioactive compounds, mainly phenols and triterpenes, which could be potentially isolated for further use in the cosmetic, pharmaceutical, or food industries. This research analyzed the olive pomace after extraction of VOO from fruits harvested of 43 international olive cultivars during three consecutive seasons. The cultivar was identified as the most determinant factor to explain the variability in the relative concentration of phenols and terpenic acids in the extracts. In addition, the characterization of olive pomace extracts allowed clustering cultivars according to the profile of bioactive compounds. Finally, we identified the components responsible for the observed discrimination that was explained according to biosynthetic metabolic pathways.
Collapse
|
12
|
Castro-Muñoz R, Díaz-Montes E, Gontarek-Castro E, Boczkaj G, Galanakis CM. A comprehensive review on current and emerging technologies toward the valorization of bio-based wastes and by products from foods. Compr Rev Food Sci Food Saf 2021; 21:46-105. [PMID: 34957673 DOI: 10.1111/1541-4337.12894] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 01/07/2023]
Abstract
Industries in the agro-food sector are the largest generators of waste in the world. Agro-food wastes and by products originate from the natural process of senescence, pretreatment, handling, and manufacturing processes of food and beverage products. Notably, most of the wastes are produced with the transformation of raw materials (such as fruits, vegetables, plants, tubers, cereals, and dairy products) into different processed foods (e.g., jams, sauces, and canned fruits/vegetables), dairy derivatives (e.g., cheese and yogurt), and alcoholic (e.g., wine and beer) and nonalcoholic beverages (e.g., juices and soft drinks). Current research is committed not only to the usage of agro-food wastes and by products as a potential source of high-value bioactive compounds (e.g., phenolic compounds, anthocyanins, and organic acids) but also to the implementation of emerging and innovative technologies that can compete with conventional extraction methods for the efficient extraction of such biomolecules from the residues. Herein, specific valorization technologies, such as membrane-based processes, microwave, ultrasound, pulsed electric-assisted extraction, supercritical/subcritical fluids, and pressurized liquids, have emerged as advanced techniques in extracting various added-value biomolecules, showing multiple advantages (improved extraction yields, reduced process time, and protection to the bioactive properties of the compounds). Hence, this comprehensive review aims to analyze the ongoing research on applying such techniques in valorization protocols. A last-five-year review, together with a featured analysis of the relevant findings in the field, is provided.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, San Antonio Buenavista, Toluca de Lerdo, Mexico.,Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Barrio La Laguna Ticoman, Ciudad de México, Mexico
| | - Emilia Gontarek-Castro
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Charis M Galanakis
- Research and Innovation Department, Galanakis Laboratories, Chania, Greece.,Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
13
|
Rodríguez-Martínez B, Ferreira-Santos P, Gullón B, Teixeira JA, Botelho CM, Yáñez R. Exploiting the Potential of Bioactive Molecules Extracted by Ultrasounds from Avocado Peels-Food and Nutraceutical Applications. Antioxidants (Basel) 2021; 10:1475. [PMID: 34573107 PMCID: PMC8466900 DOI: 10.3390/antiox10091475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Natural bioactive compounds from food waste have fomented interest in food and pharmaceutical industries for the past decade. In this work, it purposed the recovery of bioactive avocado peel extract using an environmentally friendly technique: the ultrasound assisted extraction. The response surface methodology was applied in order to optimize the conditions of the extraction, ethanol-water mixtures and time. The optimized extracts (ethanol 38.46%, 44.06 min, and 50 °C) were chemically characterized by HPLC-ESI-MS and FTIR. Its antioxidant ability, as well as, its effect on cell metabolic activity of normal (L929) and cancer (Caco-2, A549 and HeLa) cell lines were assessed. Aqueous ethanol extracts presented a high content in bioactive compounds with high antioxidant potential. The most representative class of the phenolic compounds found in the avocado peel extract were phenolic acids, such as hydroxybenzoic and hydroxycinnamic acids. Another important chemical group detected were the flavonoids, such as flavanols, flavanonols, flavones, flavanones and chalcone, phenylethanoids and lignans. In terms of its influence on the metabolic activity of normal and cancer cell lines, the extract does not significantly affect normal cells. On the other hand, it can negatively affect cancer cells, particularly HeLa cells. These results clearly demonstrated that ultrasound is a sustainable extraction technique, resulting in extracts with low toxicity in normal cells and with potential application in food, pharmaceutical or nutraceutical sectors.
Collapse
Affiliation(s)
- Beatriz Rodríguez-Martínez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (B.R.-M.); (R.Y.)
| | - Pedro Ferreira-Santos
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.A.T.); (C.M.B.)
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (B.R.-M.); (R.Y.)
| | - José António Teixeira
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.A.T.); (C.M.B.)
| | - Cláudia M. Botelho
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.A.T.); (C.M.B.)
| | - Remedios Yáñez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (B.R.-M.); (R.Y.)
- Biomedical Research Centre (CINBIO), University of Vigo, University Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| |
Collapse
|
14
|
Physico-chemical, Sensory, and Antioxidant Characteristics of Olive Paste Enriched with Microencapsulated Thyme Essential Oil. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02707-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Integrated Green Process for the Extraction of Red Grape Pomace Antioxidant Polyphenols Using Ultrasound-Assisted Pretreatment and β-Cyclodextrin. BEVERAGES 2021. [DOI: 10.3390/beverages7030059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Winemaking is a process that generates a large volume of solid waste biomass, which is currently under extensive investigation as a bioresource of precious polyphenolic compounds. These substances are retrieved from vinification side streams principally by deploying solid–liquid extraction methods. In this frame, the present investigation had as objective the development of an alternative, green extraction process for polyphenols, through integration of ultrasonication as a pretreatment stage, and subsequent extraction with aqueous β-cyclodextrin. Polyphenol recovery from red grape pomace (RGP) was shown to be significantly enhanced by ultrasonication pretreatment, and the use of β-cyclodextrin effectively boosted the aqueous extraction. Under optimized conditions, established by response surface methodology, the maximum yield in total polyphenols was 57.47 mg GAE g−1 dm, at 80 °C, requiring a barrier of 10.95 kJ mol−1. The extract produced was significantly enriched in catechin and quercetin, compared to the aqueous extract, exhibiting also increased antiradical activity. These findings highlighted the value of the process developed for targeted recovery of certain polyphenols and the preparation of task-specific extracts.
Collapse
|
16
|
Simsek M, Süfer Ö. Olive pomace from olive oil processing as partial flour substitute in breadsticks: Bioactive, textural, sensorial and nutritional properties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Meric Simsek
- Department of Food Engineering Osmaniye Korkut Ata University Osmaniye Turkey
| | - Özge Süfer
- Department of Food Engineering Osmaniye Korkut Ata University Osmaniye Turkey
| |
Collapse
|
17
|
Popović BM, Blagojević B, Latković D, Četojević-Simin D, Kucharska AZ, Parisi F, Lazzara G. A one step enhanced extraction and encapsulation system of cornelian cherry (Cornus mas L.) polyphenols and iridoids with β-cyclodextrin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Integrated microwave- and enzyme-assisted extraction of phenolic compounds from olive pomace. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110621] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Difonzo G, Troilo M, Squeo G, Pasqualone A, Caponio F. Functional compounds from olive pomace to obtain high-added value foods - a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:15-26. [PMID: 32388855 DOI: 10.1002/jsfa.10478] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/25/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Olive pomace, the solid by-product from virgin olive oil extraction, constitutes a remarkable source of functional compounds and has been exploited by several authors to formulate high value-added foods and, consequently, to foster the sustainability of the olive-oil chain. In this framework, the aim of the present review was to summarize the results on the application of functional compounds from olive pomace in food products. Phenolic-rich extracts from olive pomace were added to vegetable oils, fish burgers, fermented milk, and in the edible coating of fruit, to take advantage of their antioxidant and antimicrobial effects. Olive pomace was also used directly in the formulation of pasta and baked goods, by exploiting polyunsaturated fatty acids, phenolic compounds, and dietary fiber to obtain high value-added healthy foods and / or to extend their shelf-life. With the same scope, olive pomace was also added to animal feeds, providing healthy, improved animal products. Different authors used olive pomace to produce biodegradable materials and / or active packaging able to increase the content of bioactive compounds and the oxidative stability of foods. Overall, the results highlighted, in most cases, the effectiveness of the addition of olive pomace-derived functional compounds in improving nutritional value, quality, and / or the shelf-life of foods. However, the direct addition of olive pomace was found to be more challenging, especially due to alterations in the sensory and textural features of food. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Marica Troilo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
20
|
Food (Matrix) Effects on Bioaccessibility and Intestinal Permeability of Major Olive Antioxidants. Foods 2020; 9:foods9121831. [PMID: 33317079 PMCID: PMC7764665 DOI: 10.3390/foods9121831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND olive pomace extract (OPE) is a rich source of health promoting polyphenols (hydroxytyrosol (HTS) and tyrosol (TS)) and can be used as a nutraceutical ingredient of dietary supplements and functional foods. Its adequate bioavailability is a prerequisite for excreting biological activity and can be significantly and specifically affected by different food matrices. METHODS in order to investigate food effects on polyphenol bioaccessibility, OPE was co-digested with different foods according to internationally harmonized in vitro digestibility method. Impact of particular nutrients on HTS and TS permeability was assessed on Caco-2 cell monolayer. RESULTS HTS and TS bioaccessibility and transepithelial permeability can be significantly affected by foods (nutrients), especially by casein and certain types of dietary fiber. Those effects are polyphenol-and nutrient-specific and are achieved either through complexation in gastrointestinal lumen and/or through direct effects of nutrients on intestinal monolayer. CONCLUSIONS obtained results emphasize the significance and complexity of polyphenol interactions within the food matrix and the necessity of individual investigational approaches with respect to particular food/nutrient and interacting phenolic compounds.
Collapse
|
21
|
Lukić K, Brnčić M, Ćurko N, Tomašević M, Jurinjak Tušek A, Kovačević Ganić K. Quality characteristics of white wine: The short- and long-term impact of high power ultrasound processing. ULTRASONICS SONOCHEMISTRY 2020; 68:105194. [PMID: 32492528 DOI: 10.1016/j.ultsonch.2020.105194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
This research aimed to analyze the effects of ultrasound on the quality characteristics of white wine when processed by two different systems, i.e., ultrasonic bath and ultrasonic probe. In this regard, the multivariate statistical analysis and artificial neural network (ANN) techniques were used. Additionally, the efficiency of high power ultrasound (HPU) combined with sulfite and glutathione (GSH) treatments was explored during 18 months of bottle storage. Regarding ultrasonic bath experiment, the higher bath temperature caused the degradation of volatile compounds, precisely esters and higher alcohols, while the ultrasound effect on phenolic composition was much less pronounced. Interestingly, a combination of larger probe diameter and higher ultrasound amplitude showed a milder effect on phenolic and volatile composition in ultrasonic probe experiment. Both, ultrasonic bath and probe experiments did not cause great changes in the color properties. Moreover, implemented ANN models for flavan-3-ols, higher alcohols and esters resulted in the highest prediction values. HPU processing after 18 months of storage did not affect wine color. However, it modified phenolic and volatile composition, with greater effect in wines with lower concentration of antioxidants. In addition, there was no significant difference in the phenolic and volatile composition among sonicated low-sulfite-GSH wine and the one with standard-sulfite content. Therefore, a combined HPU and low-sulfite-GSH treatment might be a promising method for production of low-sulfite wines.
Collapse
Affiliation(s)
- Katarina Lukić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Mladen Brnčić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Natka Ćurko
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Marina Tomašević
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ana Jurinjak Tušek
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Karin Kovačević Ganić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
22
|
Radić K, Vinković Vrček I, Pavičić I, Čepo DV. Cellular Antioxidant Activity of Olive Pomace Extracts: Impact of Gastrointestinal Digestion and Cyclodextrin Encapsulation. Molecules 2020; 25:molecules25215027. [PMID: 33138271 PMCID: PMC7663658 DOI: 10.3390/molecules25215027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
Olive pomace is a valuable secondary raw material rich in polyphenols, left behind after the production of olive oil. The present study investigated the protective effect of a polyphenolic extract from olive pomace (OPE) on cell viability and antioxidant defense of cultured human HepG2 cells submitted to oxidative stress induced by tert-butylhydroperoxide (tBOOH). The investigation considered possible matrix effects, impact of gastrointestinal digestion and cyclodextrin (CD) encapsulation. Pre-treatment of cells with OPE prevented cell damage and increased intracellular glutathione but did not affect the activity of glutathione peroxidase and superoxide dismutase. OPE matrix significantly enhanced cell protective effects of major antioxidants, such as hydroxytyrosol (HTS), while cyclodextrin encapsulation enhanced activity of OPE against intracellular reactive oxygen species (ROS) accumulation. The obtained results show that OPE is more potent antioxidant in comparison to equivalent dose of main polyphenols (HTS and TS) and that increasing solubility of OPE polyphenols by CD encapsulation or digestion enhances their potential to act as intracellular antioxidants. Antioxidative protection of cells by OPE was primarily achieved through direct radical-scavenging/reducing actions rather than activation of endogenous defense systems in the cell.
Collapse
Affiliation(s)
- Kristina Radić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia;
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001 Zagreb, Croatia; (I.V.V.); (I.P.)
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001 Zagreb, Croatia; (I.V.V.); (I.P.)
| | - Dubravka Vitali Čepo
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-1-6394-771
| |
Collapse
|
23
|
Fu Y, Shi J, Xie SY, Zhang TY, Soladoye OP, Aluko RE. Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11595-11611. [PMID: 33040529 DOI: 10.1021/acs.jafc.0c04241] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In recent years, red beetroot has received a growing interest due to its abundant source of bioactive compounds, particularly betalains. Red beetroot betalains have great potential as a functional food ingredient employed in the food and medical industry due to their diverse health-promoting effects. Betalains from red beetroot are natural pigments, which mainly include either yellow-orange betaxanthins or red-violet betacyanins. However, betalains are quite sensitive toward heat, pH, light, and oxygen, which leads to the poor stability during processing and storage. Therefore, it is necessary to comprehend the impacts of the processing approaches on betalains. In this review, the effective extraction and processing methods of betalains from red beetroot were emphatically reviewed. Furthermore, a variety of recently reported bioactivities of beetroot betalains were also summarized. The present work can provide a comprehensive review on both conventional and innovative extraction techniques, processing methods, and the stability of betalains.
Collapse
Affiliation(s)
- Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Jia Shi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Si-Yi Xie
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ting-Yi Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Olugbenga P Soladoye
- Food Processing Development Centre, Ministry of Agriculture and Forestry, Government of Alberta, Leduc, Alberta T9E 7C5, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
24
|
Valorisation of Exhausted Olive Pomace by an Eco-Friendly Solvent Extraction Process of Natural Antioxidants. Antioxidants (Basel) 2020; 9:antiox9101010. [PMID: 33080930 PMCID: PMC7603280 DOI: 10.3390/antiox9101010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Exhausted olive pomace (EOP) is the waste generated from the drying and subsequent extraction of residual oil from the olive pomace. In this work, the effect of different aqueous solvents on the recovery of antioxidant compounds from this lignocellulosic biomass was assessed. Water extraction was selected as the best option for recovering bioactive compounds from EOP, and the influence of the main operational parameters involved in the extraction was evaluated by response surface methodology. Aqueous extraction of EOP under optimised conditions (10% solids, 85 °C, and 90 min) yielded an extract with concentrations (per g EOP) of phenolic compounds and flavonoids of 44.5 mg gallic acid equivalent and 114.9 mg rutin equivalent, respectively. Hydroxytyrosol was identified as the major phenolic compound in EOP aqueous extracts. Moreover, these extracts showed high antioxidant activity, as well as moderate bactericidal action against some food-borne pathogens. In general, these results indicate the great potential of EOP as a source of bioactive compounds, with potential uses in several industrial applications.
Collapse
|
25
|
Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102424] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Delivery Systems for Hydroxytyrosol Supplementation: State of the Art. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4020025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review aims to highlight the benefits and limitations of the main colloid-based available delivery systems for hydroxytyrosol. Hydroxytyrosol is a phenolic compound with clear biological activities for human wellness. Olive fruits, leaves and extra-virgin oil are the main food sources of hydroxytyrosol. Moreover, olive oil mill wastewaters are considered a potential source to obtain hydroxytyrosol to use in the food industry. However, recovered hydroxytyrosol needs adequate formulations and delivery systems to increase its chemical stability and bioavailability. Therefore, the application of hydroxytyrosol delivery systems in food sector is still a fascinating challenge. Principal delivery systems are based on the use of colloids, polymers able to perform gelling, thickening and stabilizing functions in various industrial sectors, including food manufacturing. Here, we review the recipes for the available hydroxytyrosol systems and their relative production methods, as well as aspects relative to system characteristics and hydroxytyrosol effectiveness.
Collapse
|
27
|
High-Performance Green Extraction of Polyphenolic Antioxidants from Salvia fruticosa Using Cyclodextrins: Optimization, Kinetics, and Composition. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
S. fruticosa, collectively known as Cretan sage, is a medicinal plant to which a number of bioactivities have been attributed. In spite of its importance in nutrition and pharmacy, reports on the extraction of major polyphenols using sustainable processes are particularly limited. In this study, three common cyclodextrins, namely, methyl β-cyclodextrin (m-β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD), and β-cyclodextrin (β-CD), were tested as green boosters of aqueous extraction of polyphenols from aerial parts of S. fruticosa. To examine simultaneously important extraction parameters, including the concentration of cyclodextrins (CCD), pH, and liquid-to-solid ratio (RL/S), a Box–Behnken design was chosen, with three central points. Temperature effects on the extraction yield were also considered, by carrying out kinetics. The results showed that m-β-CD was the most effective extraction booster, providing total polyphenols yields that amounted to 98.39 mg gallic acid equivalents g−1 dry mass. The kinetic assay demonstrated that extraction was highly effective at 80 °C, increasing significantly polyphenol yield, as well as the ferric-reducing power and antiradical activity of the extracts. It was also proven that extraction with m-β-CD was the least energy-demanding process. Liquid chromatography-tandem mass spectrometry examination revealed that m-β-CD might possess higher affinity for luteolin 7-O-glucuronide extraction, but β-CD for rosmarinic acid extraction.
Collapse
|
28
|
Characterization of phenolic and triacylglycerol compounds in the olive oil by-product pâté and assay of its antioxidant and enzyme inhibition activity. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Dujmić F, Kovačević Ganić K, Ćurić D, Karlović S, Bosiljkov T, Ježek D, Vidrih R, Hribar J, Zlatić E, Prusina T, Khubber S, Barba FJ, Brnčić M. Non-Thermal Ultrasonic Extraction of Polyphenolic Compounds from Red Wine Lees. Foods 2020; 9:foods9040472. [PMID: 32283874 PMCID: PMC7230992 DOI: 10.3390/foods9040472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/03/2022] Open
Abstract
This study presents the results of conventional aqueous (CE) and non-conventional ultrasound-assisted (UAE) extractions of polyphenolic compounds from lees extracts of red wine varieties (Merlot and Vranac). The effect of ultrasound extraction time (t, s), and amplitude (A,%) from a 400 W ultrasound processor with different ultrasonic probes diameters (Ds, mm) on the amount and profile of polyphenolic compounds in the obtained extracts was investigated and compared to CE. The optimal conditions resulting in maximum extraction of phenolic compounds were: Probe diameter of 22 mm, amplitude 90% and extraction time for Vranac wine lees 1500 s and for Merlot wine lees extraction time of 1361 s. UAE proved to be significantly more effective in enhancing the extraction capacity of trans-resveratrol glucoside (30.57% to 300%), trans-resveratrol (36.36% to 45.75%), quercetin (39.94% to 43.83%), kaempferol (65.13% to 72.73%), petunidin-3-glucoside (41.53% to 64.95%), malvidin-3-glucoside (47.63% to 89.17%), malvidin-3-(6-O-acetyl) glucoside (23.84% to 49.74%), and malvidin-3-(6-O-p-coumaroyl) glucoside (26.77% to 34.93%) as compared to CE. Ultrasound reduced the extraction time (2.5-fold) and showed an increase of antioxidant potential by 76.39% (DPPH) and 125.83% (FRAP) compared to CE.
Collapse
Affiliation(s)
- Filip Dujmić
- Laboratory for Thermodynamics, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Karin Kovačević Ganić
- Laboratory for Technology and Analysis of Wine, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Duska Ćurić
- Laboratory for Cereal Chemistry and Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Sven Karlović
- Laboratory for Unit Operations, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (S.K.); (T.B.); (D.J.)
| | - Tomislav Bosiljkov
- Laboratory for Unit Operations, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (S.K.); (T.B.); (D.J.)
| | - Damir Ježek
- Laboratory for Unit Operations, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (S.K.); (T.B.); (D.J.)
| | - Rajko Vidrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (R.V.); (J.H.); (E.Z.)
| | - Janez Hribar
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (R.V.); (J.H.); (E.Z.)
| | - Emil Zlatić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (R.V.); (J.H.); (E.Z.)
| | - Tihomir Prusina
- Čitluk Winery dd, Kralja Tomislava 28, 88260 Čitluk, Bosnia and Herzegovina;
| | - Sucheta Khubber
- Food Engineering and Nutrition, Center of Innovative and Applied Bioprocessing, Mohali 140306, Punjab, India;
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
- Correspondence: (F.J.B.); (M.B.); Tel.: +34-96-3544-972 (F.J.B.); +38-5146-052-23 (M.B.); Fax: +34-96-5344-954 (F.J.B.)
| | - Mladen Brnčić
- Laboratory for Thermodynamics, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
- Correspondence: (F.J.B.); (M.B.); Tel.: +34-96-3544-972 (F.J.B.); +38-5146-052-23 (M.B.); Fax: +34-96-5344-954 (F.J.B.)
| |
Collapse
|
30
|
Influence of Pomace Matrix and Cyclodextrin Encapsulation on Olive Pomace Polyphenols' Bioaccessibility and Intestinal Permeability. Nutrients 2020; 12:nu12030669. [PMID: 32121413 PMCID: PMC7146296 DOI: 10.3390/nu12030669] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Olive pomace is a rich source of biologically active compounds, mainly polyphenols. Recently, an efficient and sustainable cyclodextrin (CD)-enhanced extraction was developed. It enabled a relatively simple formulation of high-quality olive pomace extracts (OPEs) that can be used as alternative sources of olive-derived polyphenols in the nutrition and pharma industries. However, biological effects and nutraceutical potential of OPEs are primarily limited by generally low oral bioavailability of major polyphenols (hydroxytyrosol and its derivatives) that can be significantly influenced by OPE matrix and the presence of CDs in formulation. The major goal of this research was to investigate the impact of complex matrix and different types of CDs on gastrointestinal stability and intestinal permeability of major OPE polyphenols, and provide additional data about mechanisms of absorption and antioxidant activity in gut lumen. Obtained results showed high bioaccessibility but relatively low permeability of OPE polyphenols, which was negatively affected by OPE matrix. CDs improved antioxidant efficiency of tested OPEs and tyrosol gastrointestinal stability. Effects of CDs on permeability and the metabolism of particular OPE polyphenols were CD- and polyphenol-specific.
Collapse
|
31
|
Bianchin M, Lima HHCD, Monteiro AM, Benassi MDT. Optimization of ultrasonic-assisted extraction of kahweol and cafestol from roasted coffee using response surface methodology. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Ultrasound-Assisted Extraction as a First Step in a Biorefinery Strategy for Valorisation of Extracted Olive Pomace. ENERGIES 2019. [DOI: 10.3390/en12142679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Currently, interest in finding new feedstock as sources of natural food antioxidants is growing. The extracted olive pomace (EOP), which is an agro-industrial residue from the olive pomace extracting industries, is generated yearly in big amounts, mainly in the Mediterranean countries. EOP was subjected to an ultrasound assisted extraction with ethanol-water mixtures. The effect of main parameters, such as ethanol concentration (30–70% v/v), ultrasound amplitude (20–80%), and extraction time (5–15 min), on the extraction of antioxidant compounds was evaluated according to a Box–Behnken experimental design. The antioxidant capacity of the resulting extracts was determined by measuring their content in total phenolic compounds (TPC) and flavonoids (TFC), as well as their antioxidant activity by DPPH, ferric reducing antioxidant power (FRAP), and ABTS assays. Considering the simultaneous maximization of these five responses, the optimal conditions were found to be 43.2% ethanol concentration, 70% amplitude, and 15 min. The ultrasound assisted extraction of EOP under these optimized conditions yielded an extract with a phenolic and flavonoid content (per gram of EOP) of 57.5 mg gallic acid equivalent (GAE) and 126.9 mg rutin equivalent (RE), respectively. Likewise, the values for DPPH, ABTS, and FRAP assay (per gram of EOP) of 56.7, 139.1, and 64.9 mg Trolox equivalent, respectively were determined in the optimized extract.
Collapse
|
33
|
Tutunchi P, Roufegarinejad L, Hamishehkar H, Alizadeh A. Extraction of red beet extract with β-cyclodextrin-enhanced ultrasound assisted extraction: A strategy for enhancing the extraction efficacy of bioactive compounds and their stability in food models. Food Chem 2019; 297:124994. [PMID: 31253277 DOI: 10.1016/j.foodchem.2019.124994] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
Improving the extraction efficiency and stability of red beet compounds has gained the attention of researchers due to their high nutritional and health benefits. In this study, β-cyclodextrin (β-CD) enhanced ultrasound assisted extraction was used for the extraction of red beet extract, and lyophilized extracts were characterized with FTIR and DSC analyses. The samples extracted with aqueous 5% β-CD solutions revealed the highest content of betanin (2.243 ± 0.04 mg) and total phenolic compounds (20.03 ± 1.28 mg GAE/g DW), and the highest DPPH inhibition activity (59.87 ± 4.94%). Additionally, complexation with β-CD significantly enhanced the stability of betanin, phenolic compounds and antiradical activity in the stored beverage and gummy candy models at various pH and temperature conditions during 28 days. In conclusion, β-CD-enhanced ultrasound assisted extraction is a suitable approach to extracting and stabilizing the red beet compounds for application in food, nutraceutical, and medical fields.
Collapse
Affiliation(s)
- Parizad Tutunchi
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Leila Roufegarinejad
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ainaz Alizadeh
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
34
|
Gavahian M, Mousavi Khaneghah A, Lorenzo JM, Munekata PE, Garcia-Mantrana I, Collado MC, Meléndez-Martínez AJ, Barba FJ. Health benefits of olive oil and its components: Impacts on gut microbiota antioxidant activities, and prevention of noncommunicable diseases. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Martínez-Patiño JC, Gullón B, Romero I, Ruiz E, Brnčić M, Žlabur JŠ, Castro E. Optimization of ultrasound-assisted extraction of biomass from olive trees using response surface methodology. ULTRASONICS SONOCHEMISTRY 2019; 51:487-495. [PMID: 29880395 DOI: 10.1016/j.ultsonch.2018.05.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 05/14/2023]
Abstract
Olive tree pruning biomass (OTP) and olive mill leaves (OML) are the main residual lignocellulosic biomasses that are generated from olive trees. They have been proposed as a source of value-added compounds and biofuels within the biorefinery concept. In this work, the optimization of an ultrasound-assisted extraction (UAE) process was performed to extract antioxidant compounds present in OTP and OML. The effect of the three parameters, ethanol/water ratio (20, 50, 80% of ethanol concentration), amplitude percentage (30, 50, 70%) and ultrasonication time (5, 10, 15 min), on the responses of total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activities (DPPH, ABTS and FRAP) were evaluated following a Box-Behnken experimental design. The optimal conditions obtained from the model, taking into account simultaneously the five responses, were quite similar for OTP and OML, with 70% amplitude and 15 min for both biomasses and a slight difference in the optimum concentration of ethanol. (54.5% versus 51.3% for OTP and OML, respectively). When comparing the antioxidant activities obtained with OTP and OML, higher values were obtained for OML (around 40% more than for OTP). The antioxidant activities reached experimentally under the optimized conditions were 31.6 mg of TE/g of OTP and 42.5 mg of TE/g of OML with the DPPH method, 66.5 mg of TE/g of OTP and 95.9 mg of TE/g of OML with the ABTS method, and 36.4 mg of TE/g of OTP and 49.7 mg of TE/g of OML with the FRAP method. Both OTP and OML could be a potential source of natural antioxidants.
Collapse
Affiliation(s)
- José Carlos Martínez-Patiño
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Beatriz Gullón
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Inmaculada Romero
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Encarnación Ruiz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| | - Mladen Brnčić
- Department of Process Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Jana Šic Žlabur
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, Zagreb, Croatia
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
36
|
Vitali Čepo D, Radić K, Jurmanović S, Jug M, Grdić Rajković M, Pedisić S, Moslavac T, Albahari P. Valorization of Olive Pomace-Based Nutraceuticals as Antioxidants in Chemical, Food, and Biological Models. Molecules 2018; 23:E2070. [PMID: 30126204 PMCID: PMC6222651 DOI: 10.3390/molecules23082070] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/11/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022] Open
Abstract
Waste remaining after the production of olive oil (olive pomace) is known to contain significant amounts of phenolic compounds that exert different types of biological activities, primarily acting as antioxidants. In this work, a sustainable approach that combines ultrasound-assisted extraction with food-grade solvents and encapsulation with different types of cyclodextrins was used to prepare olive pomace-based polyphenol rich extracts that were tested as antioxidants in various chemical, food, and biological model systems. Encapsulation with cyclodextrins had a significant positive impact on the chemical composition of obtained extracts and it positively affected their antioxidant activity. Observed effects can be explained by an increased content of polyphenols in the formulations, specific physical properties of encapsulated compounds improving their antioxidant activity in complex food/physiological environment, and enhanced interaction with natural substrates. Depending on the applied model, the tested samples showed significant antioxidant protection in the concentration range 0.1⁻3%. Among the investigated cyclodextrins, hydroxypropyl-β-cyclodextrin and randomly methylated-β-cyclodextrin encapsulated extracts showed particularly good antioxidant activity and were especially potent in oil-in-water emulsion systems (1242 mg/g and 1422 mg/g of Trolox equivalents, respectively), showing significantly higher antioxidant activity than Trolox (reference antioxidant). In other models, they provided antioxidant protection comparable to commonly used synthetic antioxidants at concentration levels of 2⁻3%.
Collapse
Affiliation(s)
- Dubravka Vitali Čepo
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Kristina Radić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Sanja Jurmanović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Mario Jug
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Marija Grdić Rajković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Sandra Pedisić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pijerottijeva 6, 10000, Zagreb, Croatia.
| | - Tihomir Moslavac
- Faculty of Food Technology, University in Osijek, Franje Kuhača 20, 31000 Osijek, Croatia.
| | - Petra Albahari
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
37
|
A Green Extraction Process to Recover Polyphenols from Byproducts of Hemp Oil Processing. RECYCLING 2018. [DOI: 10.3390/recycling3020015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|