1
|
Murillo‐Cruz MC, Rodrigues N, Dias MI, Bermejo‐Román R, Veloso ACA, Pereira JA, Peres AM. Monovarietal olive oils fortified with carotenoids: Physicochemical and sensory trends and taste sensor evaluation. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mª Carmen Murillo‐Cruz
- Department of Physical and Analytical Chemistry, Linares High Polytechnic School Jaén University Linares Spain
| | - Nuno Rodrigues
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Região de Montanha (SusTEC) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Região de Montanha (SusTEC) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
| | - Ruperto Bermejo‐Román
- Department of Physical and Analytical Chemistry, Linares High Polytechnic School Jaén University Linares Spain
| | - Ana C. A. Veloso
- Instituto Politécnico de Coimbra, ISEC, DEQB Coimbra Portugal
- CEB ‐ Centre of Biological Engineering University of Minho, Campus de Gualtar Braga Portugal
- LABBELS – Associate Laboratory Braga/Guimarães Portugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Região de Montanha (SusTEC) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
| | - António M. Peres
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Região de Montanha (SusTEC) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
| |
Collapse
|
2
|
Martínez Gila DM, Estévez EE, Ortega JG, García JG. Application of a lab-made voltammetric electronic tongue to identify musty and vinegary defects in olive oils. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Dauber C, Carreras T, Fernández Fernández A, Irigaray B, Albores S, Gámbaro A, Ibáñez E, Vieitez I. Response surface methodology for the optimization of biophenols recovery from “alperujo” using supercritical fluid extraction. Comparison between Arbequina and Coratina cultivars. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Evaluation of Olive Oil Quality with Electrochemical Sensors and Biosensors: A Review. Int J Mol Sci 2021; 22:ijms222312708. [PMID: 34884509 PMCID: PMC8657724 DOI: 10.3390/ijms222312708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/11/2023] Open
Abstract
Electrochemical sensors, sensor arrays and biosensors, alongside chemometric instruments, have progressed remarkably of late, being used on a wide scale in the qualitative and quantitative evaluation of olive oil. Olive oil is a natural product of significant importance, since it is a rich source of bioactive compounds with nutritional and therapeutic properties, and its quality is important both for consumers and for distributors. This review aims at analysing the progress reported in the literature regarding the use of devices based on electrochemical (bio)sensors to evaluate the bioactive compounds in olive oil. The main advantages and limitations of these approaches on construction technique, analysed compounds, calculus models, as well as results obtained, are discussed in view of estimation of future progress related to achieving a portable, practical and rapid miniature device for analysing the quality of virgin olive oil (VOO) at different stages in the manufacturing process.
Collapse
|
6
|
Cecchi L, Migliorini M, Mulinacci N. Virgin Olive Oil Volatile Compounds: Composition, Sensory Characteristics, Analytical Approaches, Quality Control, and Authentication. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2013-2040. [PMID: 33591203 DOI: 10.1021/acs.jafc.0c07744] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Volatile organic compounds strongly contribute to both the positive and negative sensory attributes of virgin olive oil, and more and more studies have been published in recent years focusing on several aspects regarding these molecules. This Review is aimed at giving an overview on the state of the art about the virgin olive oil volatile compounds. Particular emphasis was given to the composition of the volatile fraction, the analytical issues and approaches for analysis, the sensory characteristics and interaction with phenolic compounds, and the approaches for supporting the Panel Test in virgin olive oil classification and in authentication of the botanical and geographic origin based on volatile compounds. A pair of detailed tables with a total of approximately 700 volatiles identified or tentatively identified to date and tables dealing with analytical procedures, sensory characteristics of volatiles, and specific chemometric approaches for quality assessment are also provided.
Collapse
Affiliation(s)
- Lorenzo Cecchi
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no, Florence, Italy
| | - Marzia Migliorini
- Carapelli Firenze S.p.A., Via Leonardo da Vinci 31, 50028 Tavarnelle Val di Pesa, Florence, Italy
| | - Nadia Mulinacci
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no, Florence, Italy
| |
Collapse
|
7
|
Marx ÍM, Rodrigues N, Veloso AC, Casal S, Pereira JA, Peres AM. Effect of malaxation temperature on the physicochemical and sensory quality of cv. Cobrançosa olive oil and its evaluation using an electronic tongue. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Guilherme R, Rodrigues N, Marx ÍM, Dias LG, Veloso AC, Ramos AC, Peres AM, Pereira JA. Sweet peppers discrimination according to agronomic production mode and maturation stage using a chemical-sensory approach and an electronic tongue. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Jalalvand AR, Roushani M, Goicoechea HC, Rutledge DN, Gu HW. MATLAB in electrochemistry: A review. Talanta 2019; 194:205-225. [DOI: 10.1016/j.talanta.2018.10.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
|
11
|
Rodrigues N, Marx ÍMG, Casal S, Dias LG, Veloso ACA, Pereira JA, Peres AM. Application of an electronic tongue as a single-run tool for olive oils' physicochemical and sensory simultaneous assessment. Talanta 2019; 197:363-373. [PMID: 30771949 DOI: 10.1016/j.talanta.2019.01.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Olive oil is highly appreciated due to its nutritional and organoleptic characteristics. However, a huge compositional variation is observed between olive oils, requiring the use of diverse analytical techniques for its classification including titration, spectrophotometry and chromatography, as well as sensory analysis. Chemical analysis is usually time-consuming, expensive and require skilled technicians, while the sensorial ones are dependent upon individual subjective evaluations, even if performed by trained panellists. This work evaluated and demonstrated the feasibility of using a potentiometric electronic tongue, comprising non-specific lipid polymeric and cross-sensitive sensor membranes, coupled with chemometric tools based on different sub-sets of sensors (from 11 to 14 sensors), to predict key quality parameters of olive oils based on single-run assays. The multivariate linear models established for 23 centenarian olive trees from different cultivars allowed predicting peroxide value, oxidative stability, total phenols and tocopherols contents, CIELAB scale parameters (L*, a* and b* values), as well as 11 gustatory-retronasal positive attributes (green, sweet, bitter, pungent, tomato and tomato leaves, apple, banana, cabbage, fresh herbs and dry fruits) with satisfactory accuracy (0.90 ± 0.07 ≤ R2 ≤ 0.98 ± 0.02 for the repeated K-fold-CV procedure, which ensured that 25% of the data was used for internal-validation purposes). The electronic tongue device had an accuracy statistically similar to that achieved with standard analytical techniques, pointing out the versatility of the device for the fast and simultaneous chemical and sensory analysis of olive oil.
Collapse
Affiliation(s)
- Nuno Rodrigues
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ítala M G Marx
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Susana Casal
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Luís G Dias
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana C A Veloso
- Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - José A Pereira
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - António M Peres
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
13
|
Electrochemical Sensor-Based Devices for Assessing Bioactive Compounds in Olive Oils: A Brief Review. ELECTRONICS 2018. [DOI: 10.3390/electronics7120387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electrochemical bioinspired sensor devices combined with chemometric tools have experienced great advances in the last years, being extensively used for food qualitative and quantitative evaluation, namely for olive oil analysis. Olive oil plays a key role in the Mediterranean diet, possessing unique and recognized nutritional and health properties as well as highly appreciated organoleptic characteristics. These positive attributes are mainly due to olive oil richness in bioactive compounds such as phenolic compounds. In addition, these compounds enhance their overall sensory quality, being mainly responsible for the usual olive oil pungency and bitterness. This review aims to compile and discuss the main research advances reported in the literature regarding the use of electrochemical sensor based-devices for assessing bioactive compounds in olive oil. The main advantages and limitations of these fast, accurate, bioinspired voltammetric, potentiometric and/or amperometric sensor green-approaches will be addressed, aiming to establish the future challenges for becoming a practical quality analytical tool for industrial and commercial applications.
Collapse
|