1
|
Borgonovi TF, Fugaban JII, Bucheli JEV, Casarotti SN, Holzapfel WH, Todorov SD, Penna ALB. Dual Role of Probiotic Lactic Acid Bacteria Cultures for Fermentation and Control Pathogenic Bacteria in Fruit-Enriched Fermented Milk. Probiotics Antimicrob Proteins 2024; 16:1801-1816. [PMID: 37572214 DOI: 10.1007/s12602-023-10135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
The food industry has been developing new products with health benefits, extended shelf life, and without chemical preservation. Bacteriocin-producing lactic acid bacteria (LAB) strains have been evaluated for food fermentation to prevent contamination and increase shelf life. In this study, potentially probiotic LAB strains, Lactiplantibacillus (Lb.) plantarum ST8Sh, Lacticaseibacillus (Lb.) casei SJRP38, and commercial starter Streptococcus (St.) thermophilus ST080, were evaluated for their production of antimicrobial compounds, lactic acid and enzyme production, carbohydrate assimilation, and susceptibility to antibiotics. The characterization of antimicrobial compounds, the proteolytic activity, and its inhibitory property against Listeria (List.) monocytogenes and Staphylococcus (Staph.) spp. was evaluated in buriti and passion fruit-supplemented fermented milk formulations (FMF) produced with LAB strains. Lb. plantarum ST8Sh was found to inhibit List. monocytogenes through bacteriocin production and produced both L(+) and D(-) lactic acid isomers, while Lb. casei SJRP38 mainly produced L(+) lactic acid. The carbohydrate assimilation profiles were compatible with those usually found in LAB. The potentially probiotic strains were susceptible to streptomycin and tobramycin, while Lb. plantarum ST8Sh was also susceptible to ciprofloxacin. All FMF produced high amounts of L(+) lactic acid and the viability of total lactobacilli remained higher than 8.5 log CFU/mL during monitored storage period. Staph. aureus ATCC 43300 in fermented milk with passion fruit pulp (FMFP) and fermented milk with buriti pulp (FMB), and Staph. epidermidis KACC 13234 in all formulations were completely inhibited after 14 days of storage. The combination of Lb. plantarum ST8Sh and Lb. casei SJRP38 and fruit pulps can provide increased safety and shelf-life for fermented products, and natural food preservation meets the trends of the food market.
Collapse
Affiliation(s)
- Taís Fernanda Borgonovi
- Department of Food Engineering and Technology, São Paulo State University (UNESP), São José Do Rio Preto, SP, 15054-000, Brazil
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Joanna Ivy Irorita Fugaban
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jorge Enrique Vazquez Bucheli
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Sabrina Neves Casarotti
- Faculty of Health Sciences, Federal University of Rondonópolis (UFR), Rondonópolis, MT, 78736-900, Brazil
| | - Wilhelm Heinrich Holzapfel
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos E Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Ana Lucia Barretto Penna
- Department of Food Engineering and Technology, São Paulo State University (UNESP), São José Do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
2
|
Woldemariam KY, Wang Z, Cai M, Li M, Jiang W, Hu Z, Li J, Tang W, Jiao Y, Liu Y, Zheng Q, Wang J. Lipid Hydrolysis, Oxidation, and Fatty Acid Formation Pathway Mapping of Synergistically Fermented Sausage and Characterization of Lipid Mediating Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17536-17548. [PMID: 39073353 DOI: 10.1021/acs.jafc.4c05295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Starter cultures play a significant role in lipid hydrolysis, prevention of lipid oxidation, and synthesis of fatty acid in fermented sausage, enhancing product quality. In this study, five synergistic bacterial strains were used, including Pediococcus pentosaceus (B-3), Latilactobacillus sakei DLS-24 (D-24), Latilactobacillus acidophilus DLS-29 (D-29), Lactiplantibacillus pentosus (B-1), and Lactiplantibacillus plantarum (B-2). Sausage B1B3D24 gave the highest free fatty acid with 39.45 g/100 g at 45-Day. Based on 2-thiobarbituric acid reactive substance, B2B3 contains 112.68 MDA/kg. Lipoxygenase activity displays the lowest in B1B3D24 with 0.095 μmol/min·mg followed by B2B3 with 0.145 μmol/min·mg. B1B3D24 contains 11.35 g/kg of monounsaturated fatty acid with the highest content in eicosenoic acid (C20:1) and palmitoleic acid (C16:1). The fatty acid synthesis pathway in B1B3D24 contains an active positive interaction with PUFA to increase the isotopomers of ω-3 and ω-6 fatty acids. In addition, lipid mediating genes in B1B3D24 show the highest counts in fatty-acid synthase, carbonyl reductase 4, 3-oxoacyl-[acyl-carrier-protein] synthase III, hydroxysteroid 17-beta dehydrogenase 8, and acetyl-CoA carboxylase.
Collapse
Affiliation(s)
- Kalekristos Yohannes Woldemariam
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Zhengkai Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Min Cai
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Min Li
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Wenxiang Jiang
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Zhichaw Hu
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Jinjuan Li
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Wensheng Tang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Yushan Jiao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Yingli Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Qiankun Zheng
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
3
|
Lai H, Yan L, Wang Y, Mei Y, Huang Y, Zeng X, Ge L, Zhao J, Zhu Y, Huang Q, Yang M, Zhao N. Effects of substrates and suppliers of ingredients on microbial community and metabolites of traditional non-salt Suancai. MICROBIOME RESEARCH REPORTS 2024; 3:21. [PMID: 38841414 PMCID: PMC11149085 DOI: 10.20517/mrr.2023.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 06/07/2024]
Abstract
Aim: Non-salt Suancai is an acidic fermented vegetable consumed by the Chinese Yi ethnic group. Traditionally, it is produced by fermentation without salt in a cold environment. The present study aimed to investigate the metabolite and microbial characteristics, and the effects of substrates/suppliers ingredients on non-salt Suancai. Methods: A simulated fermentation system of non-salt Suancai was constructed by using different substrates/suppliers' ingredients. The coherence and differential detection of the metabolite and microbial characteristics were done through non-target metabolomic and metagenomic analysis. Results: Lactic acid was the predominant organic acid across all samples. The enumeration of the Lactic acid bacteria showed no discernible differences between study groups, but that of yeast was highest in the mustard leaf stem (Brassica juncea var. latipa). The three major biological metabolic pathways were metabolism, environmental information, and genetic information processing based on the KEGG database. The metabolite diversity varied with the substrate/supplier of ingredients based on the PLS-DA plot. Lactiplantibacillus, Leuconostoc, and Lactococcus were prevalent in all samples but differentially. The microbial diversity and richness varied significantly, with 36~291 species being identified. Among the various substrates collected from the same supplier, 29, 59, and 29 differential species were identified based on LEfSe [linear discriminant analysis (LDA) > 2, P < 0.05]. Leuconostoc citreum, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Lactiplantibacillus plantarum, and Leuconostoc lactis were likely to be used as the species to discriminate samples collected from different suppliers. Conclusions: This research contributed to the exploration of microbial and metabolite characteristics behind the ingredient restriction of non-salt Suancai using traditional technology.
Collapse
Affiliation(s)
- Haimei Lai
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Lang Yan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang College, Xichang 615000, Sichuan, China
| | - Yali Wang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Yuan Mei
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Yuli Huang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Xueqing Zeng
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Lihong Ge
- College of Life Science, Sichuan Normal University, Chengdu 610066, Sichuan, China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yongqing Zhu
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Qiaolian Huang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Menglu Yang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Nan Zhao
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| |
Collapse
|
4
|
Silva AS, Casarotti SN, Penna ALB. Trends and challenges for the application of probiotic lactic acid bacteria in functional foods. CIÊNCIA RURAL 2024; 54. [DOI: 10.1590/0103-8478cr20230014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
ABSTRACT: It is increasingly challenging for the food industries to develop products which meet the consumers’ demands. They seek foods that are innovative and present health benefits. In this review, the main objectives are to show the tendencies and innovations in the dairy food market and to indicate the challenges to apply probiotic bacteria to non-dairy products. Moreover, the safety of probiotic lactic acid bacteria (LAB) to be applied to food products and the beneficial effect of probiotic bacteria on the intestinal microbiota and overall human health were also discussed. We considered that the development of probiotic fermented products added with fruits and fruit by-products, cereals or other vegetables aligns with the market tendencies and the consumers’ demands.
Collapse
Affiliation(s)
- Aline Sousa Silva
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Brazil
| | | | | |
Collapse
|
5
|
Wu C, Chen H, Mei Y, Yang B, Zhao J, Stanton C, Chen W. Advances in research on microbial conjugated linoleic acid bioconversion. Prog Lipid Res 2024; 93:101257. [PMID: 37898352 DOI: 10.1016/j.plipres.2023.101257] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Conjugated linoleic acid (CLA) is a functional food ingredient with prebiotic properties that provides health benefits for various human pathologies and disorders. However, limited natural CLA sources in animals and plants have led microorganisms like Lactobacillus and Bifidobacterium to emerge as new CLA sources. Microbial conversion of linoleic acid to CLA is mediated by linoleic acid isomerase and multicomponent enzymatic systems, with CLA production efficiency dependent on microbial species and strains. Additionally, complex factors like LA concentration, growth status, culture substrates, precursor type, prebiotic additives, and co-cultured microbe identity strongly influence CLA production and isomer composition. This review summarizes advances in the past decade regarding microbial CLA production, including bacteria and fungi. We highlight CLA production and potential regulatory mechanisms and discuss using microorganisms to enhance CLA content and nutritional value of fermented products. We also identify primary microbial CLA production bottlenecks and provide strategies to address these challenges and enhance production through functional gene and enzyme mining and downstream processing. This review aims to provide a reference for microbial CLA production and broaden the understanding of the potential probiotic role of microbial CLA producers.
Collapse
Affiliation(s)
- Chen Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Yongchao Mei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Catherine Stanton
- International Joint Research Centre for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, PR China; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; International Joint Research Centre for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
6
|
Silva LF, Sunakozawa TN, Monteiro DA, Casella T, Conti AC, Todorov SD, Barretto Penna AL. Potential of Cheese-Associated Lactic Acid Bacteria to Metabolize Citrate and Produce Organic Acids and Acetoin. Metabolites 2023; 13:1134. [PMID: 37999230 PMCID: PMC10673126 DOI: 10.3390/metabo13111134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Lactic acid bacteria (LAB) are pivotal in shaping the technological, sensory, and safety aspects of dairy products. The evaluation of proteolytic activity, citrate utilization, milk pH reduction, and the production of organic compounds, acetoin, and diacetyl by cheese associated LAB strains was carried out, followed by Principal Component Analysis (PCA). Citrate utilization was observed in all Leuconostoc (Le.) mesenteroides, Le. citreum, Lactococcus (Lc.) lactis, Lc. garvieae, and Limosilactobacillus (Lm.) fermentum strains, and in some Lacticaseibacillus (Lact.) casei strains. Most strains exhibited proteolytic activity, reduced pH, and generated organic compounds. Multivariate PCA revealed Le. mesenteroides as a prolific producer of acetic, lactic, formic, and pyruvic acids and acetoin at 30 °C. Enterococcus sp. was distinguished from Lact. casei based on acetic, formic, and pyruvic acid production, while Lact. casei primarily produced lactic acid at 37 °C. At 42 °C, Lactobacillus (L.) helveticus and some L. delbrueckii subsp. bulgaricus strains excelled in acetoin production, whereas L. delbrueckii subsp. bulgaricus and Streptococcus (S.) thermophilus strains primarily produced lactic acid. Lm. fermentum stood out with its production of acetic, formic, and pyruvic acids. Overall, cheese-associated LAB strains exhibited diverse metabolic capabilities which contribute to desirable aroma, flavor, and safety of dairy products.
Collapse
Affiliation(s)
- Luana Faria Silva
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Tássila Nakata Sunakozawa
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Diego Alves Monteiro
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Tiago Casella
- Department of Dermatological, Infectious and Parasitic Diseases, FAMERP—São José do Rio Preto Medical School, São José do Rio Preto 15090-000, SP, Brazil;
| | - Ana Carolina Conti
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, USP—São Paulo University, São Paulo 05508-000, SP, Brazil;
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal
| | - Ana Lúcia Barretto Penna
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| |
Collapse
|
7
|
Wang MS, Fan M, Zheng AR, Wei CK, Liu DH, Thaku K, Wei ZJ. Characterization of a fermented dairy, sour cream: Lipolysis and the release profile of flavor compounds. Food Chem 2023; 423:136299. [PMID: 37178602 DOI: 10.1016/j.foodchem.2023.136299] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Lipolysis and flavor development during fermentation of sour cream were studied by evaluating the physicochemical changes, sensory differences and volatile components. The fermentation caused significant changes in pH, viable count and sensory evaluation. The peroxide value (POV) decreased after reaching the maximum value of 1.07 meq/kg at 15 h, while thiobarbituric acid reactive substances (TBARS) increased continuously with the accumulation of secondary oxidation products. The Free fatty acids (FFAs) in sour cream were mainly myristic, palmitic and stearic. GC-IMS was used to identify the flavor properties. A total of 31 volatile compounds were identified, among which the contents of characteristic aromatic substances such as ethyl acetate, 1-octen-3-one and hexanoic acid were increased. The results suggest that lipid changes and flavor formation in sour cream are influenced by fermentation time. Furthermore, flavor compounds may be related to lipolysis such as 1-octen-3-one and 2- heptanol were also observed.
Collapse
Affiliation(s)
- Meng-Song Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Min Fan
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - An-Ran Zheng
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Chao-Kun Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Dun-Hua Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Kiran Thaku
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhao-Jun Wei
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
8
|
Correlation between flavor compounds and microorganisms of Chaling natural fermented red sufu. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
PRESTES AA, VARGAS MO, HELM CV, ESMERINO EA, SILVA R, PRUDENCIO ES. How to improve the functionality, nutritional value and health properties of fermented milks added of fruits bioactive compounds: a review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.17721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Méndez‐Romero JI, Reyes‐Díaz R, Santiago‐López L, Hernández‐Mendoza A, Vallejo‐Cordoba B, Sayago‐Ayerdi SG, Gómez‐Gil B, González‐Córdova AF. Artisanal Fresco cheese from Sonora: Physicochemical composition, microbial quality, and bacterial characterization by high‐throughput sequencing. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- José I Méndez‐Romero
- Laboratorio de Química y Biotecnología de Productos Lácteos. Centro de Investigación en Alimentación y Desarrollo A. C. Carretera Gustavo Enrique Astiazarán Rosas No. 46 Col. La Victoria Hermosillo SonoraC.P. 83304México
| | - Ricardo Reyes‐Díaz
- Laboratorio de Química y Biotecnología de Productos Lácteos. Centro de Investigación en Alimentación y Desarrollo A. C. Carretera Gustavo Enrique Astiazarán Rosas No. 46 Col. La Victoria Hermosillo SonoraC.P. 83304México
| | - Lourdes Santiago‐López
- Laboratorio de Química y Biotecnología de Productos Lácteos. Centro de Investigación en Alimentación y Desarrollo A. C. Carretera Gustavo Enrique Astiazarán Rosas No. 46 Col. La Victoria Hermosillo SonoraC.P. 83304México
| | - Adrian Hernández‐Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos. Centro de Investigación en Alimentación y Desarrollo A. C. Carretera Gustavo Enrique Astiazarán Rosas No. 46 Col. La Victoria Hermosillo SonoraC.P. 83304México
| | - Belinda Vallejo‐Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos. Centro de Investigación en Alimentación y Desarrollo A. C. Carretera Gustavo Enrique Astiazarán Rosas No. 46 Col. La Victoria Hermosillo SonoraC.P. 83304México
| | - Sonia G Sayago‐Ayerdi
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic Av. Tecnológico No 2595 TepicCol. Lagos del Country C.P. 63175México
| | - Bruno Gómez‐Gil
- Coordinación Regional Mazatlán en Acuicultura y Manejo Ambiental. Centro de Investigación en Alimentación y Desarrollo A.C. Av. Sábalo‐Cerritos s/nEstero del Yugo MazatlánC.P. 82000México
| | - Aarón F González‐Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos. Centro de Investigación en Alimentación y Desarrollo A. C. Carretera Gustavo Enrique Astiazarán Rosas No. 46 Col. La Victoria Hermosillo SonoraC.P. 83304México
| |
Collapse
|
11
|
Thangavel G, Subramaniyam T. Antimicrobial Efficacy of Leuconostoc spp. Isolated from Indian Meat against Escherichia coli and Listeria monocytogenes in Spinach Leaves. Food Sci Anim Resour 2019; 39:677-685. [PMID: 31508597 PMCID: PMC6728820 DOI: 10.5851/kosfa.2019.e60] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/03/2019] [Accepted: 08/07/2019] [Indexed: 01/22/2023] Open
Abstract
Five Leuconostoc strains (CM17, CM19, PM30, PM32, and PM36) previously isolated from Indian meat showed promising antimicrobial activity against food pathogens in screening assay. This study evaluates the efficacy of these isolates against Escherichia coli Microbial Type Culture Collection and Gene Bank (MTCC) 443 and Listeria monocytogenes (MTCC 657) in spinach leaves. Challenge studies were conducted by inoculating E. coli and L. monocytogenes at 6 to 7 Log10 CFU/g of the leaves respectively and treating them with cell free supernatant (CFS) of 48 h cultures of the isolates. The samples were stored at 4°C and analyzed over a period of 5 d. The study was conducted in triplicates and statistical analysis was carried out using one-way Anova. The counts of the pathogens did not increase over the 5 d period in the control samples, without any treatment. Whereas in the case of CFS treatments, significant reduction (p<0.05) was observed in both E. coli and L. monocytogenes from 1 to 5 d with all the 5 strains as compared to the control. The counts of Listeria dropped by 0.5 to 1 log by 5 d, with PM 36 showing the highest reduction (1 log). In the case of E. coli, 1.1 to 1.5 log reduction was observed by 5 d, with again PM 36 showing the highest reduction (1.5). The overall results indicate that the isolates (specifically PM36) not only showed efficacy in in vitro studies but are also proved to be effective in food matrix making them potential clean label antimicrobial alternatives for food application.
Collapse
|