1
|
Wu D, Khan S, Zhang S, Wang H, Chen W, Wang S. Self-Assembled Immobilization and Metal-Polyphenol Network Encapsulation of β-Galactosidase on T4 Phage for Enhanced Biocatalytic Performance. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05267-4. [PMID: 40366540 DOI: 10.1007/s12010-025-05267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
Enzymes, key catalysts in biochemical reactions, are prone to denaturation under harsh conditions, leading to reduced stability and higher costs. Enzyme immobilization, using carriers like magnetic nanoparticles, metal-organic frameworks, and viruses, is a common solution. T4 bacteriophage, a virulent E. coli phage containing 155 Hoc and 870 Soc proteins, offers a cost-effective and highly stable platform for enzyme immobilization. In this study, Soc-β-galactosidase (Soc-β-gal) was immobilized on the surface of T4 bacteriophage via affinity fixation and further encapsulated with a metal-polyphenol network (MPN) coating. Comparative analysis of the biochemical properties revealed that the immobilized enzyme, β-gal T4, retained over 85% activity after 6 h at 50 °C, while free Soc-β-gal retained only 40.63%. Moreover, β-gal T4@TA-Ti demonstrated superior stability, retaining 92.88% of its activity after 6 h of UV exposure, compared to 10.21% for β-gal T4 and 7.23% for Soc-β-gal. The MPN coating also enhanced resistance to proteolytic degradation, with β-gal T4@TA-Ti retaining 9.48% of its activity after exposure to proteinase K, in contrast to 4.62% for β-gal T4. Overall, these results demonstrate that enzyme immobilization significantly enhances stability, while the MPN coating further improves resistance to extreme pH, ultraviolet radiation, and other environmental stressors, highlighting the potential of this approach for biocatalytic applications.
Collapse
Affiliation(s)
- Dan Wu
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, China
| | - Sulaiman Khan
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, China
| | - Shujie Zhang
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, China
| | - Huan Wang
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, China
| | - Wei Chen
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, China
| | - Shenqi Wang
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, China.
| |
Collapse
|
2
|
Ruiz-Ramírez S, Jiménez-Flores R. Invited review: Properties of β-galactosidases derived from Lactobacillaceae species and their capacity for galacto-oligosaccharide production. J Dairy Sci 2023; 106:8193-8206. [PMID: 37678769 DOI: 10.3168/jds.2023-23392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/16/2023] [Indexed: 09/09/2023]
Abstract
β-galactosidase (enzymatic class 3.2.1.23) is one of the dairy industry's most important and widely used enzymes. The enzyme is part of a large family known to catalyze hydrolysis and transglycosylation reactions. Its hydrolytic activity is commonly used to decrease lactose content in dairy products, while its transglycosylase activity has recently been used to synthesize galacto-oligosaccharides (GOS). During the past couple of years, researchers have focused on studying β-galactosidase isolated and purified from lactic acid bacteria. This review will focus on β-galactosidase purified and characterized from what used to be the Lactobacillus genera. Furthermore, particular emphasis is given to its kinetics, biochemical characteristics, GOS production, market, and utilization by Lactobacilllaceae species.
Collapse
Affiliation(s)
- Silvette Ruiz-Ramírez
- Department of Food Science and Technology, Parker Food Science & Technology Building, The Ohio State University, Columbus, OH 43210
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, Parker Food Science & Technology Building, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
3
|
Duan X, Luan S. Efficient secreted expression of natural intracellular β-galactosidase from Bacillus aryabhattai via non-classical protein secretion pathway in Bacillus subtilis. Int J Biol Macromol 2023; 248:125758. [PMID: 37453640 DOI: 10.1016/j.ijbiomac.2023.125758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
In this study, the natural intracellular β-galactosidase (lacZBa) from Bacillus aryabhattai was expressed extracellularly in Bacillus subtilis. Sec and Tat signal peptides from different secretion pathways were incorporated to facilitate extracellular secretion of lacZBa, resulting in a yield of only 0.54 U/mL. Interestingly, it was discovered that lacZBa could be efficiently expressed and secreted in B. subtilis via a non-classical secretory pathway without the need for a signal peptide. The extracellular activity and secretion ratio were 5.3 U/mL and 65 %, respectively. Compared to E. coli, the expression of lacZBa in B. subtilis resulted in increased acid resistance and higher pH stability and thermostability, with a 1.7-fold increase in half-life at 50 °C and pH 6.0. Additionally, we combined single-factor experiments and response surface methodology to enhance extracellular expression of β-galactosidase in shake-flasks. The resulting optimal medium contained 4.46 % glucose, 1.47 % corn steep liquor, 1.5 % beef extract, 0.82 % CaCl2, and 0.1 % MgSO4. Under optimal conditions, the yield of extracellularly secreted β-galactosidase at the shake flask level was 17.41 U/mL, representing a 32.2-fold increase in initial extracellular enzyme activity. This study represents the first successful report of natural intracellular β-galactosidase being expressed through the non-classical secretory pathway in B. subtilis.
Collapse
Affiliation(s)
- Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Shuyue Luan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
4
|
In Vitro Production of Galactooligosaccharides by a Novel β-Galactosidase of Lactobacillus bulgaricus. Int J Mol Sci 2022; 23:ijms232214308. [PMID: 36430784 PMCID: PMC9697242 DOI: 10.3390/ijms232214308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
β-galactosidase is an enzyme with dual activity and important industrial application. As a hydrolase, the enzyme eliminates lactose in milk, while as a trans-galactosidase it produces prebiotic galactooligosaccharides (GOS) with various degrees of polymerization (DP). The aim of the present study is the molecular characterization of β-galactosidase from a Bulgarian isolate, Lactobacillus delbrueckii subsp. bulgaricus 43. The sequencing of the β-gal gene showed that it encodes a new enzyme with 21 amino acid replacements compared to all other β-galactosidases of this species. The molecular model revealed that the new β-galactosidase acts as a tetramer. The amino acids D207, H386, N464, E465, Y510, E532, H535, W562, N593, and W980 form the catalytic center and interact with Mg2+ ions and substrate. The β-gal gene was cloned into a vector allowing heterologous expression of E. coli BL21(DE3) with high efficiency, as the crude enzyme reached 3015 U/mL of the culture or 2011 U/mg of protein. The enzyme's temperature optimum at 55 °C, a pH optimum of 6.5, and a positive influence of Mg2+, Mn2+, and Ca2+ on its activity were observed. From lactose, β-Gal produced a large amount of GOS with DP3 containing β-(1→3) and β-(1→4) linkages, as the latter bond is particularly atypical for the L. bulgaricus enzymes. DP3-GOS formation was positively affected by high lactose concentrations. The process of lactose conversion was rapid, with a 34% yield of DP3-GOS in 6 h, and complete degradation of 200 g/L of lactose for 12 h. On the other hand, the enzyme was quite stable at 55 °C and retained about 20% of its activity after 24 h of incubation at this temperature. These properties expand our horizons as regards the use of β-galactosidases in industrial processes for the production of lactose-free milk and GOS-enriched foods.
Collapse
|
5
|
Du M, Yang S, Jiang T, Liang T, Li Y, Cai S, Wu Q, Zhang J, Chen W, Xie X. Cloning, Expression, Purification, and Characterization of β-Galactosidase from Bifidobacterium longum and Bifidobacterium pseudocatenulatum. Molecules 2022; 27:molecules27144497. [PMID: 35889370 PMCID: PMC9323360 DOI: 10.3390/molecules27144497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Expression and purification of β-galactosidases derived from Bifidobacterium provide a new resource for efficient lactose hydrolysis and lactose intolerance alleviation. Here, we cloned and expressed two β-galactosidases derived from Bifidobacterium. The optimal pH for BLGLB1 was 5.5, and the optimal temperature was 45 °C, at which the enzyme activity of BLGLB1 was higher than that of commercial enzyme E (300 ± 3.6 U/mg) under its optimal conditions, reaching 2200 ± 15 U/mg. The optimal pH and temperature for BPGLB1 were 6.0 and 45 °C, respectively, and the enzyme activity (0.58 ± 0.03 U/mg) under optimum conditions was significantly lower than that of BLGLB1. The structures of the two β-galactosidase were similar, with all known key sites conserved. When o-nitrophenyl-β-D-galactoside (oNPG) was used as an enzyme reaction substrate, the maximum reaction velocity (Vmax) for BLGLB1 and BPGLB1 was 3700 ± 100 U/mg and 1.1 ± 0.1 U/mg, respectively. The kinetic constant (Km) of BLGLB1 and BPGLB1 was 1.9 ± 0.1 and 1.3 ± 0.3 mmol/L, respectively. The respective catalytic constant (kcat) of BLGLB1 and BPGLB1 was 1700 ± 40 s−1 and 0.5 ± 0.02 s−1, respectively; the respective kcat/Km value of BLGLB1 and BPGLB1 was 870 L/(mmol∙s) and 0.36 L/(mmol∙s), respectively. The Km, kcat and Vmax values of BLGLB1 were superior to those of earlier reported β-galactosidase derived from Bifidobacterium. Overall, BLGLB1 has potential application in the food industry.
Collapse
Affiliation(s)
- Mingzhu Du
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.D.); (S.Y.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
| | - Shuanghong Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.D.); (S.Y.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
| | - Tong Jiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
| | - Shuzhen Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
- Correspondence: (J.Z.); (W.C.); (X.X.)
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.D.); (S.Y.)
- Correspondence: (J.Z.); (W.C.); (X.X.)
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (T.J.); (T.L.); (Y.L.); (S.C.); (Q.W.)
- Correspondence: (J.Z.); (W.C.); (X.X.)
| |
Collapse
|
6
|
Ji D, Sims I, Xu M, Stewart I, Agyei D. Production and identification of galacto-oligosaccharides from lactose using β-D-galactosidases from Lactobacillus leichmannii 313. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
7
|
Li N, Liu Y, Wang C, Weng P, Wu Z, Zhu Y. Overexpression and characterization of a novel GH4 galactosidase with β-galactosidase activity from Bacillus velezensis SW5. J Dairy Sci 2021; 104:9465-9477. [PMID: 34127264 DOI: 10.3168/jds.2021-20258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
A novel galactosidase gene (gal3149) was identified from Bacillus velezensis SW5 and heterologously expressed in Escherichia coli BL21 (DE3). The novel galactosidase, Gal3149, encoded by gal3149 in an open reading frame of 1,299 bp, was 433 amino acids in length. Protein sequence analysis showed that Gal3149 belonged to family 4 of glycoside hydrolases (GH4). Gal3149 displayed higher enzyme activity for the substrate 2-nitrophenyl-β-d-galactopyranoside (oNPG) than for 4-nitrophenyl-α-d-galactopyranoside (pNPαG). This is the first time that an enzyme belonging to GH4 has been shown to exhibit β-galactosidase activity. Gal3149 showed optimal activity at pH 8.0 and 50°C, and exhibited excellent thermal stability, with retention of 50% relative activity after incubation at a temperature range of 0 to 50°C for 48 h. Gal3149 activity was significantly improved by K+ and Na+, and was strongly or completely inhibited by Ag+, Zn2+, Tween-80, Cu2+, carboxymethyl cellulose, and oleic acid. The rate of hydrolyzed lactose in 1 mL of milk by 1 U of Gal3149 reached about 50% after incubation for 4 h. These properties lay a solid foundation for Gal3149 in application of the lactose-reduced dairy industry.
Collapse
Affiliation(s)
- Na Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yang Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China; Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350003, People's Republic of China
| | - Changyu Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Peifang Weng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China.
| | - Yazhu Zhu
- Zhejiang International Maritime College, Zhoushan 316021, People's Republic of China
| |
Collapse
|
8
|
Thermal Inactivation Kinetics of Kudzu ( Pueraria lobata) Polyphenol Oxidase and the Influence of Food Constituents. Foods 2021; 10:foods10061320. [PMID: 34201165 PMCID: PMC8226850 DOI: 10.3390/foods10061320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
The thermal inactivation kinetics of kudzu (Pueraria lobata) polyphenol oxidase (PPO) were investigated in model and food systems. PPO in kudzu tissue (tPPO) showed a higher thermostability than that of PPO in crude extract (cPPO) and purification fractions (pPPO). The PPO inactivation rate constant (k) increased with an increase in temperature, and tPPO showed the lowest k value, followed by that of cPPO and pPPO at the same temperature, indicating that PPO in the food system was more resistant to thermal treatment. Food constituents (pectin, starch, sucrose, and bovine serum albumin) in the food system decreased the activity of PPO but increased the thermostability of PPO, among which pectin exhibited the strongest protective effect against thermal inactivation, and the influence of sucrose was much slighter than that of other macromolecules. Fluorescence emission spectra indicated that pPPO exhibited stronger interactions with pectin than sucrose, and pPPO with pectin showed a more stable conformation under thermal treatment.
Collapse
|
9
|
Li L, Yang X, Hong R, Liu F. Combined proteomics and transcriptomics analysis of Lactococcus lactis under different culture conditions. J Dairy Sci 2021; 104:2564-2580. [PMID: 33455780 DOI: 10.3168/jds.2020-18895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/08/2020] [Indexed: 11/19/2022]
Abstract
During industrial handling, Lactococcus lactis needs to adapt to different culture conditions by regulating its metabolic pathways. Modifying culture conditions may be an important way to control the biomass and functional metabolites of lactic acid bacteria. In this study, we identified the differentially expressed genes and proteins of L. lactis under different culture conditions by integrating transcriptomics and proteomics. We also analyzed the data using a bioinformatic approach to reveal the regulatory mechanisms affected by culture conditions. The transcriptome and proteome studies indicated that different culture conditions (fructose, calcium ion, palmitic acid, low pH) affected gene and protein expressions. The levels of differentially expressed proteins did not significantly correlate with the expression levels of their corresponding genes. Our results highlight the importance of comparative transcriptomics and proteomics analyses. In this study, fructose and pH significantly affected sugar metabolism of L. lactis. When lactose was replaced by fructose, fructokinase expression was promoted, and fructose metabolism was accelerated, whereas starch and sucrose metabolism and galactose metabolism system were inhibited. Low pH may be beneficial to homofermentation of L. lactis, which may also metabolize galactose through the tagatose pathway and the Leloir pathway. Fatty acid metabolism and fatty acid biosynthesis were significantly downregulated under calcium ion and palmitic acid. The purine metabolism was upregulated under fructose treatment and downregulated under palmitic acid treatment.
Collapse
Affiliation(s)
- Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Rui Hong
- Department of Academic Theory Research, Northeast Agricultural University, Harbin, 150030, China.
| | - Fei Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
10
|
Peprah Addai F, Wang T, Kosiba AA, Lin F, Zhen R, Chen D, Gu J, Shi H, Zhou Y. Integration of elastin-like polypeptide fusion system into the expression and purification of Lactobacillus sp. B164 β-galactosidase for lactose hydrolysis. BIORESOURCE TECHNOLOGY 2020; 311:123513. [PMID: 32417661 DOI: 10.1016/j.biortech.2020.123513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
An elastin-like polypeptide (ELP) sequence fused with Lactobacillus sp. B164 β-galactosidase modified with 6x-Histidine (β-Gal-LH) to produce recombinant β-Gal-Linker-ELP-His (β-Gal-LEH) was expressed in E. coli and purified via inverse thermal cycling (ITC) and nickel-nitrilotriacetic acid (Ni-NTA) resin. The β-galactosidase integrated with ELP-system showed an improved purification at 1.75 M (NH4)2SO4 after 1 round ITC (95.66% recovery rate and 13.04 purification fold) with better enzyme activity parameters compared to Ni-NTA. The enzyme maintained an optimal temperature (40 °C) and pH (7.5) for both β-Gal-LEH and β-Gal-LH. The results further showed that the ELP-fusion system improved the enzyme's thermal and storage stability. Moreover, the enzyme secondary structure was not changed by ELP-tag. Enzyme activity was completely inactivated by Hg2+, Cd2+ and Cu2+, unaffected by Ca2+, EDTA and urea, but partially activated by Mn2+ at lower concentration. Compared to commercial β-galactosidases, β-Gal-LEH exhibited similar biocatalytic efficiency on lactose and could potentially catalyze transgalactosylation.
Collapse
Affiliation(s)
- Frank Peprah Addai
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Taotao Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Anthony A Kosiba
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, PR China
| | - Ren Zhen
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Dongfeng Chen
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China.
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China.
| |
Collapse
|
11
|
Optimization of β-galactosidase Production by Batch Cultures of Lactobacillus leichmannii 313 (ATCC 7830™). FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6010027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endoenzyme β-galactosidase (β-d-galactoside galactohydrolase; EC 3.2.1.23) has been used at industrial scales for the preparation of lactose-free milk and for the conversion of lactose to galacto-oligosaccharides (GOS) prebiotics. In this study, using Plackett–Burman (PB) design and the response surface methodology (RSM), the batch growth conditions for the production of β-galactosidase in DeMan-Rogosa-Sharpe (MRS) media have been studied and optimized for Lactobacillus leichmannii 313 (ATCC 7830™) for the first time. The incubation temperature (30 < T < 55 °C), starting pH (5.5 < pH < 7.5), and carbon source (glucose, lactose, galactose, fructose, and sucrose) were selected as the significant variables for optimization. The maximum crude β-galactosidase production (measured by specific activity) was 4.5 U/mg proteins and was obtained after 12 h of fermentation. The results of the PB design and further optimization by RSM showed that the initial pH of 7.0 and 15.29 g/L of lactose were the levels that gave the optimum observed and predicted β-galactosidase activities of 23.13 U/mg and 23.40 U/mg, respectively. Through RSM optimization, β-galactosidase production increased significantly (over five-fold) in optimized medium (23.13 U/mg), compared with unoptimized medium (4.5 U/mg). Moreover, the crude enzyme obtained was able to hydrolyze lactose and also produce galacto-oligosaccharides. Because its ability to produce β-galactosidase was significantly improved through optimization by RSM, L. leichmannii 313 can serve as a potential source of β-galactosidase for food applications at an industrial scale.
Collapse
|