1
|
Pettinelli S, Pérez-Gonzàlez C, Salvo-Comino C, Mencarelli F, Garcia-Cabezón C, Rodriguez-Mendez ML. High-performance bioelectronic tongue for the simultaneous analysis of phenols, sugars and organic acids in wines. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1430-1438. [PMID: 38012060 DOI: 10.1002/jsfa.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Electronic tongues have been widely used to analyze wines. However, owing to the complexity of the matrix, the problem is not completely solved and further improvements are required. RESULTS A high-performance potentiometric bioelectronic tongue (bio-ET) specifically devoted to the assessment of wine components is presented. The novelty of this system is due to two innovative approaches. First, the improved performance is obtained through the use of potentiometric biosensors based on carboxylated polyvinyl chloride (PVC) membranes, where enzymes (glucose oxidase, tyrosinase, laccase, and lyase) specific to compounds of interest are linked covalently. Second, the performance is further enhanced by introducing electron mediators (gold nanoparticles or copper phthalocyanine) into the PVC membrane to facilitate the electron transfer process. Individual sensors exposed to target analytes (glucose, catechol, cysteine, or tartaric acid) show a linear behavior, with limits of detection in the region of 10-4 mol L-1 for all the compounds analyzed, with excellent reproducibility (coefficient of variation lower than 3%). Sensors combined to form a bio-ET show excellent capabilities. Principal component (PC) analysis can discriminate monovarietal white wines (PC1 77%; PC2 15%) and red wines (PC1 63%; PC2 30%). Using partial least squares, the bio-ET can provide information about chemical parameters, including glucose, total polyphenols, total anthocyanins, free and total sulfur dioxide, total acidity, and pH with R2 between 0.91 and 0.98 in calibration and between 0.89 and 0.98 in validation. CONCLUSIONS This advanced instrument is able to assess the levels of seven parameters in a single measurement, providing an advantageous method to the wine industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Stefano Pettinelli
- DAFE, Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Group UVASENS, Engineers Industrial School, University of Valladolid, Valladolid, Spain
| | - Clara Pérez-Gonzàlez
- Group UVASENS, Engineers Industrial School, University of Valladolid, Valladolid, Spain
- Department of Materials Science, University of Valladolid, Valladolid, Spain
| | - Coral Salvo-Comino
- Group UVASENS, Engineers Industrial School, University of Valladolid, Valladolid, Spain
- BioecoUVA Research Institute, University of Valladolid, Valladolid, Spain
- Department of Inorganic Chemistry, Engineers Industrial School, University of Valladolid, Valladolid, Spain
| | - Fabio Mencarelli
- DAFE, Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Cristina Garcia-Cabezón
- Group UVASENS, Engineers Industrial School, University of Valladolid, Valladolid, Spain
- Department of Materials Science, University of Valladolid, Valladolid, Spain
- BioecoUVA Research Institute, University of Valladolid, Valladolid, Spain
| | - Maria Luz Rodriguez-Mendez
- Group UVASENS, Engineers Industrial School, University of Valladolid, Valladolid, Spain
- BioecoUVA Research Institute, University of Valladolid, Valladolid, Spain
- Department of Inorganic Chemistry, Engineers Industrial School, University of Valladolid, Valladolid, Spain
| |
Collapse
|
2
|
Wang X, Cheng J, Zhu Y, Li T, Wang Y, Gao X. Intermolecular copigmentation of anthocyanins with phenolic compounds improves color stability in the model and real blueberry fermented beverage. Food Res Int 2024; 190:114632. [PMID: 38945622 DOI: 10.1016/j.foodres.2024.114632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
To improve the color stability of anthocyanins (ACNs) in blueberry fermented beverage, the intermolecular copigmentation between ACNs and 3 different phenolic compounds, including (-)-epigallocatechin gallate (EGCG), ferulic acid (FA), and gallic acid (GA) as copigments, was compared in the model and the real blueberry fermented beverage, respectively. The copigmented ACNs by EGCG presented a high absorbance (0.34 a.u.) and redness (27.09 ± 0.17) in the model blueberry fermented beverage. The copigmentation by the participation of the 3 different phenolic compounds showed all a spontaneous exothermic reaction, and the Gibbs free energy (ΔG°) of the system was lowest (-5.90 kJ/mol) using EGCG as copigment. Furthermore, the molecular docking model verified that binary complexes formed between ACNs and copigments by hydrogen bonds and π-π stacking. There was a high absorbance (1.02 a.u.), percentage polymeric color (PC%, 68.3 %), and good color saturation (C*ab, 43.28) in the real blueberry fermented beverage aged for 90 days, and more malvidin-3-O-glucoside had been preserved in the wine using EGCG as copigment. This finding may guide future industrial production of blueberry fermented beverage with improved color.
Collapse
Affiliation(s)
- Xiaohan Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jingjing Cheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yue Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Tao Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yu Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xueling Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
3
|
Martinez-Velasco JD, Filomena-Ambrosio A, Garzón-Castro CL. Technological tools for the measurement of sensory characteristics in food: A review. F1000Res 2024; 12:340. [PMID: 38322308 PMCID: PMC10844804 DOI: 10.12688/f1000research.131914.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 02/08/2024] Open
Abstract
The use of technological tools, in the food industry, has allowed a quick and reliable identification and measurement of the sensory characteristics of food matrices is of great importance, since they emulate the functioning of the five senses (smell, taste, sight, touch, and hearing). Therefore, industry and academia have been conducting research focused on developing and using these instruments which is evidenced in various studies that have been reported in the scientific literature. In this review, several of these technological tools are documented, such as the e-nose, e-tongue, colorimeter, artificial vision systems, and instruments that allow texture measurement (texture analyzer, electromyography, others). These allow us to carry out processes of analysis, review, and evaluation of food to determine essential characteristics such as quality, composition, maturity, authenticity, and origin. The determination of these characteristics allows the standardization of food matrices, achieving the improvement of existing foods and encouraging the development of new products that satisfy the sensory experiences of the consumer, driving growth in the food sector. However, the tools discussed have some limitations such as acquisition cost, calibration and maintenance cost, and in some cases, they are designed to work with a specific food matrix.
Collapse
Affiliation(s)
- José D Martinez-Velasco
- Engineering Faculty - Research Group CAPSAB, Universidad de La Sabana, Campus del Puente del Común, Km 7 Autopista Norte de Bogotá, Chia, Cundinamarca, 250001, Colombia
| | - Annamaria Filomena-Ambrosio
- International School of Economics and Administrative Science - Research Group Alimentación, Gestión de Procesos y Servicio de la Universidad de La Sabana Research Group, Universidad de La Sabana, Campus del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía, Cundinamarca, 250001, Colombia
| | - Claudia L Garzón-Castro
- Engineering Faculty - Research Group CAPSAB, Universidad de La Sabana, Campus del Puente del Común, Km 7 Autopista Norte de Bogotá, Chia, Cundinamarca, 250001, Colombia
| |
Collapse
|
4
|
Abi-Rizk H, Jouan-Rimbaud Bouveresse D, Chamberland J, Cordella CBY. Recent developments of e-sensing devices coupled to data processing techniques in food quality evaluation: a critical review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5410-5440. [PMID: 37818969 DOI: 10.1039/d3ay01132a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A greater demand for high-quality food is being driven by the growth of economic and technological advancements. In this context, consumers are currently paying special attention to organoleptic characteristics such as smell, taste, and appearance. Motivated to mimic human senses, scientists developed electronic devices such as e-noses, e-tongues, and e-eyes, to spot signals relative to different chemical substances prevalent in food systems. To interpret the information provided by the sensors' responses, multiple chemometric approaches are used depending on the aim of the study. This review based on the Web of Science database, endeavored to scrutinize three e-sensing systems coupled to chemometric approaches for food quality evaluation. A total of 122 eligible articles pertaining to the e-nose, e-tongue and e-eye devices were selected to conduct this review. Most of the performed studies used exploratory analysis based on linear factorial methods, while classification and regression techniques came in the second position. Although their applications have been less common in food science, it is to be noted that nonlinear approaches based on artificial intelligence and machine learning deployed in a big-data context have generally yielded better results for classification and regression purposes, providing new perspectives for future studies.
Collapse
Affiliation(s)
- Hala Abi-Rizk
- LAboratoire de Recherche et de Traitement de l'Information Chimiosensorielle - LARTIC, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, G1V 0A6, Canada.
| | | | - Julien Chamberland
- Department of Food Sciences, STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Christophe B Y Cordella
- LAboratoire de Recherche et de Traitement de l'Information Chimiosensorielle - LARTIC, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
5
|
Fan S, Liu C, Li Y, Zhang Y. Visual Representation of Red Wine Color: Methodology, Comparison and Applications. Foods 2023; 12:foods12050924. [PMID: 36900441 PMCID: PMC10000885 DOI: 10.3390/foods12050924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/24/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
A visual and easy-to-implement representation approach of red wine color is proposed in this work. The wine color under standard conditions, called feature color, was reproduced in the form of a circular spot. The feature color was further decomposed into two orthogonal aspects, the chromatic and light-dark components, characterized in the form of chromaticity distribution plane and lightness distribution plane, respectively. The color characterization of wine samples showed that this method well represented the color characteristics and can provide intuitive visual perception of wine color, in a way that is more reliable and convenient than the photographic method. The applications for monitoring the color evolution during winery and laboratory fermentation and the age discrimination of 175 commercial red wines suggest that this visual method is effective for color management and control of wine during fermentation and aging. The proposed method is a convenient way to present, store, convey, understand, analyze and compare the color information of wines.
Collapse
Affiliation(s)
- Shuyue Fan
- College of Enology, Northwest A & F University, Yangling 712100, China
| | - Caiyun Liu
- College of Enology, Northwest A & F University, Yangling 712100, China
| | - Yunkui Li
- College of Enology, Northwest A & F University, Yangling 712100, China
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A & F University, Yinchuan 750104, China
- Correspondence: ; Tel.: +86-29-87092107; Fax: +86-29-87091133
| | - Yu Zhang
- College of Enology, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
6
|
Fliszár-Nyúl E, Zinia Zaukuu JL, Szente L, Kovacs Z, Poór M. Impacts of β-cyclodextrin bead polymer (BBP) treatment on the quality of red and white wines: Color, polyphenol content, and electronic tongue analysis. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
7
|
Wu J, Peng H, Li L, Wen L, Chen X, Zong X. FT-IR combined with chemometrics in the quality evaluation of Nongxiangxing baijiu. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121790. [PMID: 36081190 DOI: 10.1016/j.saa.2022.121790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Recently, there has been an increasing demand for developing a reliable method to assess the quality of liquor in the baijiu industry quickly and accurately. The present study sought to establish a strategy for rapid quantitative analysis of the primary flavor components in Nongxiangxing baijiu. Under the experimental conditions, 7 of the 10 major flavor components in Nongxiangxing baijiu could be quantified effectively, such as ethyl butyrate (R2p = 0.9942), ethyl lactate (R2p = 0.9438), n-butanol (R2p = 0.9048), isobutanol (R2p = 0.9696), acetic acid (R2p = 0.9600), butyric acid (R2p = 0.8448), caproic acid (R2p = 0.9971). This result indicates that FT-IR combined with quantitative chemometric modeling could be a potential approach for rapid quality assessment of Nongxiangxing baijiu. Overall, this study provides a theoretical basis for subsequent related studies on Nongxiangxing baijiu.
Collapse
Affiliation(s)
- Jianhang Wu
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China; College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China.
| | - Houbo Peng
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China; College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China.
| | - Li Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China.
| | - Lei Wen
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China; College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China.
| | - Xiaodie Chen
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China.
| | - Xuyan Zong
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China; College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China.
| |
Collapse
|
8
|
Chen Q, Zhang Y, Jing L, Xiao N, Wu X, Shi W. Changes in Protein Degradation and Non-Volatile Flavor Substances of Swimming Crab (Portunus trituberculatus) during Steaming. Foods 2022; 11:foods11213502. [PMID: 36360113 PMCID: PMC9659030 DOI: 10.3390/foods11213502] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
To investigate the effect of steaming time (0, 5, 10, 15, 20, and 25 min) on the protein degradation and non-volatile flavor substances of swimming crab (Portunus trituberculatus), the moisture content, total nitrogen (TN), non-protein nitrogen (NPN), free amino acids (FAAs), flavor nucleotides, electronic tongue analysis, and sensory evaluation were determined. The results showed that the contents of NPN and total FAAs were the highest after crabs steamed for 10 min. Meanwhile, the AMP (adenosine monophosphate) content reached the maximum value (332.83 mg/100 g) and the taste active value (TAV) reached 6.67, which indicated that AMP contributes the most to the taste of steamed crab at 10 min. The electronic tongue distinguished the taste difference well, and the sensory score was the highest at 15 min. Combined with equivalent umami concentration (EUC) and TAV value, swimming crab (weight = 200 ± 20 g) steamed for 10–15 min tasted best.
Collapse
Affiliation(s)
- Qin Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yurui Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lunan Jing
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Naiyong Xiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xugan Wu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (X.W.); (W.S.); Tel.: +86-15692165021 (X.W.); +86-15692165859 (W.S.)
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
- Correspondence: (X.W.); (W.S.); Tel.: +86-15692165021 (X.W.); +86-15692165859 (W.S.)
| |
Collapse
|
9
|
Li S, Du D, Wang J, Wei Z. Application progress of intelligent flavor sensing system in the production process of fermented foods based on the flavor properties. Crit Rev Food Sci Nutr 2022; 64:3764-3793. [PMID: 36259959 DOI: 10.1080/10408398.2022.2134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented foods are sensitive to the production conditions because of microbial and enzymatic activities, which requires intelligent flavor sensing system (IFSS) to monitor and optimize the production process based on the flavor properties. As the simulation system of human olfaction and gustation, IFSS has been widely used in the field of food with the characteristics of nondestructive, pollution-free, and real-time detection. This paper reviews the application of IFSS in the control of fermentation, ripening, and shelf life, and the potential in the identification of quality differences and flavor-producing microbes in fermented foods. The survey found that electronic nose (tongue) is suitable to monitor fermentation process and identify food authenticity in real time based on the changes of flavor profile. Gas chromatography-ion mobility spectrometry and nuclear magnetic resonance technology can be used to analyze the flavor metabolism of fermented foods at various production stages and explore the correlation between flavor substances and microorganisms.
Collapse
Affiliation(s)
- Siying Li
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Dongdong Du
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Jun Wang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Zhenbo Wei
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Mid-infrared and near-infrared spectroscopies to classify improper fermentation of pineapple wine. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
E-Senses, Panel Tests and Wearable Sensors: A Teamwork for Food Quality Assessment and Prediction of Consumer’s Choices. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
At present, food quality is of utmost importance, not only to comply with commercial regulations, but also to meet the expectations of consumers; this aspect includes sensory features capable of triggering emotions through the citizen’s perception. To date, key parameters for food quality assessment have been sought through analytical methods alone or in combination with a panel test, but the evaluation of panelists’ reactions via psychophysiological markers is now becoming increasingly popular. As such, the present review investigates recent applications of traditional and novel methods to the specific field. These include electronic senses (e-nose, e-tongue, and e-eye), sensory analysis, and wearables for emotion recognition. Given the advantages and limitations highlighted throughout the review for each approach (both traditional and innovative ones), it was possible to conclude that a synergy between traditional and innovative approaches could be the best way to optimally manage the trade-off between the accuracy of the information and feasibility of the investigation. This evidence could help in better planning future investigations in the field of food sciences, providing more reliable, objective, and unbiased results, but it also has important implications in the field of neuromarketing related to edible compounds.
Collapse
|
12
|
Thanasi V, Catarino S, Ricardo-da-Silva J. Fourier transform infrared spectroscopy in monitoring the wine production. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2022. [DOI: 10.1051/ctv/ctv2022370179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The complexity of the wine matrix makes monitoring of the winemaking process from the grapes to the final product crucial for the wine industry. In this context, analytical methodologies that can combine good accuracy, robustness, high sample throughput, “green character”, and by preference real-time analysis, are on-demand to create high-quality vitivinicultural products. In the last years, Fourier-transform Infrared Spectroscopy (FTIR) combined with chemometric analysis has been evaluated in several studies as an effective analytical tool for the wine sector. Some applications of FTIR spectroscopy have been already accepted by the wine industry, mainly for the prediction of basic oenological parameters, using portable and non-portable instruments, but still many others are waiting to be thoroughly developed. This literature review aims to provide a critical synopsis of the most important studies assessing grape and wine quality and authenticity, and to identify possible gaps for further research, meeting the needs of the modern wine industry and the expectations of most demanding consumers. The FTIR studies were grouped according to the main sampling material used - 1) leaves, stems, and berries; 2) grape must and wine applications - along with a summary of the basic limitations and future perspectives of this analytical technique.
Collapse
|
13
|
Kochadai N, Hema V, Vadakkepulppara Ramachandran Nair S. Investigation of the effect of hydrodynamic cavitation treatment on the aging of tender coconut–palmyra wine. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nitthya Kochadai
- Biotechnology National Institute of Food Technology, Entrepreneurship and Management Thanjavur Tamil Nadu India
- Affiliated to Bharathidasan University Tiruchirappalli Tamil Nadu India
| | - Vincent Hema
- Food Processing and Business Incubation Centre National Institute of Food Technology, Entrepreneurship and Management Thanjavur Tamil Nadu India
| | | |
Collapse
|
14
|
Analysis of flavor-related compounds in fermented persimmon beverages stored at different temperatures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Fabrication and application of three-dimensional nanocomposites modified electrodes for evaluating the aging process of Huangjiu (Chinese rice wine). Food Chem 2022; 372:131158. [PMID: 34601421 DOI: 10.1016/j.foodchem.2021.131158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/08/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
In this study, three modified glassy carbon electrodes based on three-dimensional conducting polymer nanocomposites (TDCPNs) were fabricated for evaluating the aging process of Huangjiu (Chinese rice wines). The electrochemical activity and experimental conditions of the TDCPNs modified electrodes were investigated by cyclic voltammetry, the aging information obtained by the modified electrodes were optimized by variance inflation factor (VIF). Principal components analysis (PCA), locally linear embedding (LLE), and locality preserving projection (LPP, which presented the best classification result) based on the optimized data were applied to classify the wine samples. Then, the dimensionality reduction data of PCA, LLE, and LPP were used as input variables of the logistic regression and extreme learning machine (ELM) for evaluating the aging process of Huangjiu, and the LLE-ELM method exhibited the best prediction results. These results demonstrated that the TDCPNs modified electrodes presented the potential for the quality analysis of food and beverages.
Collapse
|
16
|
Data Fusion Approaches for the Characterization of Musts and Wines Based on Biogenic Amine and Elemental Composition. SENSORS 2022; 22:s22062132. [PMID: 35336301 PMCID: PMC8950699 DOI: 10.3390/s22062132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023]
Abstract
Samples from various winemaking stages of the production of sparkling wines using different grape varieties were characterized based on the profile of biogenic amines (BAs) and the elemental composition. Liquid chromatography with fluorescence detection (HPLC-FLD) combined with precolumn derivatization with dansyl chloride was used to quantify BAs, while inductively coupled plasma (ICP) techniques were applied to determine a wide range of elements. Musts, base wines, and sparkling wines were analyzed accordingly, and the resulting data were subjected to further chemometric studies to try to extract information on oenological practices, product quality, and varieties. Although good descriptive models were obtained when considering each type of data separately, the performance of data fusion approaches was assessed as well. In this regard, low-level and mid-level approaches were evaluated, and from the results, it was concluded that more comprehensive models can be obtained when joining data of different natures.
Collapse
|
17
|
Marques C, Correia E, Dinis LT, Vilela A. An Overview of Sensory Characterization Techniques: From Classical Descriptive Analysis to the Emergence of Novel Profiling Methods. Foods 2022; 11:foods11030255. [PMID: 35159407 PMCID: PMC8834440 DOI: 10.3390/foods11030255] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Sensory science provides objective information about the consumer understanding of a product, the acceptance or rejection of stimuli, and the description of the emotions evoked. It is possible to answer how consumers perceive a product through discriminative and descriptive techniques. However, perception can change over time, and these fluctuations can be measured with time-intensity methods. Instrumental sensory devices and immersive techniques are gaining headway as sensory profiling techniques. The authors of this paper critically review sensory techniques from classical descriptive analysis to the emergence of novel profiling methods. Though research has been done in the creation of new sensory methods and comparison of those methods, little attention has been given to the timeline approach and its advantages and challenges. This study aimed to gather, explain, simplify, and discuss the evolution of sensory techniques.
Collapse
Affiliation(s)
- Catarina Marques
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal; (C.M.); (L.-T.D.)
| | - Elisete Correia
- Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, University of Trás-os-Montes and Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal;
| | - Lia-Tânia Dinis
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal; (C.M.); (L.-T.D.)
| | - Alice Vilela
- Chemistry Research Centre (CQ-VR), Department of Biology and Environment, School of Life Science and Environment, University of Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal
- Correspondence:
| |
Collapse
|
18
|
Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health—A Review. BEVERAGES 2021. [DOI: 10.3390/beverages8010001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Red wine, an alcoholic beverage is composed of a spectrum of complex compounds such as water, alcohol, glycerol, organic acid, carbohydrates, polyphenols, and minerals as well as volatile compounds. Major factors that affect the levels of phenolic compounds in red wines are the variety of grapes and the storage of the wines. Among the constituents of red wine, phenolic compounds play a crucial role in attributes including color and mouthfeel and confer beneficial properties on health. Most importantly, phenolic compounds such as flavanols, flavonols, flavanones, flavones, tannins, anthocyanins, hydroxycinnamic acids, hydroxybenzoic acids, and resveratrol can prevent the development of cardiovascular diseases, cancers, diabetes, inflammation, and some other chronic diseases.
Collapse
|
19
|
Gao Y, Hou L, Gao J, Li D, Tian Z, Fan B, Wang F, Li S. Metabolomics Approaches for the Comprehensive Evaluation of Fermented Foods: A Review. Foods 2021; 10:2294. [PMID: 34681343 PMCID: PMC8534989 DOI: 10.3390/foods10102294] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Fermentation is an important process that can provide new flavors and nutritional and functional foods, to deal with changing consumer preferences. Fermented foods have complex chemical components that can modulate unique qualitative properties. Consequently, monitoring the small molecular metabolites in fermented food is critical to clarify its qualitative properties and help deliver personalized nutrition. In recent years, the application of metabolomics to nutrition research of fermented foods has expanded. In this review, we examine the application of metabolomics technologies in food, with a primary focus on the different analytical approaches suitable for food metabolomics and discuss the advantages and disadvantages of these approaches. In addition, we summarize emerging studies applying metabolomics in the comprehensive analysis of the flavor, nutrition, function, and safety of fermented foods, as well as emphasize the applicability of metabolomics in characterizing the qualitative properties of fermented foods.
Collapse
Affiliation(s)
- Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Lizhen Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Jie Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Danfeng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Zhiliang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| |
Collapse
|
20
|
Wang Y, Wu H, Shi W, Huang H, Shen S, Yang F, Chen S. Changes of the flavor substances and protein degradation of black carp (Mylopharyngodon piceus) pickled products during steaming. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4033-4041. [PMID: 33349966 DOI: 10.1002/jsfa.11038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Among various cooking methods, steaming is favored by many because it can cause less damage to nutrient components in muscle, retain the inherent food flavor, and reduce the generation of harmful substances. Steaming conditions are closely related to fish flavor, fat and protein oxidation, and digestibility. RESULTS The black carp steamed for 4 to 14 min was studied in this article based on sensory assessment, electronic tongue, free amino acids, adenosine triphosphate (ATP)-related compounds, total nitrogen and non-protein nitrogen to explore the effect of steaming time on the taste substances and protein degradation of pickled black carp. The experimental result showed that the meat steamed within 8 min tasted better, showing high tastiness. The sensory assessment score increased significantly to the maximum value of 82.33 at 6 min. The content of umami and sweet amino acids increased significantly to the maximum value of 1.6801 g kg-1 at 6 min. In the meantime, the IMP (inosine monophosphate) content was 1.9128 g kg-1 , with its taste activity value (TAV) reaching 7.65, which proved that IMP affected the taste most. Furthermore, the total nitrogen content was 30.77 g kg-1 , which meant protein degraded a great deal. Based on equivalent umami concentration (EUC) and its TAV, the meat tasted best at 6-8 min. The longer the steaming time, the faster the protein degradation and the more the flavor precursors. CONCLUSION The black carp pickled products (with a weight of 20 g, with the size of 3 cm × 3 cm × 2 cm) is suggested to be steamed for 6 to 8 min. This conclusion provides a theoretical basis for its better taste quality. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yixin Wang
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Han Wu
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wenzheng Shi
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiyuan Huang
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Siyuan Shen
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Feng Yang
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shi Chen
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
21
|
|
22
|
Tabago MKAG, Calingacion MN, Garcia J. Recent advances in NMR-based metabolomics of alcoholic beverages. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 2:100009. [PMID: 35415632 PMCID: PMC8991939 DOI: 10.1016/j.fochms.2020.100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/30/2020] [Accepted: 12/27/2020] [Indexed: 01/14/2023]
Abstract
Alcoholic beverages have a complex chemistry that can be influenced by their alcoholic content, origin, fermentation process, additives, and contaminants. The complex composition of these beverages leave them susceptible to fraud, potentially compromising their authenticity, quality, and market value, thus increasing risks to consumers' health. In recent years, intensive studies have been carried out on alcoholic beverages using different analytical techniques to evaluate the authenticity, variety, age, and fermentation processes that were used. Among these techniques, NMR-based metabolomics holds promise in profiling the chemistry of alcoholic beverages, especially in Asia where metabolomics studies on alcoholic beverages remain limited.
Collapse
Affiliation(s)
- Maria Krizel Anne G. Tabago
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Malate, Manila, Metro Manila 1004, Philippines
| | - Mariafe N. Calingacion
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Malate, Manila, Metro Manila 1004, Philippines
| | - Joel Garcia
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Malate, Manila, Metro Manila 1004, Philippines
| |
Collapse
|
23
|
Abstract
This paper is focused on the assessment of a multi-sensor approach to improve the overall characterization of sparkling wines (cava wines). Multi-sensor, low-level data fusion can provide more comprehensive and more accurate vision of results compared with the study of simpler data sets from individual techniques. Data from different instrumental platforms were combined in an enriched matrix, integrating information from spectroscopic (UV/Vis and FTIR), chromatographic, and other techniques. Sparkling wines belonging to different classes, which differed in the grape varieties, coupages, and wine-making processes, were analyzed to determine organic acids (e.g., tartaric, lactic, malic, and acetic acids), pH, total acidity, polyphenols, total antioxidant capacity, ethanol, or reducing sugars. The resulting compositional values were treated chemometrically for a more efficient recovery of the underlaying information. In this regard, exploratory methods such as principal component analysis showed that phenolic compounds were dependent on varietal and blending issues while organic acids were more affected by fermentation features. The analysis of the multi-sensor data set provided a more comprehensive description of cavas according to grape classes, blends, and vinification processes. Hierarchical Cluster Analysis (HCA) allowed specific groups of samples to be distinguished, featuring malolactic fermentation and the chardonnay and red grape classes. Partial Least Squares-Discriminant Analysis (PLS-DA) also classified samples according to the type of grape varieties and fermentations. Bar charts and complementary statistic test were performed to better define the differences among the studied samples based on the most significant markers of each cava wine type. As a conclusion, catechin, gallic, gentisic, caftaric, caffeic, malic, and lactic acids were the most remarkable descriptors that contributed to their discrimination based on varietal, blending, and oenological factors.
Collapse
|
24
|
Sierra-Padilla A, García-Guzmán JJ, López-Iglesias D, Palacios-Santander JM, Cubillana-Aguilera L. E-Tongues/Noses Based on Conducting Polymers and Composite Materials: Expanding the Possibilities in Complex Analytical Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:4976. [PMID: 34372213 PMCID: PMC8347095 DOI: 10.3390/s21154976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 01/14/2023]
Abstract
Conducting polymers (CPs) are extensively studied due to their high versatility and electrical properties, as well as their high environmental stability. Based on the above, their applications as electronic devices are promoted and constitute an interesting matter of research. This review summarizes their application in common electronic devices and their implementation in electronic tongues and noses systems (E-tongues and E-noses, respectively). The monitoring of diverse factors with these devices by multivariate calibration methods for different applications is also included. Lastly, a critical discussion about the enclosed analytical potential of several conducting polymer-based devices in electronic systems reported in literature will be offered.
Collapse
Affiliation(s)
- Alfonso Sierra-Padilla
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cadiz, Spain; (A.S.-P.); (L.C.-A.)
| | - Juan José García-Guzmán
- Instituto de Investigación e Innovación Biomédica de Cadiz (INiBICA), Hospital Universitario ‘Puerta del Mar’, Universidad de Cadiz, 11009 Cadiz, Cadiz, Spain;
| | - David López-Iglesias
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cadiz, Spain; (A.S.-P.); (L.C.-A.)
| | - José María Palacios-Santander
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cadiz, Spain; (A.S.-P.); (L.C.-A.)
| | - Laura Cubillana-Aguilera
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cadiz, Spain; (A.S.-P.); (L.C.-A.)
| |
Collapse
|
25
|
Galvan D, Aquino A, Effting L, Mantovani ACG, Bona E, Conte-Junior CA. E-sensing and nanoscale-sensing devices associated with data processing algorithms applied to food quality control: a systematic review. Crit Rev Food Sci Nutr 2021; 62:6605-6645. [PMID: 33779434 DOI: 10.1080/10408398.2021.1903384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Devices of human-based senses such as e-noses, e-tongues and e-eyes can be used to analyze different compounds in several food matrices. These sensors allow the detection of one or more compounds present in complex food samples, and the responses obtained can be used for several goals when different chemometric tools are applied. In this systematic review, we used Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, to address issues such as e-sensing with chemometric methods for food quality control (FQC). A total of 109 eligible articles were selected from PubMed, Scopus and Web of Science. Thus, we predicted that the association between e-sensing and chemometric tools is essential for FQC. Most studies have applied preliminary approaches like exploratory analysis, while the classification/regression methods have been less investigated. It is worth mentioning that non-linear methods based on artificial intelligence/machine learning, in most cases, had classification/regression performances superior to non-liner, although their applications were seen less often. Another approach that has generated promising results is the data fusion between e-sensing devices or in conjunction with other analytical techniques. Furthermore, some future trends in the application of miniaturized devices and nanoscale sensors are also discussed.
Collapse
Affiliation(s)
- Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| | - Adriano Aquino
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| | - Luciane Effting
- Chemistry Department, State University of Londrina (UEL), Londrina, PR, Brazil
| | | | - Evandro Bona
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology Paraná (UTFPR), Campo Mourão, PR, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
26
|
Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021; 26:molecules26030718. [PMID: 33573150 PMCID: PMC7866523 DOI: 10.3390/molecules26030718] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
Wine is one of the most consumed beverages around the world. It is composed of alcohols, sugars, acids, minerals, proteins and other compounds, such as organic acids and volatile and phenolic compounds (also called polyphenols). Polyphenols have been shown to be highly related to both (i) wine quality (color, flavor, and taste) and (ii) health-promoting properties (antioxidant and cardioprotective among others). Polyphenols can be grouped into two big families: (i) Flavonoids, including anthocyanidins, flavonols, flavanols, hydrolysable and condensed tannins, flavanones, flavones and chalcones; and (ii) Non-flavonoids, including hydroxycinnamic acids, hydroxybenzoic acids, stilbenes, tyrosol and hydroxytyrosol. Each group affects in some way the different properties of wine to a greater or a lesser extent. For that reason, the phenolic composition can be managed to obtain singular wines with specific, desirable characteristics. The current review presents a summary of the ways in which the phenolic composition of wine can be modulated, including (a) invariable factors such as variety, field management or climatic conditions; (b) pre-fermentative strategies such as maceration, thermovinification and pulsed electric field; (c) fermentative strategies such as the use of different yeasts and bacteria; and (d) post-fermentative strategies such as maceration, fining agents and aging. Finally, the different extraction methods and analytical techniques used for polyphenol detection and quantification have been also reviewed.
Collapse
|
27
|
Ríos-Reina R, Camiña JM, Callejón RM, Azcarate SM. Spectralprint techniques for wine and vinegar characterization, authentication and quality control: Advances and projections. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Recent trends in quality control, discrimination and authentication of alcoholic beverages using nondestructive instrumental techniques. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Qin J, Wang Z, Wang X, Shi W. Effects of microwave time on quality of grass carp fillets processed through microwave combined with hot-air drying. Food Sci Nutr 2020; 8:4159-4171. [PMID: 32884697 PMCID: PMC7455962 DOI: 10.1002/fsn3.1708] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
In this study, the quality changes of grass carp fillets dried by microwave-hot-air combined drying under different microwave time were investigated. The salted fillets were dried at 385 W microwave with different time (0, 2, 4, 6, 8, and 10 min), followed by 65℃ hot air to the end. The quality of fillets was evaluated by drying time, color, hardness, rehydration ratio, and taste characteristics (ATP-related compounds, free amino acids, E-tongue taste profile, EUC, and TAV). Results showed that grass carp fillets dried by microwave-hot-air combined drying had better qualities compared with single hot-air drying. Besides, microwave time had obvious effects on the quality changes of grass carp fillets, and 6 min was considered as the optimal drying time.
Collapse
Affiliation(s)
- Jiaying Qin
- College of Food Science and TechnologyNational R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai)Shanghai Ocean UniversityShanghaiChina
| | - Zhihe Wang
- College of Food Science and TechnologyNational R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai)Shanghai Ocean UniversityShanghaiChina
| | - Xichang Wang
- College of Food Science and TechnologyNational R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai)Shanghai Ocean UniversityShanghaiChina
| | - Wenzheng Shi
- College of Food Science and TechnologyNational R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai)Shanghai Ocean UniversityShanghaiChina
| |
Collapse
|
30
|
Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue. SENSORS 2020; 20:s20154176. [PMID: 32727151 PMCID: PMC7435477 DOI: 10.3390/s20154176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022]
Abstract
A bio-electronic tongue has been developed to evaluate the phenolic content of grape residues (seeds and skins) in a fast and easy way with industrial use in mind. A voltammetric electronic tongue has been designed based on carbon resin electrodes modified with tyrosinase combined with electron mediators. The presence of the phenoloxydase promotes the selectivity and specificity towards phenols. The results of multivariate analysis allowed discriminating seeds and skins according to their polyphenolic content. Partial least squares (PLS) has been used to establish regression models with parameters related to phenolic content measured by spectroscopic methods i.e., total poliphenol content (TPC) and Folin–Ciocalteu (FC) indexes. It has been shown that electronic tongue can be successfully used to predict parameters of interest with high correlation coefficients (higher than 0.99 in both calibration and prediction) and low residual errors. These values can even be improved using genetic algorithms for multivalent analysis. In this way, a fast and simple tool is available for the evaluation of these values. This advantage may be due to the fact that the electrochemical signals are directly related to the phenolic content.
Collapse
|
31
|
Guguchkina T, Antonenko M, Yakimenko Y. New grape varieties for production of high-quality wines, and assessment methodology for varietal characteristics of the product. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202502016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In recent years, Russian and international breeders have produced a great many of new varieties of Vitis vinifera grapes as well as interspecies hybrids, distinguished by a high quality of fruit and other useful economic and biological features. Having a big reserve of technologically important substances and hygienic factors of grapevine, the resistant varieties may prove especially efficient for the production of premium-class wines. The appearance of high-end Russian wines with protected geographical indication (PGI) and protected appellation of origin (PAO), first of all, fits in with the requirements of international markets. It is a necessary criterion for product quality and safety assurance at the highly competitive global market, and development of universally recognized brands. It also helps resolve a number of socio-economic issues, such as formation of winemaking culture, and production of wines of guaranteed quality from own grapes. This study is devoted to substantiating the necessity for development of methods of formation of single information databases on characteristic features of PGI and PAO wines, including their distinctive organoleptic, physical and chemical properties (extract components – the cation-anion composition, organic acids, total phenolic and anthocyanin content; unique colour characteristics), as well as the application of the system of organoleptic assessment of wines with the use of descriptive analysis of wine colour, flavour and taste. It is well-timed and relevant to determine the regularities of realization of the varietal potential of a grapevine plant in terms of climatic conditions of growing and geographical origin based on the study of the endogenous and exogenous components of wines with the use of the methods of high-performance capillary electrophoresis, spectral photometry, organoleptic analysis, and statistical techniques. This research generalizes and puts forth a contemporary view of varietal and geographical identification of wines. It is shown that the proposed research guideline is highly sought-after, and it is of fundamental and practical importance for the development of regional and national selection, genetic, viticultural and winemaking industries.
Collapse
|